ECE171A: Linear Control System Theory Lecture 10: Root Locus

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Root Locus Definition](#page-2-0)

[Positive Root Locus](#page-12-0)

[Negative Root Locus](#page-58-0)

Outline

[Root Locus Definition](#page-2-0)

[Positive Root Locus](#page-12-0)

[Negative Root Locus](#page-58-0)

Root Locus Overview

- \blacktriangleright The response of a control system is determined by the locations of the poles of its transfer function in the complex domain
- ▶ Feedback control can be used to move the poles of the transfer function by choosing appropriate controller type and gains
- ▶ The root locus provides all possible closed-loop pole locations as a system parameter, e.g., the gain k of a proportional controller, varies

\blacktriangleright Root locus plot

- ▶ By computer: find the roots of the closed-loop characteristic polynomial at different values of the parameter
- ▶ By hand: sketch the root locus shape by following rules determined by the feedback-loop pole and zero locations and phases
- \triangleright Besides adjusting the proportional gain k of the controller, it is important to understand how to manipulate the root locus by changing the controller type

- ▶ Consider a feedback control system
	- ▶ Controller $F(s) = k$
	- ▶ Plant $G(s) = \frac{1}{s(s+2)}$
	- ▶ Sensor $H(s) = 1$

$$
\triangleright \text{ Transfer function: } T(s) = \frac{Y(s)}{R(s)} = \frac{k}{s^2 + 2s + k}
$$

 \triangleright Root locus: how do the transfer function poles vary as a function of k ?

▶ Root locus of $G(s)H(s) = \frac{1}{s(s+2)}$

 $rlocus(tf([1],[1 2 0]))$; sgrid; axis equal;

▶ Closed-loop characteristic polynomial $s^2 + 2s + k$ has roots $p_{1,2} = -1 \pm \sqrt{2}$ $1-k$

▶ Add a left-half-plane zero to the plant:

- ▶ Controller $F(s) = k$
- ▶ Plant $G(s) = \frac{(s+3)}{s(s+2)}$
- \blacktriangleright Sensor $H(s) = 1$

$$
\blacktriangleright \text{ Transfer function: } T(s) = \frac{Y(s)}{R(s)} = \frac{k(s+3)}{s^2 + (s+k)s + 3k}
$$

▶ Root locus of $G(s)H(s) = \frac{(s+3)}{s(s+2)}$

 $rlocus(tf([1 3], [1 2 0]))$; sgrid; axis equal;

▶ Adding a stable zero increases the relative stability of the system by attracting the branches of the root locus $8⁸$

▶ Add a left-half-plane pole to the plant:

▶ Controller $F(s) = k$

$$
\blacktriangleright \text{ Plant } G(s) = \frac{1}{s(s+2)(s+3)}
$$

$$
\blacktriangleright \text{ sensor } H(s) = 1
$$

$$
\triangleright \text{ Transfer function: } T(s) = \frac{Y(s)}{R(s)} = \frac{k}{s^3 + 5s^2 + 6s + k}
$$

$$
\triangleright \text{ Root locus for } G(s) = \frac{1}{s(s+2)(s+3)}
$$

 $rlocus(tf([1],[1 5 6 0]))$; sgrid; axis equal;

 \blacktriangleright Adding a stable pole decreases the relative stability of the system by repelling the branches of the root locus 10

Root Locus Definition

$$
\blacktriangleright \text{ Transfer function: } T(s) = \frac{Y(s)}{R(s)} = \frac{kG(s)}{1 + kG(s)H(s)}
$$

▶ The poles of the closed-loop transfer function satisfy:

$$
\Delta(s) = 1 + kG(s)H(s) = 0 \qquad \Leftrightarrow \qquad G(s)H(s) = -\frac{1}{k}
$$

▶ Root locus: a graph of the roots of $\Delta(s)$ as the gain k varies from 0 to ∞

Positive vs Negative Root Locus

 \triangleright Root locus: points s such that:

$$
1 + kG(s)H(s) = 0 \qquad \Leftrightarrow \qquad G(s)H(s) = -\frac{1}{k}
$$

▶ Positive root locus: for $k > 0$, the points s on the root locus satisfy:

