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Feedback Control System
r € u y
C(s) = P(s) -
—1 |
Signals t domain s domain
Input u(t) U(s)
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Reference r(t) R(s)
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Proportional Integral Derivative Control

kas

Proportional Integral Derivative (PID) Controller

Uses proportional gain ki, integral gain k;, derivative gain kq:

t domain

u(t) = kpe(t) + ki /Ot e(r)dT + kqa

de(t)

dt

s domain

U(s)

ki
E(s) C(s) = kp + S + kgs

B




PID Control

» PID control is the most common approach for utilizing feedback in
engineering systems:
» Survey of 100+ boiler-turbine controllers: 94.4% PI, 3.7% PID, 1.9% other

» PID control appears in both simple and complex systems: as a stand-alone
controller, as an element of hierarchical or distributed systems, etc.

» PID control appears in biological systems, where proportional, integral, and
derivative action is generated by subsystems with dynamic behavior

» Example: Eye pupil opening regulates the amount of light entering the eye



Roles of PID Terms

» PID control terms:
> Proportional (P) term: responds to present error

> Integral (1) term: accumulates past error

» Derivative (D) term: anticipates future error

» PID time constants:

u(t) = kp (e(t) + 71_./; e(r)dr + T de(t))

i dt

> Integral time constant: T; = kp/k;

> Derivative time constant: Ty = kq/kp



Role of P Term
> Proportional term: u(t) = kye(t)

- CY(s)  C(s)P(s)  kyP(s)
» Transfer function: T(s) = R(s) 1+ C(s)P(s) 1+ kyP(s)

» Error: E(s) = R(s) — Y(s) = (1 — T(s))R(s)
> Steady-state error of stable system for step reference R(s) = 1/s:
. . 1
[m, e(t) = lim sE(s) = 1Py

v

Increasing k;, decreases steady-state error but also stability margins

v

Feedforward term: used to reduce steady-state error in early controllers:

u(t) = kpe(t) + ug

v

For step reference, if the DC gain is known, choose ug = 1/P(0):

i — i 1 P(s) ug\ 1—ugP(0)
ims£(6) = Jim s (5, ")~ TE 4T+ ) 1T RPO)



Role of | Term

> Integral term: feedforward term that guarantees zero steady-state error:

u(t) = kye(t) + ki /0 Ce(r)dr U(s) = (kp + ’;) E(s)

Y(s) _ _C(s)P(s)

> ion: = =
Transfer function: T(s) R(s) 1+ C(s)P(s)

> Steady-state error of stable system for step reference R(s) = 1/s:

. . . 1
JE)SE(S) = slsz(l — T(s))R(s) = lmm B_" 0
C(s)—o0

» Magic of integral action: if a steady state exists, the error will be zero

» The Pl term is implemented using a ‘o k “
low-pass filter H,;(s) = ﬁsﬂ
1
U(s):klersTi:kar ko T
E(s) sT; sT;

(a) Integral action (automatic reset)



Role of D Term

» Derivative term: provides predictive action:

u(t) = koe(t) + kg ded(:) — K, (e(t) 4T d‘;&”) — kye(t)

> Prediction error e,: linear extrapolation of the error to time t + T4
> In practice the error signal e(t) is measured and contains high-frequency
noise which should not be differentiated

» The D term is implemented using a low-pass filter Hy(s) = 7=

1+4sTy
» Filtered derivative: difference between
a signal and its low-pass filtered version: e u
— kp
Ud(S) — 1 1 N de
E(s) ° 1+sTqy) 1+sTy —1
1+ STd

» Acts as differentiator for low-frequency
signals and as constant gain k, for
high-frequency signals

(b) Derivative action
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Numerical Experiments
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(a) Proportional control

Figure 11.2: Responses to step changes in the reference value for a system with
a proportional controller (a), PI controller (b), and PID controller (¢). The pro-
cess has the transfer function P(s) = 1/(s + 1)%, the proportional controller has
parameters kp = 1, 2, and 5, the PI controller has parameters kp, = 1, ki = 0, 0.2,
0.5, and 1, and the PID controller has parameters kp, = 2.5, ki = 1.5, and kq = 0,

1, 2, and 4.
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Model Reduction

>

>

Practical systems are complex

While a high-order model may describe the system behavior accurately, a
low-order model may simplify the system analysis and control design

Model reduction: simplification of a system model that captures the
essential properties needed for control design

