ECE171A: Linear Control System Theory Lecture 11: Control Design

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[PID Control](#page-2-0)

[PID Tuning and Implementation](#page-17-0)

[Inverted Pendulum Example](#page-28-0)

[Lead-Lag Compensation](#page-44-0)

Outline

[PID Control](#page-2-0)

[PID Tuning and Implementation](#page-17-0)

[Inverted Pendulum Example](#page-28-0)

[Lead-Lag Compensation](#page-44-0)

Feedback Control System

Proportional Integral Derivative Control

Proportional Integral Derivative (PID) Controller

Uses proportional gain $k_{\rm p}$, integral gain $k_{\rm i}$, derivative gain $k_{\rm d}$:

$$
t \text{ domain}
$$

$$
u(t) = k_{\text{p}}e(t) + k_{\text{i}} \int_0^t e(\tau)d\tau + k_{\text{d}} \frac{de(t)}{dt}
$$

$$
\frac{U(s)}{E(s)} = C(s) = k_{\text{p}} + \frac{k_{\text{i}}}{s} + k_{\text{d}}s
$$

5

PID Control

▶ PID control is the most common approach for utilizing feedback in engineering systems:

▶ Survey of 100+ boiler-turbine controllers: 94.4% PI, 3.7% PID, 1.9% other

▶ PID control appears in both simple and complex systems: as a stand-alone controller, as an element of hierarchical or distributed systems, etc.

▶ PID control appears in biological systems, where proportional, integral, and derivative action is generated by subsystems with dynamic behavior

 \triangleright Example: Eye pupil opening regulates the amount of light entering the eye

Roles of PID Terms

- ▶ PID control terms:
	- ▶ Proportional (P) term: responds to present error
	- ▶ Integral (I) term: accumulates past error
	- \blacktriangleright Derivative (D) term: anticipates future error
- ▶ PID time constants:

$$
u(t) = k_{\rm p} \left(e(t) + \frac{1}{T_{\rm i}} \int_0^t e(\tau) d\tau + T_{\rm d} \frac{de(t)}{dt} \right)
$$

Integral time constant: $T_i = k_p/k_i$

• Derivative time constant: $T_d = k_d/k_p$

Role of P Term

• Proportional term: $u(t) = k_p e(t)$

$$
\blacktriangleright \text{ Transfer function: } T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1+C(s)P(s)} = \frac{k_{\text{p}}P(s)}{1+k_{\text{p}}P(s)}
$$

$$
\blacktriangleright \text{ Error: } E(s) = R(s) - Y(s) = (1 - T(s))R(s)
$$

▶ Steady-state error of stable system for step reference $R(s) = 1/s$:

$$
\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{1}{1 + k_{\rm p} P(0)}
$$

Increasing k_{p} decreases steady-state error but also stability margins

▶ Feedforward term: used to reduce steady-state error in early controllers:

$$
u(t) = k_{\rm p}e(t) + u_{\rm ff}
$$

▶ For step reference, if the DC gain is known, choose $u_{ff} = 1/P(0)$:

$$
\lim_{s \to 0} sE(s) = \lim_{s \to \infty} s\left(\frac{1}{1 + k_{\rm p}P(s)}R(s) - \frac{P(s)}{1 + k_{\rm p}P(s)}\frac{u_{\rm ff}}{s}\right) = \frac{1 - u_{\rm ff}P(0)}{1 + k_{\rm p}P(0)}
$$

Role of I Term

▶ Integral term: feedforward term that guarantees zero steady-state error:

$$
u(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau \qquad U(s) = \left(k_{p} + \frac{k_{i}}{s}\right)E(s)
$$

▶ Transfer function: $T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1+C(s)P(s)}$ $1 + C(s)P(s)$

Steady-state error of stable system for step reference $R(s) = 1/s$:

$$
\lim_{s \to 0} sE(s) = \lim_{s \to 0} s (1 - T(s)) R(s) = \lim_{s \to 0} \frac{1}{1 + C(s)P(s)} \sum_{C(s) \to \infty} 0
$$