- \blacktriangleright Magnitude condition: $|G(s)H(s)| = \frac{1}{k}$
- ▶ Phase condition: $/G(s)H(s) = (1 + 2l)180°$ for $l = 0, \pm 1, \pm 2, ...$

► Negative root locus: for $k < 0$, the points s on the root locus satisfy:

▶ Magnitude condition: $|G(s)H(s)| = -\frac{1}{k}$

▶ Phase condition: $/G(s)H(s) = (2l)180°$ for $l = 0, \pm 1, \pm 2, \ldots$

Outline

[Root Locus Definition](#page-2-0)

[Positive Root Locus](#page-12-0)

[Negative Root Locus](#page-58-0)

Positive Root Locus

 \triangleright Consider the zeros and poles of $G(s)H(s)$ explicitly:

$$
G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \frac{b_m}{a_n} \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}
$$

▶ Positive root locus: for $k \geq 0$, the points s on the root locus satisfy:

 \blacktriangleright Magnitude condition: used to determine the gain k corresponding to a point s on the root locus:

$$
|G(s)H(s)| = \left|\frac{b_m}{a_n}\right| \frac{\prod_{i=1}^m |s - z_i|}{\prod_{i=1}^n |s - p_i|} = \frac{1}{k}
$$

 \triangleright Phase condition: used to check if a point s is on the root locus:

$$
\underline{\frown G(s)H(s)}=\underline{\frown}^{b_m}_{a_n}+\sum_{i=1}^m \underline{\frown} (s-z_i)-\sum_{i=1}^n \underline{\frown} (s-p_i)=(1+2i)180^\circ,
$$

where $l \in \{0, \pm 1, \pm 2, \ldots\}$

Phase Condition Example

$$
\bullet \text{ Consider } G(s)H(s) = \frac{s+4}{s((s+1)^2+1)} = \frac{s+4}{s(s+1+j)(s+1-j)}
$$

 \triangleright The phase condition allows checking if a point s is on the root locus

 \triangleright Is the point $s = -3$ on the root locus? $Im(s)$ $<$ s-p $/G(s)H(s) = 1 - \frac{-3}{-2} - \frac{-2}{j} - \frac{-2}{j}$ $= 0 - 180^\circ - 0 = -180^\circ$ $<$ S-Z \triangleright Is the point $s = -4 + j$ on the root locus? $Re(s)$ $/G(s)H(s) = \underline{j} - \underline{j} - \underline{k} - \underline{j} - \underline{k} - \underline{k} - \underline{k} - \underline{k}$ \le s-p. $= 90^{\circ} - \left(180^{\circ} - \tan^{-1}\left(\frac{1}{4}\right)\right)$ $\left(\frac{1}{4}\right)\bigg) - \left(180^\circ - \tan^{-1}\left(\frac{2}{3}\right)\right)$ $\left(\frac{2}{3}\right)$ - 180° $\approx -450^{\circ} + 47.7^{\circ}$

Using this method to determine all points on the root locus is cumbersome

▶ We need more general rules

Root Locus Symmetry

- \triangleright The closed-loop poles are either real or complex conjugate pairs
- ▶ The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of $G(s)H(s)$
- \triangleright We can divide the root locus into:
	- \blacktriangleright points on the real axis
	- \blacktriangleright symmetric parts off the real axis

Points on the Real Axis

▶ Phase condition:

$$
\underline{\frown G(s)H(s)} = \underline{\frown}_{a_n}^{b_m} + \sum_{i=1}^m \underline{\frown} (s-z_i) - \sum_{i=1}^n \underline{\frown} (s-p_i) = (1+2l)180^\circ, \quad l \in \{0, \pm 1, \pm 2, \ldots\}
$$

 \blacktriangleright For real $s = a$.