Various model reduction techniques are available:
»> Dominant pole-zero approximation: cancel pole-zero pairs or eliminate
states that have little effect on the model response

» Mode selection: eliminate poles and zeros that fall outside a specific
frequency range of interest

Low-order models can be obtained from first principles:
> A system can be modeled as zeroth-order if its inputs are sufficiently slow

> A system can be modeled as first-order if the change of its mass, momentum,
or energy can be captured by a single variable (e.g., velocity)

»> A system can be modeled as second-order if the change of its mass,
momentum, or energy can be captured by two variables (e.g., position and
velocity)

12



Second-Order System Control Design

R(s) + E(s) U(s) Y
O) C(s) P(s) ©)

» Consider a feedback control system with a second-order plant:

24 a5+ ag

P(s)

» How should the controller C(s) be designed to ensure that the closed-loop
system is stable and its step response has zero steady-state error?

13



P Control for Second-Order System

» P controller:
U(s)
E(s)

= C(s) = kp

» Closed-loop transfer function:
Y(s) C(s)P(s) kp bo
T(S) = = = >
R(s) 1+ C(s)P(s) s>+ ais+ (ao+ kpbo)
» P control can accelerate the response of a second-order system by changing
the natural frequency w? = (ao + kpbo)

> To ensure stability, we need a; > 0 and ag + K,bg > 0

» P control can stabilize only some systems because it adjusts one coefficient of
the characteristic equation

For ag # 0, C(s)P(s) has 0 poles at the origin (type 0 system) and the
closed-loop step response has a constant finite steady-state error:

4o

lim e(t) = SIi_rpo(l — T(s)) 2+ hob

t—o00

14



Pl Control for Second-Order System

» To achieve zero steady-state step error, we need to add a pole at the origin in
C(s)P(s) to obtain a type 1 system

» Pl controller:

t U(s) ki
o) = kpe(®) + ki [ er)dr e =) =kt
» Closed-loop transfer function:
Y(s) C(s)P(s) bo(kps + ki)

T = = =
(s) R(s) 14+ C(s)P(s) s+ ai1s%+ (ao+ kpbo)s + kibo

Pl control achieves zero steady-state error:

lim e(t) = lim(1—-T(s))=1—-T(0)=0

t— 00 s—0

but the closed-loop system may be unstable if a; < 0.

15



PID Control for Second-Order System

» PID controller:

t
ki
u(t) = kpe(t) + ki/ e()dr + kg d‘z(tt) C(s) =y + = + kas
0
» Closed-loop transfer function:
_Y(s) _ C(s)Ps) bo(kos + ki + kas?)

T = =
()= R(s) = T3 C5)P(s) ~ 5 F (a1 & kabo)s + (a0 + kobo)s + Kibo

» The coefficients of the characteristic polynomial can be set arbitrarily via an
appropriate choice of ky, ki, kq

For a second-order plant, PID control can guarantee stability, good transient
behavior, and zero steady-state step error.

16



PID Control Example

>

>

Consider the plant P(s) = —5—

Design a PID controller C(s) to achieve step response with zero steady-state
error and place the closed-loop system poles at —5, —6, —7

PID controller: C(s) = k, + k? + kys
Closed-loop transfer function:

_Y(s)  C(s)P(s) kas® + kps + ki
 R(s) 1+ C(s)P(s) s34 (ka—3)s2+ (kp — 1)s+ ki

T(s)
Match coefficients with:

A(s) = (s +5)(s +6)(s +7) = s* + 185% + 1075 + 210
PID control gains:

kg=21  k, =108  k =210

17



Outline

PID Tuning and Implementation
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PID Control Gain Tuning

» PID control gain tuning: the process of determining satisfactory PID
control gains

» Manual tuning

» Ziegler-Nichols method

> First-order and time-delay (FOTD) method
>

Automatic tuning via relay feedback



Manual PID Control Gain Tuning
> Set kk=kq=0

> Increase k;, slowly until the output of the closed-loop system oscillates on the
verge of instability

> Reduce k;, to achieve quarter amplitude decay of the closed-loop response,
i.e., the amplitude should be one-fourth of the maximum value during the
oscillatory period

» Increase k; and kq to achieve the desired response

Table 7.4 Effect of Increasing the PID Gains K,,, Kp, and K, on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
Increasing Kp Increases Minimal impact Decreases
Increasing K; Increases Increases Zero steady-state error
Increasing Kj, Decreases Decreases No impact