- ▶ Magic of integral action: if a steady state exists, the error will be zero
- \blacktriangleright The PI term is implemented using a low-pass filter $H_{\text{pi}}(s) = \frac{1}{1+sT_i}$:

$$
\frac{U(s)}{E(s)} = k_{\rm p} \frac{1 + sT_{\rm i}}{sT_{\rm i}} = k_{\rm p} + \frac{k_{\rm p}}{sT_{\rm i}}
$$

Role of D Term

 \blacktriangleright Derivative term: provides predictive action:

$$
u(t) = k_{\rm p}e(t) + k_{\rm d}\frac{de(t)}{dt} = k_{\rm p}\left(e(t) + T_{\rm d}\frac{de(t)}{dt}\right) =: k_{\rm p}e_{\rm p}(t)
$$

- **Prediction error** e_p : linear extrapolation of the error to time $t + T_d$
- In practice the error signal $e(t)$ is measured and contains high-frequency noise which should not be differentiated
- ▶ The D term is implemented using a low-pass filter $H_d(s) = \frac{1}{1+sT_d}$
- **Filtered derivative:** difference between a signal and its low-pass filtered version:

$$
\frac{U_{\rm d}(s)}{E(s)} = k_{\rm p} \left(1 - \frac{1}{1 + sT_{\rm d}} \right) = \frac{k_{\rm d}s}{1 + sT_{\rm d}}
$$

 \blacktriangleright Acts as differentiator for low-frequency signals and as **constant gain** k_p for high-frequency signals

(b) Derivative action

Numerical Experiments

Figure 11.2: Responses to step changes in the reference value for a system with a proportional controller (a), PI controller (b), and PID controller (c). The process has the transfer function $P(s) = 1/(s+1)^3$, the proportional controller has parameters $k_p = 1, 2,$ and 5, the PI controller has parameters $k_p = 1, k_i = 0, 0.2,$ 0.5, and 1, and the PID controller has parameters $k_p = 2.5$, $k_i = 1.5$, and $k_d = 0$, 1, 2, and 4.

Model Reduction

- ▶ Practical systems are complex
- ▶ While a high-order model may describe the system behavior accurately, a low-order model may simplify the system analysis and control design
- ▶ Model reduction: simplification of a system model that captures the essential properties needed for control design
- ▶ Various model reduction techniques are available:
	- ▶ Dominant pole-zero approximation: cancel pole-zero pairs or eliminate states that have little effect on the model response
	- ▶ Mode selection: eliminate poles and zeros that fall outside a specific frequency range of interest
- ▶ Low-order models can be obtained from first principles:
	- ▶ A system can be modeled as zeroth-order if its inputs are sufficiently slow
	- \triangleright A system can be modeled as first-order if the change of its mass, momentum, or energy can be captured by a single variable (e.g., velocity)
	- ▶ A system can be modeled as second-order if the change of its mass, momentum, or energy can be captured by two variables (e.g., position and velocity)

Second-Order System Control Design

▶ Consider a feedback control system with a second-order plant:

$$
P(s)=\frac{b_0}{s^2+a_1s+a_0}
$$

 \blacktriangleright How should the controller $C(s)$ be designed to ensure that the closed-loop system is stable and its step response has zero steady-state error?

P Control for Second-Order System

 \blacktriangleright P controller:

$$
u(t) = k_{p}e(t) \qquad \Leftrightarrow \qquad \frac{U(s)}{E(s)} = C(s) = k_{p}
$$

▶ Closed-loop transfer function:

$$
T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{k_{\rm p}b_0}{s^2 + a_1s + (a_0 + k_{\rm p}b_0)}
$$

- ▶ P control can accelerate the response of a second-order system by changing the natural frequency $\omega_n^2 = (a_0 + k_{\rm p} b_0)$
- \blacktriangleright To ensure stability, we need $a_1 > 0$ and $a_0 + K_p b_0 > 0$
- ▶ P control can stabilize only some systems because it adjusts one coefficient of the characteristic equation