(a) A zero to the right contributes 180° (b) A conjugate pair of zeros does not contribute since the phases sum to zero

Points on the Real Axis

▶ Phase condition:

$$
\underline{\bigg/\mathsf{G}(s)H(s)}=\underline{\bigg/\frac{b_m}{a_n}}+\sum_{i=1}^m\underline{\bigg/ (s-z_i)}-\sum_{i=1}^n\underline{\bigg/ (s-p_i)}=(1+2l)180^\circ, \quad l\in\{0,\pm 1,\pm 2,\ldots\}
$$

- \blacktriangleright If s is real:
	- ▶ Each zero to the right of s contributes 180°
	- ► Each pole to the right of s contributes -180°
	- A pole or zero to the left of s does not contribute since its phase is 0°
	- ▶ Pairs of complex conjugate poles or zeros do not contribute since their phases sum to zero
- ▶ Rule: The positive root locus contains all points on the real axis that are to the left of an odd number of zeros or poles

Points on the Real Axis: Example 1

▶ Determine the real axis portions of the root locus of

$$
G(s)H(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)}
$$

Points on the Real Axis: Example 2

▶ Determine the real axis portions of the root locus of

$$
G(s)H(s) = \frac{(s+3)(s+7)}{s^2((s+1)^2+1)(s+5)}
$$

Departure and Arrival Points

▶ Root locus: graphs the roots of the closed-loop characteristic polynomial:

$$
\Delta(s) = 1 + kG(s)H(s) = 0 \qquad \Rightarrow \qquad a(s) + kb(s) = 0,
$$

where $a(s)$ is *n*-degree polynomial, $b(s)$ is *m*-degree polynomial

- ▶ Since $n \ge m$, $a(s) + kb(s)$ is an *n*-degree polynomial and has *n* roots
- \blacktriangleright The root locus has *n* branches
- \blacktriangleright Departure points:
	- If $k = 0$, the roots of $a(s) + kb(s)$ are roots of $a(s)$, i.e., **poles** of $G(s)H(s)$

\blacktriangleright Arrival points:

- ▶ if $k \to \infty$, the solutions of $\frac{b(s)}{a(s)} = -\frac{1}{k}$ are roots of $b(s)$, i.e., zeros of $G(s)H(s)$
- ▶ Rule: The *n* root locus branches begin at the **poles** of $G(s)H(s)$ (when $k = 0$), and m of the branches end at the zeros of $G(s)H(s)$ (as $k \to \infty$)

Asymptotic Behavior

- \blacktriangleright The root locus has *n* branches starting at the poles of $G(s)H(s)$ and *m* of them terminate at the zeros of $G(s)H(s)$
- ▶ What happens with the remaining $n m$ branches?

$$
\begin{aligned} \n\blacktriangleright \quad \text{As } k \to \infty, \ G(s)H(s) &= -\frac{1}{k} \to 0 \\ \nG(s)H(s) &= \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \\ \n&= \frac{b_m \frac{1}{s^{n-m}} + b_{m-1} \frac{1}{s^{n-m+1}} + \dots + b_1 \frac{1}{s^{n-1}} + b_0 \frac{1}{s^n}}{a_n + a_{n-1} \frac{1}{s} + \dots + a_1 \frac{1}{s^{n-1}} + a_0 \frac{1}{s^n}} \n\end{aligned}
$$

- ▶ The numerator of $G(s)H(s)$ goes to zero if $|s| \to \infty$, i.e., there are $n-m$ zeros at infinity
- ▶ As $k \to \infty$, m branches go to the zeros of $G(s)H(s)$ and the remaining $n - m$ branches go off to infinity along asymptotes

Asymptotic Behavior

▶ Phase condition:

$$
\underline{\bigg/\mathsf{G}(s)H(s)} = \underline{\bigg/\frac{b_m}{a_n}} + \sum_{i=1}^m \underline{\bigg/ (s-z_i)} - \sum_{i=1}^n \underline{\bigg/ (s-p_i)} = (1+2i)180^\circ, \quad i \in \{0, \pm 1, \pm 2, \ldots\}
$$

▶ As $|s| \to \infty$, all angles become the same:

$$
\theta \approx \frac{\mathop / (s-z_1)}{\mathop \approx \mathop / (s-p_1)} \approx \cdots \approx \frac{\mathop / (s-z_m)}{\mathop / (s-p_n)}
$$