‘Copyright ©2017 Pearson Education, All Rights Reserved
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Ziegler-Nichols Method
» Developed by John Ziegler and Nathaniel Nichols in the 1940s

» Perform a simple experiment on the system to extract features from its time
domain or frequency domain response

» Time-domain method
» Apply a unit step input to the open-loop system

> Record the x-intercept 7 and y-intercept —a with the coordinate axes of the
steepest tangent to the step response

» Use 7 and a to choose the PID control gains

Yy
K _______ —_—
0.63K— — — — — | Type T T
| P 1/a
|
. P ; PI 09/a 7/0.3
. PID 1.2/a 7/05 057
(a) Step response method (a) Step response method

21



Ziegler-Nichols Method

> Frequency-domain method

>

>
>
>
>

(b) Frequency response method

Connect a PID controller to the plant with ki = ka4 = 0

Increase k; until the closed-loop response oscillates on the verge of instability
Record the critical proportional gain k. and the period of oscillation T,
Nyquist contour of k.P(s) passes through —1 at frequency w. = 27/ T¢

Use k. and T. to choose the PID control gains

Im P(iw)
t cl/@ } —> Type kp T Ta
P 0.5k.
I Pl 045k T./1.2
PID 0.6k T./2 T./8

(b) Frequency response method

22



FOTD method

» Ziegler—Nichols methods use 2 parameters to determine the PID control gains

>

First-order and time-delay (FOTD) method: uses plant model with more

parameters:

Apply unit-step input to open-loop system

Record time delay 7 (x-intercept of
steepest tangent), steady-state value K,
and T = Tg3 — 7, where Tg3 is the time
when the output reaches 63% of K

Use 7, K, and T to choose the Pl gains:

_ 0157 +035T  _ 0467 +0.02T

ko Kt Kr2

K

0.63K]

(a) Step response method

23



Integral Windup

> Integral windup: accumulation of integral error due to input saturation

» Physical actuators have limits, e.g., a motor has maximum speed, a valve
cannot be more than fully opened

» When actuator limits are reached, the input remains at its limit (input
saturation) and the system runs in open-loop

» The integral error fot e(7)dT accumulates while the input is saturated

» Once the input leaves the saturation range the accumulated integral error
induces large transient response

24



Example: Cruise control
> When a car encounters a steep hill (e.g., 6°), the throttle saturates

» The resulting integral windup leads to velocity overshoot

Velocity v [m/s]

Throttle u«

Figure 11.10: Simulation of PI cruise control with windup (a) and anti-windup
The figure shows the speed v and the throttle u for a car that encounters

20

(b).

a slope that is so steep that the throttle saturates. The controller output is a
dashed line. The controller parameters are kp = 0.5, ki = 0.1 and kaw = 2.0. The
anti-windup compensator eliminates the overshoot by preventing the error from

— — Commanded
—— Applied

0 20 40 60

Time ¢ [s]
(a) Windup

Velocity v [m/s]

Throttle u

20

building up in the integral term of the controller.

— — Commanded
: —— Applied
0 20 40 60
Time ¢ [s]

(b) Anti-windup

25



Avoiding Integral Windup

Filter

—Yr
Yy ka
— ™ G¢(s)

Actuator
Model

w

kaw [

Figure: Anti-windup PID controller with output filtering, feedforward input ug, and input
saturation error e

» The controller has an extra feedback path from the saturating actuator to
measure saturation error e, = U — U,

» When the actuator saturates, the saturation error ¢, if fed back to the
integrator to reduce the integral error

26



Avoiding Derivative Noise

» Derivative control requires differentiation of the error signal:

&(t) ~ e(t) — 7e_(t —7)

» In practice, the error signal is measured and contains high-frequency noise,

which should not be differentiated
» The derivative term kqgs is implemented using a low-pass filter Hy(s) = ﬁ

with a small filter time constant 7¢
» PID control with high-frequency noise attenuation:

ki de
s 7S+ 1

u(t) = kpe(t) + ki /t e(7)dT + kaér(t) C(s) = kp +
0

Trér(t) = —er(t) + e(t)

27



Discrete-time PID Control Implementation

» sampling interval: 75
» filter time constant: 7

> sampled error: e[k] = e(kTs)
> filtered error: er[k] = Ze[k] + (1— Z ) erlk — 1]

Ef[k]fef[kfl]