For $a_0 \neq 0$, $C(s)P(s)$ has 0 poles at the origin (type 0 system) and the closed-loop step response has a constant finite steady-state error:

$$
\lim_{t \to \infty} e(t) = \lim_{s \to 0} (1 - T(s)) = \frac{a_0}{a_0 + k_p b_0}.
$$

PI Control for Second-Order System

▶ To achieve zero steady-state step error, we need to add a pole at the origin in $C(s)P(s)$ to obtain a type 1 system

▶ PI controller:

$$
u(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau \qquad \Leftrightarrow \qquad \frac{U(s)}{E(s)} = C(s) = k_{p} + \frac{k_{i}}{s}
$$

▶ Closed-loop transfer function:

$$
T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{b_0(k_p s + k_i)}{s^3 + a_1 s^2 + (a_0 + k_p b_0)s + k_i b_0}
$$

PI control achieves zero steady-state error:

$$
\lim_{t\to\infty}e(t)=\lim_{s\to 0}(1-\mathcal{T}(s))=1-\mathcal{T}(0)=0
$$

but the closed-loop system may be unstable if $a_1 < 0$.

PID Control for Second-Order System

▶ PID controller:

$$
u(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau + k_{d} \frac{de(t)}{dt} \qquad \Leftrightarrow \qquad C(s) = k_{p} + \frac{k_{i}}{s} + k_{d}s
$$

▶ Closed-loop transfer function:

$$
T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{b_0(k_p s + k_i + k_d s^2)}{s^3 + (a_1 + k_d b_0)s^2 + (a_0 + k_p b_0)s + k_i b_0}
$$

▶ The coefficients of the characteristic polynomial can be set arbitrarily via an appropriate choice of k_p , k_i , k_d

For a second-order plant, PID control can guarantee stability, good transient behavior, and zero steady-state step error.

PID Control Example

- ▶ Consider the plant $P(s) = \frac{1}{s^2-3s-1}$
- **•** Design a PID controller $C(s)$ to achieve step response with zero steady-state error and place the closed-loop system poles at -5 , -6 , -7
- ▶ PID controller: $C(s) = k_p + \frac{k_i}{s} + k_d s$
- ▶ Closed-loop transfer function:

$$
T(s) = \frac{Y(s)}{R(s)} = \frac{C(s)P(s)}{1+C(s)P(s)} = \frac{k_{\rm d}s^2 + k_{\rm p}s + k_{\rm i}}{s^3 + (k_{\rm d}-3)s^2 + (k_{\rm p}-1)s + k_{\rm i}}
$$

 \blacktriangleright Match coefficients with:

$$
\Delta(s)=(s+5)(s+6)(s+7)=s^3+18s^2+107s+210
$$

▶ PID control gains:

$$
k_{\rm d} = 21 \qquad k_{\rm p} = 108 \qquad k_{\rm i} = 210
$$

Outline

[PID Control](#page-2-0)

[PID Tuning and Implementation](#page-17-0)

[Inverted Pendulum Example](#page-28-0)

[Lead-Lag Compensation](#page-44-0)

PID Control Gain Tuning

- ▶ PID control gain tuning: the process of determining satisfactory PID control gains
	- ▶ Manual tuning
	- ▶ Ziegler-Nichols method
	- ▶ First-order and time-delay (FOTD) method
	- ▶ Automatic tuning via relay feedback

Manual PID Control Gain Tuning

- \blacktriangleright Set $k_i = k_d = 0$
- **E** Increase k_p slowly until the output of the closed-loop system oscillates on the verge of instability
- \blacktriangleright Reduce k_p to achieve quarter amplitude decay of the closed-loop response, i.e., the amplitude should be one-fourth of the maximum value during the oscillatory period
- \blacktriangleright Increase k_i and k_d to achieve the desired response