Asymptote angles:

$$
\theta_I = \frac{(1+2I)}{|n-m|} 180^\circ - \underline{\frac{b_m}{a_n}},
$$

for $l \in \{0, \ldots, |n-m|-1\}$

Asymptotic Behavior: Example

- ▶ Determine the root locus asymptotes of $G(s)H(s) = \frac{s^2+s+1}{s^6+2s^5+5s^4-s^3+2s^2+1}$
- ▶ There are $m = 2$ zeros and $n = 6$ poles and hence $n m = 4$ asymptotes with angles:

Asymptotic Behavior

- ▶ Where do the asymptote lines start?
- ▶ If we consider a point s with very large magnitude, the poles and zeros of $G(s)H(s)$ will appear clustered at one point α on the real axis
- **►** The asymptote centroid is a point α such that as $k \to \infty$:

$$
G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \cdots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0} \approx \frac{b_m}{a_n (s - \alpha)^{n-m}}
$$

 \blacktriangleright Recall the Binomial theorem:

$$
(s-\alpha)^{n-m}=s^{n-m}-\alpha(n-m)s^{n-m-1}+\cdots
$$

 \blacktriangleright Recall polynomial long division:

$$
\frac{s^{n} + \frac{a_{n-1}}{a_n}s^{n-1} + \cdots + \frac{a_1}{a_n}s + \frac{a_0}{a_n}}{s^{m} + \frac{b_{m-1}}{b_m}s^{m-1} + \cdots + \frac{b_1}{b_m}s + \frac{b_0}{b_m}} = s^{n-m} + \left(\frac{a_{n-1}}{a_n} - \frac{b_{m-1}}{b_m}\right)s^{n-m-1} + \cdots
$$

Asymptotic Behavior

▶ Matching the coefficients of s^{n-m-1} shows the asymptote centroid:

$$
\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right)
$$

▶ Recall Vieta's formulas:

$$
\sum_{i=1}^{n} p_i = -\frac{a_{n-1}}{a_n} \qquad \qquad \sum_{i=1}^{m} z_i = -\frac{b_{m-1}}{b_m}
$$

▶ Rule: the $n - m$ branches of the root locus that go to infinity approach asymptotes with angles θ_l coming out of the centroid $s = \alpha$, where:

▶ Angles:

$$
\theta_l = \frac{(1+2l)}{|n-m|} 180^\circ - \underline{\frac{b_m}{a_n}}, \qquad l \in \{0,\ldots, |n-m|-1\}
$$

 \blacktriangleright Centroid:

$$
\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^{n} p_i - \sum_{i=1}^{m} z_i}{n-m}
$$

Asymptotic Behavior: Example

- ▶ Determine the root locus asymptotes of $G(s)H(s) = \frac{s^2+s+1}{s^6+2s^5+5s^4-s^3+2s^2+1}$
- ▶ There are 4 asymptotes with angles $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ and centroid:

$$
\alpha = \frac{1}{4} \left(\frac{1}{1} - \frac{2}{1} \right) = -\frac{1}{4}
$$

▶ Determine the real axis portions and the asymptotes of the positive root locus of $G(s)H(s) = \frac{1}{s(s+2)}$

▶ Determine the real axis portions and the asymptotes of the positive root locus of $G(s)H(s)=\frac{1}{s(s+4)(s+6)}$

▶ Determine the real axis portions and the asymptotes of the positive root locus of $G(s)H(s)=\frac{1}{s((s+1)^2+1)}$

▶ Determine the real axis portions and the asymptotes of the positive root locus of $G(s)H(s) = \frac{s+6}{s((s+1)^2+1)}$