Ts

> derivative error: e4[k] =
> integral error: ei[k] = eilk — 1] + Tse[k — 1]

> control: ulk] = kye[k] + kiei[k] + kaeq[k]

28
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Inverted Pendulum Example
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Inverted Pendulum Example

» Consider an inverted pendulum mounted on a
motorized cart

» Objective: control the cart force to balance :
the inverted pendulum in an upright position A

» Popular example in control theory and F
reinforcement learning o

» Nonlinear system that is unstable without _ : O O =
control ' ' o o

30



Inverted Pendulum: Parameters

» Cart mass: M = 0.5 kg

» Pendulum mass: m = 0.2 kg

> Cart friction coefficient: b= 0.1 N/m/sec I
» Length to pendulum center of mass: £ =0.3 m %\ .
a9 —
» Pendulum moment of inertia:
| = 0.006 kg m? F
B M
» Cart input force: F

» Cart position: x

» Pendulum angle: 6

31



Inverted Pendulum: System Model

» Horizontal direction force balance for the cart:

Mx+bx+ N=F

P

» Horizontal direction force balance for the il mg

pendulum:

N N
N = mx + mtf cos @ — ml6? sin 0 F l 5 frction
- o

» Force balance perpendicular to the pendulum: P =bx

Psin0+Ncos€)7mgsin9:m€é+m5<'cost9 Q Q| N

» Torque balance about the pendulum centroid:

—Plsin® — Nlcos® = 10

32



Inverted Pendulum: System Model

» Eliminating reaction force N and normal force P and denoting the input force
F by u, we get the cart-pole equations of motion:

(M + m)x + bx + mlf cos  — mlf?sin 6 = u
(I + me?)0 4+ mglsin® = —mii cos

» Since our control techniques apply to linear time-invariant systems only, we
need to linearize the equations of motion

> Linearize about the upright pendulum position 6, = 7 and assume that the
pendulum remains within a small neighborhood: ¢ =60 — 7

» Small angle approximation:
cosf = cos(m + @) = —1 sinf = sin(m + ¢) & —¢ 0> =¢? ~ 0
» Linearized equations of motion:
(M + m)X + bx — mld = u
(I + m®)$ — mgle = mls

33



Inverted Pendulum: Transfer Function

» Laplace transform of the equations of motion with zero initial conditions:

(M + m)s?X(s) + bsX(s) — més*®(s) = U(s)
(I + ml?)s*®(s) — mgld(s) = mls>X(s)

» Eliminating X(s) leads to:

(M + m) (' +m'Z£2 - ;%) 20(s) + b (’ +m’;£2 - 552) s&(s) — mls2d(s) = U(s)

» Pendulum transfer function with g = (M + m)(/ + mf?) — (mf)>:

2

G(s) = d(s) mis
~U(s)  gs*+ b(l + me2)s3 — (M + m)mgls? — bmgls

34



Inverted Pendulum: PID Control

> Design a controller C(s) to maintain the pendulum vertically upward when
the cart input F is subjected to a 1-Nsec impulse disturbance D(s)

» Design specifications:
> Settling time of less than 5 seconds

» Maximum pendulum deviation from the vertical position of 0.05 rad

D(s)

R(s) =0 +__ E(s) A P(s)

——(O— o G(s)

35



Inverted Pendulum: PID Control
» Pendulum transfer function with g = (M + m)(/ 4+ mf?) — (mf)?:

d(s) mis?

G S) = =
() U(s)  gs*+ b(l + ml?)s3 — (M + m)mgls?® — bmgls
1 M=0.5,m=0.2; b=20.1; I =0.006;
g =9.8; 1 =0.3; g = (Mtm)*(I+m*1"2)-(m*1)"2;
5| s = tf(Cs?)
G = (m*1xs"2)/(g*s"4 + bx(I + m*172)*s"3 —(M + m)*m*g*l*s~2 -b*mkgkl*s);

> PID control design: C(s) = kp + ki% + kas

Kp = 100; Ki = 1; Kd = 1;
C = pid(Kp,Ki,Kd);

~

» Closed-loop transfer function from D(s) to ®(s):

o(s) . G(s)

T()= Bs) ~ T3 C(9)6()

T = feedback(G,C);

36



Inverted Pendulum: PID Control

t=0:0.01:10;

impulse(T,t)

axis([0, 2.5, -0.2, 0.21);

title({’Response of Pendulum Position to an Impulse Disturbance’;’under PID
Control: Kp = 100, Ki = 1, Kd = 1°});