Table 7.4 Effect of Increasing the PID Gains K_n , K_p , and K_i on the Step Response

Copyright @2017 Pearson Education, All Rights Reserved

Ziegler-Nichols Method

- ▶ Developed by John Ziegler and Nathaniel Nichols in the 1940s
- ▶ Perform a simple experiment on the system to extract features from its time domain or frequency domain response

▶ Time-domain method

- \blacktriangleright Apply a unit step input to the **open-loop** system
- **▶ Record the x-intercept** τ **and y-intercept** $-a$ **with the coordinate axes of the** steepest tangent to the step response
- \blacktriangleright Use τ and a to choose the PID control gains

(a) Step response method

Ziegler-Nichols Method

- ▶ Frequency-domain method
	- ▶ Connect a PID controller to the plant with $k_i = k_d = 0$
	- \blacktriangleright Increase $k_{\rm p}$ until the closed-loop response oscillates on the verge of instability
	- Record the critical proportional gain k_c and the period of oscillation T_c
	- ▶ Nyquist contour of $k_cP(s)$ passes through -1 at frequency $\omega_c = 2\pi/T_c$
	- \triangleright Use k_c and T_c to choose the PID control gains

(b) Frequency response method

FOTD method

- ▶ Ziegler–Nichols methods use 2 parameters to determine the PID control gains
- ▶ First-order and time-delay (FOTD) method: uses plant model with more parameters:

$$
P(s) = \frac{K}{1+sT}e^{-\tau s}
$$

- Apply unit-step input to **open-loop** system
- \blacktriangleright Record time delay τ (x-intercept of steepest tangent), steady-state value K , and $T = T_{63} - \tau$, where T_{63} is the time when the output reaches 63% of K
- \blacktriangleright Use τ , K, and T to choose the PI gains:

$$
k_{\rm p} = \frac{0.15\tau + 0.35\,T}{K\tau} \quad k_{\rm i} = \frac{0.46\tau + 0.02\,T}{K\tau^2}
$$

Integral Windup

- ▶ Integral windup: accumulation of integral error due to input saturation
- Physical actuators have limits, e.g., a motor has maximum speed, a valve cannot be more than fully opened
- ▶ When actuator limits are reached, the input remains at its limit (input saturation) and the system runs in open-loop
- \blacktriangleright The integral error $\int_0^t e(\tau)d\tau$ accumulates while the input is saturated
- ▶ Once the input leaves the saturation range the accumulated integral error induces large transient response

Example: Cruise control

- ▶ When a car encounters a steep hill (e.g., 6°), the throttle saturates
- ▶ The resulting integral windup leads to velocity overshoot

Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup (b). The figure shows the speed v and the throttle u for a car that encounters a slope that is so steep that the throttle saturates. The controller output is a dashed line. The controller parameters are $k_p = 0.5$, $k_i = 0.1$ and $k_{aw} = 2.0$. The anti-windup compensator eliminates the overshoot by preventing the error from building up in the integral term of the controller.

Avoiding Integral Windup

Figure: Anti-windup PID controller with output filtering, feedforward input u_{ff} , and input saturation error e_s

- ▶ The controller has an extra feedback path from the saturating actuator to measure saturation error $e_s = u - u_a$
- \triangleright When the actuator saturates, the saturation error e_s if fed back to the integrator to reduce the integral error

Avoiding Derivative Noise

 \triangleright Derivative control requires differentiation of the error signal:

$$
\dot{e}(t) \approx \frac{e(t)-e(t-\tau)}{\tau}
$$

▶ In practice, the error signal is measured and contains high-frequency noise, which should not be differentiated

The derivative term $k_d s$ is implemented using a low-pass filter $H_d(s) = \frac{1}{\tau_f s + 1}$ with a small filter time constant τ_f