Breakaway Points

- \triangleright The root locus leaves the real axis at **breakaway points** s_b where two or more branches meet
- \triangleright The characteristic polynomial $\Delta(s) = a(s) + kb(s) = 0$ has repeated roots at the breakaway points:

$$
\Delta(s)=(s-s_b)^q\bar{\Delta}(s)\qquad\text{for $q\geq 2$}
$$

▶ Since s_b is a root of multiplicity $q \geq 2$:

$$
\Delta(s_b) = a(s_b) + k b(s_b) = 0
$$

$$
\frac{d\Delta}{ds}(s_b) = \frac{da}{ds}(s_b) + k \frac{db}{ds}(s_b) = 0
$$

 \blacktriangleright Rule: The positive root locus breakaway points s_b occur when both: \blacktriangleright $-\frac{a(s_b)}{b(s_b)}$ $\frac{b(s_b)}{b(s_b)} = k$ is a positive real number ▶ $b(s_b) \frac{da}{ds}(s_b) - a(s_b) \frac{db}{ds}(s_b) = 0$

▶ Determine the root locus breakaway points of $G(s)H(s) = \frac{b(s)}{a(s)} = \frac{s+6}{s(s+2)}$

$$
b(s)\frac{da}{ds}(s) - a(s)\frac{db}{ds}(s) = 2(s+6)(s+1) - s(s+2) = s^2 + 12s + 12 = 0
$$

$$
\Rightarrow s_b = -6 \pm 2\sqrt{6} \Rightarrow -\frac{a(s_b)}{b(s_b)} = \frac{-48 \pm 20\sqrt{6}}{\pm 2\sqrt{6}} = 10 \mp 4\sqrt{6} > 0
$$

▶ Determine the root locus breakaway points of

$$
G(s)H(s) = \frac{1}{s(s+4)(s+6)} = \frac{1}{s^3 + 10s^2 + 24s}
$$

▶ Determine the root locus breakaway points of

$$
G(s)H(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)} = \frac{s^2+7s+12}{s^2+3s+2}
$$

▶ Determine the root locus breakaway points of $G(s)H(s) = \frac{s+1}{s^2-0.5}$

Angle of Departure

- \blacktriangleright The root locus starts at the poles of $G(s)H(s)$. At what angles does the root locus depart from the poles?
- ▶ To determine the **departure angle**, look at a small region around a pole

Angle of Departure

▶ Phase condition:

$$
\angle G(s)H(s) = \frac{b_m}{a_n} + \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = (1 + 2i)180^{\circ}
$$
\nConsider s very close to a pole p_j :

\n
$$
\angle_{\text{dep}} = \frac{\angle (s - p_j)}{\angle (s - z_i)} \approx \frac{\angle (p_j - z_i)}{\angle (p_j - p_i)}
$$
 for $i \neq j$ \n
$$
\angle_{\text{dep}} = \frac{\angle (s - p_j)}{\angle (p_j - p_j)} = 0
$$
\nFor $i \neq j$.

Angle of departure at p_j :

$$
\frac{\sqrt{G(s)H(s)}}{\sqrt{G(s)H(s)}} = \frac{\frac{b_m}{a_n}}{1 + \sum_{i=1}^{m} \frac{\sqrt{(s-z_i)}}{1 - \sum_{i=1}^{n} \frac{\sqrt{(s-p_i)}}{1 - \sum_{i=1}^{n} \frac{\sqrt{(p_i-p_i)}}{1 - \sum_{i=1}^{n} \frac{\sqrt
$$

Angle of Departure

- ▶ Angle of departure at a pole p: \angle _{dep} = $/G(p)H(p) + 180°$
- Angle of departure at a pole p with multiplicity μ :

$$
\mu_{\angle \text{dep}} = \angle G(p)H(p) + 180^{\circ}
$$

Angle of Departure: Example

Angle of departure at p_1 :

$$
\begin{aligned} \n\mathcal{L}_{\text{dep}} &= \frac{\sqrt{G(p_1)H(p_1)} + 180^\circ}{\sqrt{(p_1 - z_1)} + \frac{\sqrt{(p_1 - z_2)} - \sqrt{(p_1 - p_2)} - \sqrt{(p_1 - p_3)} - \sqrt{(p_1 - p_4)} + 180^\circ}}{\approx 141.5^\circ + 102.3^\circ - 90^\circ - 147.2^\circ - 116.0^\circ + 180^\circ} \\
&= 70.6^\circ \n\end{aligned}
$$