▶ PID control with high-frequency noise attenuation:

$$
u(t) = k_{p}e(t) + k_{i} \int_{0}^{t} e(\tau)d\tau + k_{d}\dot{e}_{f}(t) \qquad C(s) = k_{p} + \frac{k_{i}}{s} + \frac{k_{d}s}{\tau_{f}s + 1}
$$

$$
\tau_{f}\dot{e}_{f}(t) = -e_{f}(t) + e(t)
$$

Discrete-time PID Control Implementation

- \blacktriangleright sampling interval: τ_s
- \blacktriangleright filter time constant: τ_f
- **Exampled error:** $e[k] = e(k\tau_s)$
- ▶ filtered error: $e_f[k] = \frac{\tau_s}{\tau_f}e[k] + \left(1 \frac{\tau_s}{\tau_f}\right)e_f[k-1]$

• derivative error:
$$
e_d[k] = \frac{e_f[k] - e_f[k-1]}{\tau_s}
$$

- ▶ integral error: $e_i[k] = e_i[k-1] + \tau_s e[k-1]$
- ▶ control: $u[k] = k_{p}e[k] + k_{i}e_{i}[k] + k_{d}e_{d}[k]$

Outline

[PID Control](#page-2-0)

[PID Tuning and Implementation](#page-17-0)

[Inverted Pendulum Example](#page-28-0)

[Lead-Lag Compensation](#page-44-0)

Inverted Pendulum Example

- ▶ Consider an inverted pendulum mounted on a motorized cart
- ▶ Objective: control the cart force to balance the inverted pendulum in an upright position
- ▶ Popular example in control theory and reinforcement learning
- \blacktriangleright Nonlinear system that is unstable without control

Inverted Pendulum: Parameters

- ▶ Cart mass: $M = 0.5$ kg
- **•** Pendulum mass: $m = 0.2$ kg
- ▶ Cart friction coefficient: $b = 0.1$ N/m/sec
- ▶ Length to pendulum center of mass: $\ell = 0.3$ m
- ▶ Pendulum moment of inertia: $I = 0.006$ kg m²
- \blacktriangleright Cart input force: F
- \blacktriangleright Cart position: x
- **Pendulum angle:** θ

Inverted Pendulum: System Model

 \blacktriangleright Horizontal direction force balance for the cart:

 $M\ddot{x} + b\dot{x} + N = F$

 \blacktriangleright Horizontal direction force balance for the pendulum:

$$
N = m\ddot{x} + m\ell\ddot{\theta}\cos\theta - m\ell\dot{\theta}^2\sin\theta
$$

▶ Force balance perpendicular to the pendulum:

 $P \sin \theta + N \cos \theta - mg \sin \theta = m \ell \ddot{\theta} + m \ddot{x} \cos \theta$

 \blacktriangleright Torque balance about the pendulum centroid:

$$
-P\ell\sin\theta - N\ell\cos\theta = I\ddot{\theta}
$$

Inverted Pendulum: System Model

 \blacktriangleright Eliminating reaction force N and normal force P and denoting the input force F by u , we get the cart-pole equations of motion:

$$
(M+m)\ddot{x} + b\dot{x} + m\ell\ddot{\theta}\cos\theta - m\ell\dot{\theta}^2\sin\theta = u
$$

$$
(I+m\ell^2)\ddot{\theta} + mg\ell\sin\theta = -m\ell\ddot{x}\cos\theta
$$

- ▶ Since our control techniques apply to linear time-invariant systems only, we need to linearize the equations of motion
- **Example 2** Linearize about the upright pendulum position $\theta_e = \pi$ and assume that the pendulum remains within a small neighborhood: $\phi = \theta - \pi$
- ▶ Small angle approximation:

$$
\cos \theta = \cos(\pi + \phi) \approx -1 \qquad \sin \theta = \sin(\pi + \phi) \approx -\phi \qquad \dot{\theta}^2 = \dot{\phi}^2 \approx 0
$$

▶ Linearized equations of motion:

$$
(M+m)\ddot{x} + b\dot{x} - m\ell\ddot{\phi} = u
$$

$$
(I+m\ell^2)\ddot{\phi} - mg\ell\phi = m\ell\ddot{x}
$$

Inverted Pendulum: Transfer Function

▶ Laplace transform of the equations of motion with zero initial conditions:

$$
(M+m)s2X(s) + bsX(s) - m\ell s2\Phi(s) = U(s)
$$

$$
(I + m\ell2)s2\Phi(s) - mg\ell\Phi(s) = m\ell s2X(s)
$$

$$
\blacktriangleright
$$
 Eliminating $X(s)$ leads to:

$$
(M+m)\left(\frac{1+m\ell^2}{m\ell}-\frac{g}{s^2}\right)s^2\Phi(s)+b\left(\frac{1+m\ell^2}{m\ell}-\frac{g}{s^2}\right)s\Phi(s)-m\ell s^2\Phi(s)=U(s)
$$

▶ Pendulum transfer function with $q = (M+m)(I + m\ell^2) - (m\ell)^2$:

$$
G(s) = \frac{\Phi(s)}{U(s)} = \frac{m\ell s^2}{qs^4 + b(l + m\ell^2)s^3 - (M + m)mg\ell s^2 - b m g l s}
$$

- **E** Design a controller $C(s)$ to maintain the pendulum vertically upward when the cart input F is subjected to a 1-Nsec impulse disturbance $D(s)$
- Design specifications:
	- ▶ Settling time of less than 5 seconds
	- Maximum pendulum deviation from the vertical position of 0.05 rad

▶ Pendulum transfer function with $q = (M+m)(I + m\ell^2) - (m\ell)^2$:

$$
G(s) = \frac{\Phi(s)}{U(s)} = \frac{m\ell s^2}{qs^4 + b(l + m\ell^2)s^3 - (M + m)mg\ell s^2 - b m g l s}
$$

$$
\begin{array}{ll}\n1 & \text{M = 0.5; m = 0.2; b = 0.1; I = 0.006;} \\
& g = 9.8; l = 0.3; q = (M+m)*(I+m*1^2)-(m*1)^2; \\
& s = tf('s'); \\
& G = (m*1*s^2)/(q*s^4 + b*(I + m*1^2)*s^3 - (M + m)*m*g*1*s^2 -b*m*g*1*s); \\
\end{array}
$$

▶ PID control design:
$$
C(s) = k_p + k_i \frac{1}{s} + k_d s
$$

 $Kp = 100$; Ki = 1; Kd = 1; $2 \mid C = \text{pid}(Kp,Ki,Kd);$

 \triangleright Closed-loop transfer function from $D(s)$ to $\Phi(s)$:

$$
T(s) = \frac{\Phi(s)}{D(s)} = \frac{G(s)}{1 + C(s)G(s)}
$$

 $T = \text{feedback}(G, C)$;

```
1 \mid t=0:0.01:10;impulse(T,t)
3 \mid \text{axis}([0, 2.5, -0.2, 0.2]);title({'Response of Pendulum Position to an Impulse Disturbance';'under PID
        Control: Kp = 100, Ki = 1, Kd = 1' ;
```


- \blacktriangleright Settling time: 1.64 sec meets the specifications (no additional integral control is needed)
- ▶ Peak response: 0.2 rad exceeds the requirement of 0.05 rad (the overshoot can be reduced by increasing the derivative control gain)

Inverted Pendulum: Root Locus with Proportional Control

 \triangleright Positive root locus for the inverted pendulum plant $G(s)$

- One branch entirely in the right half-plane
- Need to add a pole at the origin to cancel the plant zero at the origin
- ▶ This will produce two closed-loop poles in the right half-plane that we can then draw to the left-half plane to stabilize the closed-loop system

Inverted Pendulum: Root Locus with Integral Control

▶ Positive root locus for integral control of the inverted pendulum $\frac{1}{s}G(s)$