Angle of Arrival

- \blacktriangleright The root locus ends at the zeros of $G(s)H(s)$. At what angles does the root locus arrive at the zeros?
- ▶ To determine the arrival angle, look at a small region around a zero

Angle of Arrival

▶ Phase condition:

$$
\angle G(s)H(s) = \frac{\frac{b_m}{a_n}} + \sum_{i=1}^{m} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i) = (1 + 2i)180^{\circ}
$$
\nConsider s very close to a zero z_j :

\n
$$
\angle_{\text{Larr}} = \frac{\angle (s - z_j)}{\angle (s - z_i)} \approx \frac{\angle (z_j - z_i)}{\angle (z_j - p_i)}
$$
 for $i \neq j$ \n
$$
\angle_{\text{Re}(s)} \times \frac{\angle (s - p_i)}{\angle (z_j - z_j)} = 0
$$
\nSo, the function z_j is the sum of z_j and z_j is the sum of

Angle of arrival at z_j :

Xm Xn b^m G(s)H(s) = + (s − zi) − (s − pi) an i=1 i=1 Xm Xn b^m ≈ arr + (z^j − zi) − + (z^j − pi) an i=1 i=1 = arr + G(zj)H(zj) = (1 + 2l)180◦

Angle of Arrival

▶ Angle of arrival at a zero z: $\angle_{\text{arr}} = 180^\circ - \sqrt{G(z)H(z)}$

Angle of arrival at a zero z with multiplicity μ :

Positive Root Locus Summary

▶ Positive root locus of

$$
G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \frac{b_m (s - z_1) \cdots (s - z_m)}{a_n (s - p_1) \cdots (s - p_n)}
$$

 \triangleright Step 1: determine the departure and arrival points

- \blacktriangleright The departure points are at the *n* poles of $G(s)H(s)$ (where $k = 0$)
- ▶ The arrival points are at the *m* zeros of $G(s)H(s)$ (where $k = \infty$)

\triangleright Step 2: determine the real-axis root locus

- ▶ The positive root locus contains all points on the real axis that are to the left of an odd number of zeros or poles
- ▶ Step 3: The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of $G(s)H(s)$

Positive Root Locus Summary

\n- **Step 4:** determine the
$$
|n - m|
$$
 asymptotes as $|s| \to \infty$
\n- **Centroid:** $\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$
\n- **Angles:** $\theta_l = \frac{(1+2l)}{|n-m|} 180^\circ - \frac{b_m}{a_n}, \qquad l \in \{0, \ldots, |n-m|-1\}$
\n

- \triangleright Step 5: determine the breakaway points where the root locus leaves the real axis
	- ▶ The breakaway points s_b are roots of $\Delta(s) = a(s) + kb(s)$ with non-unity multiplicity such that:

$$
\triangleright -\frac{a(s_b)}{b(s_b)} = k \text{ is a positive real number}
$$

$$
\blacktriangleright \; b(s_b) \tfrac{da}{ds}(s_b) - a(s_b) \tfrac{db}{ds}(s_b) = 0
$$

Arrival/departure angle at breakaway point of q root locus branches: $\theta = \frac{\pi}{q}$

Positive Root Locus Summary

 \triangleright Step 6: determine the complex pole/zero angle of departure/arrival ▶ Departure angle: if s is close to a pole p with multiplicity μ :

 $\sqrt{G(s)H(s)} \approx \sqrt{G(p)H(p)} - \mu_{\text{Ldep}} = (1+2l)180^{\circ} \Rightarrow \mu_{\text{Ldep}} = \sqrt{G(p)H(p)} + 180^{\circ}$

▶ Arrival angle: if s is close to a zero z with multiplicity μ :

$$
\sqrt{G(s)H(s)} \approx \sqrt{G(z)H(z)} + \mu_{\text{Larr}} = (1+2I)180^{\circ} \quad \Rightarrow \quad \mu_{\text{Larr}} = 180^{\circ} - \sqrt{G(z)H(z)}
$$

• Step 7: determine **crossover points** where the root locus crosses the $i\omega$ axis

- A Routh table is used to obtain the auxiliary polynomial $A(s)$ and gain k
- \blacktriangleright The crossover points are the roots of $A(s) = 0$

▶ Determine the positive root locus of $G(s)H(s) = \frac{s+1}{s^2(s+12)}$

▶ Determine the positive root locus for $G(s)H(s) = \frac{s+1}{s^2(s+4)}$

▶ Determine the positive root locus for $G(s)H(s) = \frac{s+1}{s^2(s+9)}$

Let $G(s)H(s) = \frac{1}{s^2+2s}$. Find the gain k that results in the closed-loop system having a peak time of at most 2π seconds.

▶ Consider a feedback control system with:

$$
G(s) = \frac{1}{s\left(\frac{s^2}{2600} + \frac{s}{26} + 1\right)} \qquad H(s) = \frac{1}{1 + 0.04s}
$$

 \triangleright Choose k to obtain a stable closed-loop system with percent overshoot of at most 20% and steady-state error to a step reference of at most 5%

$$
G(s)H(s) = \frac{65000}{s(s^2 + 100s + 2600)(s + 25)} = \frac{65000}{s^4 + 125s^3 + 5100s^2 + 65000s}
$$

► Poles of $G(s)H(s)$: $p_1 = 0$, $p_2 = -25$, $p_3A = -50 \pm i10$

▶ The positive root locus contains 4 asymptotes with:

angles:
$$
\frac{\pi}{4}
$$
, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$

▶ centroid: $\alpha = -\frac{1}{4}(125) = -31.25$

▶ Breakaway point: should be to the right of $(p_1 + p_2)/2 = -12.5$ since the poles $p_{3,4} = -50 \pm i10$ repel the root locus branches

$$
65000(4s3 + 375s2 + 10200s + 65000) = 0
$$

 \blacktriangleright Departure angle at p_3 :

$$
\angle_{\text{dep}} = 180^{\circ} + \angle G(p_3)H(p_3) = 180^{\circ} - \angle p_3 - p_1 - \angle p_3 - p_2 - \angle p_3 - p_4
$$

= 180^{\circ} - 168.7^{\circ} - 158.2^{\circ} - 90^{\circ} = -236.9^{\circ} \Rightarrow \angle_{\text{dep}} = 123.1^{\circ}

▶ Positive root locus of $G(s)H(s) = \frac{65000}{s(s^2+100s+2600)(s+25)}$

▶ Closed-loop transfer function characteristic polynomial:

$$
\Delta(s) = a(s) + kb(s) = s^4 + 125s^3 + 5100s^2 + 65000s + 65000k
$$

Routh-Hurwitz table:

▶ Necessary and sufficient condition for **BIBO stability**: $520 - \frac{3250}{229}k > 0$ and $65000k > 0$:

$$
0 < k < \frac{916}{25} \approx 36.64
$$

Auxiliary polynomial at $k = 916/25$ and crossover points:

$$
A(s) = s^2 + 520 \qquad \qquad s_{1,2} = \pm j22.8
$$

- **►** Determine **dominant pole damping** to ensure percent overshoot $\leq 20\%$
- **▶** Pick a larger damping ratio, e.g., $\zeta \geq 0.5$, to ensure that the true fourth-order system satisfies the percent overshoot requirement

▶ Determine the dominant pole locations for $\zeta = 0.5$: $s_{1,2} = -6.6 \pm j11.3$

 \triangleright Use the magnitude condition to obtain k :

$$
\frac{1}{k} = \frac{65000}{|s_1||s_1 + 25||s_1 + 50 - j10||s_1 + 50 + j10|} \quad \Rightarrow \quad k \approx 9.1
$$

▶ To determine the other two closed-loop poles $s_{3,4} = -\sigma \pm j\omega$ at $k = 9.1$, use Vieta's formulas:

$$
\sum_{i=1}^{4} s_i = -2\sigma - 2(6.6) = -125 \qquad \Rightarrow \qquad \sigma \approx 55.9
$$

- **▶** The imaginary part of $s_{3,4} = -55.9 \pm j\omega$ can be obtained from the root locus plot: $\omega \approx 18$
- ▶ Closed-loop poles for $k \approx 9.1$:

$$
\mathsf{s}_{1,2}\approx-6.6\pm j11.3\qquad \qquad \mathsf{s}_{3,4}\approx-56\pm j18
$$