Inverted Pendulum: Root Locus Manipulation

▶ Poles and zeros of $\frac{1}{s}G(s) = \frac{m\ell s^2}{qs^5 + b(1 + m\ell^2)s^4 - (M + m\ell^2)s^4}$ $\frac{m\ell s^2}{qs^5+b(l+m\ell^2)s^4-(M+m)mg\ell s^3-bmgls^2}$

$$
z_1 = z_2 = 0
$$

\n
$$
p_1 = p_2 = 0, \quad p_3 = -0.143, \quad p_4 = -5.604 \quad p_5 = 5.565
$$

▶ Suppose we introduce a zero to the controller: $\frac{(s-z_3)}{s}G(s)$

▶ There will be $5-3=2$ asymptotes with angles $\frac{\pi}{2}$, $\frac{3\pi}{2}$ and centroid:

$$
\alpha = \frac{1}{2}(-5.604 + 5.565 - 0.143 - z_3) = -\frac{0.182 + z_3}{2}
$$

- \triangleright We cannot have z_3 in the right half-plane so the best we can do to pull the root locus branches is to have $z_3 \approx 0$ so that $\alpha \approx -0.1$.
- ▶ The real parts of the two poles $-\zeta\omega_n \pm j\omega_n\sqrt{1-\zeta^2}$ will approach $\alpha \approx -0.1$ as $K \to \infty$
- ▶ This design is insufficient to meet the settling time specification:

$$
t_s \approx \frac{4}{\zeta \omega_n} \approx \frac{4}{0.1} = 40 \text{ s}
$$

Inverted Pendulum: Root Locus Manipulation

- ▶ Adding a single zero to the controller is not sufficient to pull the root locus branches far enough to the left
- ▶ Add two zeros between $p_3 = -0.143$ and $p_4 = -5.604$ to pull the root locus branches towards them, leaving a single asymptote at $-\pi$
- ► Let $z_3 = -3$ and $z_4 = -4$ and consider the controller:

$$
C(s) = \frac{(s+3)(s+4)}{s} = 7 + 12\frac{1}{s} + s
$$

 \blacktriangleright Note that $kC(s)$ is a PID controller:

$$
k_{\rm p} = 7k \qquad k_{\rm i} = 12k \qquad k_{\rm d} = k
$$

Inverted Pendulum: Root Locus with PID Control

▶ Positive root locus for PID control of the inverted pendulum:

$$
\frac{(s+3)(s+4)}{s}G(s)
$$


```
T = \text{feedback}(G, 20*(s+3)*(s+4)/s);|t=0:0.01:10:impulse(T,t);
4 title({'Impulse Disturbance Response of Pendulum Angle'; 'under PID Control: Kp
         = 140, Ki = 240, Kd = 20'});
```


Outline

[PID Control](#page-2-0)

[PID Tuning and Implementation](#page-17-0)

[Inverted Pendulum Example](#page-28-0)

[Lead-Lag Compensation](#page-44-0)

Loop Shaping

Loop shaping: a trial and error procedure to choose a controller $C(s)$ that gives a loop transfer function $L(s) = C(s)P(s)$ with a desired shape

Backward method:

- \triangleright Determine a desired loop transfer function $L(s)$
- ▶ Compute the controller as $C(s) = L(s)/P(s)$

▶ Forward method:

- Adjust proportional gain $C(s) = k_p$ to obtain desired closed-loop bandwidth
- Add stable poles and zeros to $C(s)$ until a desired shape of $L(s)$ is obtained

Design Considerations

▶ Tracking error with input disturbance and measurement noise:

$$
E(s) = \underbrace{\frac{1}{1 + L(s)}}_{\text{Sensitivity }S(s)} R(s) - \underbrace{\frac{P(s)}{1 + L(s)}}_{\text{Complementary Sensitivity }T(s)} D(s) + \underbrace{\frac{L(s)}{1 + L(s)}}_{\text{Complementary Sensitivity }T(s)}
$$

 \triangleright We need a loop transfer function $L(s) = C(s)P(s)$ that leads to good closed-loop performance and good stability margins

- \blacktriangleright $|L(s)|$ should be large at low frequencies $s = j\omega$ to ensure good reference tracking and low sensitivity to input disturbances (associated with low ω)
- \blacktriangleright $|L(s)|$ should be small at high frequencies $s = j\omega$ to ensure low sensitivity to measurement noise (associated with high ω)

Design Considerations

- An ideal loop transfer function $L(i\omega)$ should have the shape below:
	- Unit gain at gain crossover: $|L(j\omega_{g})|=1$
	- Large gain at $\omega < \omega_{\sigma}$
	- Small gain at $\omega > \omega_{\sigma}$

(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

 \blacktriangleright The phase margin is inversely proportional to the slope of $L(i\omega)$ around gain crossover frequency ω_{g} (transition from high gain at low ω to low gain at high ω cannot be too fast)

Loop Shaping via Lead and Lag Compensation

- ▶ Loop shaping is a trial-and-error procedure
- \triangleright Start with a Bode plot of the plant transfer function $P(s)$
- Adjust the **proportional gain** to choose the gain crossover frequency $\omega_{\mathbf{g}}$ (compromise between disturbance attenuation and measurement noise)
- Add left-half-plane poles and zeros to $C(s)$ to shape $L(s)$
- \blacktriangleright The behavior around ω_{ϵ} can be changed by lead compensation
- ▶ The loop gain at low frequencies can be increased by lag compensation

Lead and Lag Compensation

 \triangleright Consider a controller with transfer function:

$$
C(s) = k \frac{s+z}{s+p} \qquad z > 0, \ p > 0
$$

Lead and Lag Compensation

$$
\blacktriangleright \text{ Plant: } P(s) = \frac{4(1 - e^{-s/4})}{s(s+1)}
$$

Example 1: Tracking Performance

Figure: Proportional control: $C(s) = 1$

Example 1: Lag Compensation

Example 1: Lag Compensation

Example 1: Lag Compensation

Figure: Lag compensator $C(s) = k_p + \frac{k_q}{s}$

▶ Plant:

$$
P(s) = \frac{r}{Js^2}
$$
, $r = 0.25$, $J = 0.0475$

▶ Objectives:

- \blacktriangleright Steady-state step error at most 1%
- ▶ Tracking error with $\omega \leq 10$ rad/s at most 10%

Example 2: Lead Compensation

Example 2: Lead Compensation

Example 2: Lead Compensation

▶ Plant:

$$
P(s)=\frac{1}{s(s+1)}
$$

▶ Objectives:

▶ Percent overshoot of at most 20% \Rightarrow $\zeta \ge 0.5$

▶ Settling time of at most 4 sec \Rightarrow $\left\langle \omega_{n}\right\rangle$ 1

▶ Desired closed-loop poles: $s_{1,2} = -1 \pm j \sqrt{ }$ 3

 \triangleright Can we place $s_{1,2}$ on the root locus using lead-lag compensation?

► Is $s_1 = -1 + j\sqrt{3}$ 3 already on the Root Locus?

 \blacktriangleright Check via the phase condition:

$$
\underline{\hspace{0.1cm}}\big/\underline{\hspace{0.1cm}}G(s_1)=-\underline{\hspace{0.1cm}}s_1-\underline{\hspace{0.1cm}}s_1+1=-120^\circ-90^\circ=-210^\circ
$$

▶ s_1 is not on the Root Locus and lacks 30 \degree of phase

▶ Need to add 30° at s_1

▶ Add a zero at 60° and a pole at 30°:

$$
\tan 60^\circ = \frac{\sqrt{3}}{z - 1}
$$
 $\tan 30^\circ = \frac{\sqrt{3}}{p - 1}$

▶ Lead compensator:

$$
C(s)=\frac{s+2}{s+4}
$$

▶ Root locus of $L(s) = C(s)P(s) = \frac{s+2}{s(s+1)(s+4)}$