 \blacktriangleright The steady-state error to a step $R(s) = 1/s$ is:

$$
\lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s)) = \lim_{s \to 0} (1 - T(s)) = \lim_{s \to 0} \frac{\Delta(s) - 65000k}{\Delta(s)}
$$

$$
= \lim_{s \to 0} \frac{s^4 + 125s^3 + 5100s^2 + 65000s}{s^4 + 125s^3 + 5100s^2 + 65000s + 65000k} = 0
$$

- ▶ Final design with $k \approx 9.1$
- \blacktriangleright The closed-loop system is stable
- \blacktriangleright The percent overshoot is less than 20%
- \blacktriangleright The steady-state error to a step input is less than 5%

Outline

[Root Locus Definition](#page-2-0)

[Positive Root Locus](#page-12-0)

[Negative Root Locus](#page-58-0)

Negative Root Locus Summary

 \triangleright Negative root locus: set of points s in the complex plane such that:

- ▶ Magnitude condition: $|G(s)H(s)| = -\frac{1}{k}$ for $k \leq 0$
- ▶ Phase condition: $/G(s)H(s) = (2I)180^\circ$, where *l* is any integer

▶ Negative root locus construction procedure for

$$
G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \kappa \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}
$$

 \triangleright Step 1: determine the departure and arrival points

- \blacktriangleright The departure points are at the *n* poles of $G(s)H(s)$ (where $k = 0$)
- ▶ The arrival points are at the *m* zeros of $G(s)H(s)$ (where $k = -\infty$)

Negative Root Locus Summary

- \triangleright Step 2: determine the real-axis root locus
	- ▶ The negative root locus contains all points on the real axis that are to the left of an even number of zeros or poles
- ▶ Step 3: The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of $G(s)H(s)$
- ▶ Step 4: determine the $|n m|$ asymptotes as $|s| \to \infty$

$$
\blacktriangleright \text{ Centroid: } \alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}
$$

► Angles:
$$
\theta_l = \frac{2l}{|n-m|} 180^\circ - \frac{b_m}{a_n}, \qquad l \in \{0, ..., |n-m|-1\}
$$

\triangleright Step 5: determine the breakaway points

- ▶ The breakaway points s_b are roots of $\Delta(s) = a(s) + kb(s)$ with non-unity multiplicity such that:
	- \blacktriangleright $a(s_b)$ $\frac{d^2(s)}{b(s_b)} = -k$ is a positive real number
	- ▶ $b(s_b) \frac{da}{ds}(s_b) a(s_b) \frac{db}{ds}(s_b) = 0$
- Arrival/departure angle at breakaway point of q root locus branches: $\theta = \frac{\pi}{q}$

Negative Root Locus Summary

 \triangleright Step 6: determine the complex pole/zero angle of departure/arrival ▶ Departure angle: if s is close to a pole p with multiplicity μ :

$$
\angle G(s)H(s) \approx \angle G(p)H(p) - \mu_{\angle \text{dep}} = (2I)180^{\circ} \Rightarrow \mu_{\angle \text{dep}} = \angle G(p)H(p)
$$

▶ Arrival angle: if s is close to a zero z with multiplicity μ :

$$
\sqrt{G(s)H(s)} \approx \sqrt{G(z)H(z)} + \mu_{\text{Larr}} = (2I)180^{\circ} \Rightarrow \mu_{\text{Larr}} = -\sqrt{G(z)H(z)}
$$

• Step 7: determine **crossover points** where the root locus crosses the $j\omega$ axis

- A Routh table is used to obtain the auxiliary polynomial $A(s)$ and gain k
- \blacktriangleright The crossover points are the roots of $A(s) = 0$

Negative Root Locus: Example

▶ Determine the negative root locus of $G(s)H(s) = \frac{1}{s((s+1)^2+1)}$

Negative Root Locus: Example

▶ Determine the complete (positive and negative) root locus of $G(s)H(s) = \frac{1}{s((s+1)^2+1)}$