Response of Pendulum Position to an Impulse Disturbance
under PID Control: Kp=100,Ki=1,Kd=1

» Settling time: 1.64 sec

019 meets the specifications (no
04 additional integral control is
needed)

0.05

Peak response: 0.2 rad
exceeds the requirement of
0.05 rad (the overshoot can
be reduced by increasing
the derivative control gain)

Amplitude
o
v

&
=
51

0 05 1 15 2 25
Time (seconds)
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Inverted Pendulum: PID Control

t=0:0.01:10;

impulse(T,t)

axis([0, 2.5, -0.2, 0.2]);

title({’Response of Pendulum Position to an Impulse Disturbance’;’under PID
Control: Kp = 100, Ki = 1, Kd = 20°});

Response of Pendulum Position to an Impulse Disturbance
under PID Control: Kp = 100, Ki = 1, Kd = 20

0.2 T T T T
ot S T )
ystem: . .
podeamptde 00z > Settling time: 0.844 sec
0.05 | o B . .
. meets the specifications
L ‘
3 { System: T
£ oo | | Settling time (seconds): 0.844 | > Peak response: 0044 rad
meets the specifications
-01 - i 4
015 : B
o ‘ L ‘ ‘
0 05 1 15 2 25

Time (seconds)
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Inverted Pendulum: Root Locus with Proportional Control

> Positive root locus for the inverted pendulum plant G(s)

Inverted Pendulum Root Loc%(Proporhonal Conirol)
10

:
064 05 034 016
10.76

» One branch entirely in the
right half-plane

0.94

1
)
S
v

| | Need to add a pole at the

B 2 )oss 2 ] origin to cancel the plant
S s . .

g / zero at the origin

a 0 —e 1

% i 3 . .

> | oss » This will produce two

g “f 1 .

s | ' ¥ closed-loop poles in the
g 094

3 right half-plane that we can
o S then draw to the left-half
N ; j 1 plane to stabilize the
Lot closed-loop system
0.64 .5 0.34 016 T
%

-10 75
Real Axis (seconds '1)
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Inverted Pendulum: Root Locus with Integral Control

> Positive root locus for integral control of the inverted pendulum 1 G(s)

Inverted Pendulum Root Lqﬁus (Integral Control)
10 . — T

0.64- 0.5 0.34 O.iG
g 076 8
- 6
6086
—~ 4] 4 i
< 0.94 » We need to draw the two
2 L ‘ 2 | branches to the left-half
c 0.985 oy
g | plane to stabilize the
2 0 closed-loop system
%
> | 0985 i .
s ? 2 » Adding a zeros to the
[= .
g |00 | controller will pull the
= 4
branches to the left
6 L086" .
6
o076 e 8
0.64 0.5 0.34 _ 0.16
0 ‘ A ‘
-10 5 10 5 10

Real Axis (seconds A )
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Inverted Pendulum: Root Locus Manipulation

1 _ mls® .
> Poles and zeros of ;G(S) — gs®>+b(I+me?)s* —(M+m)mgls®—bmgls?

Z] = Zp =
pr=p2=0, p3=-0.143, ps=-5604 ps=>5.565

> Suppose we introduce a zero to the controller: (57—523)G(s)

> There will be 5 — 3 = 2 asymptotes with angles 7, 37” and centroid:
0.182 + z3
2

» We cannot have z3 in the right half-plane so the best we can do to pull the
root locus branches is to have z3 ~ 0 so that a =~ —0.1.

1
o= 5 (~5.604 + 5565 — 0.143 — z3) = —

» The real parts of the two poles —(w, ijwnm will approach o ~ —0.1
as K — oo

» This design is insufficient to meet the settling time specification:
4

t 4 40
~ ~ — = S
* 7 (w, 0.1

41



Inverted Pendulum: Root Locus Manipulation

» Adding a single zero to the controller is not sufficient to pull the root locus
branches far enough to the left

» Add two zeros between p; = —0.143 and p; = —5.604 to pull the root locus
branches towards them, leaving a single asymptote at —7

» lLet z3 = —3 and z; = —4 and consider the controller:
4 1
C(s):%:7+12;+5

> Note that kC(s) is a PID controller:

ko =Tk  k=12k  kqi=k

42



Inverted Pendulum: Root Locus with PID Control

» Positive root locus for PID control of the inverted pendulum:

4

Imaginary Axis (seconds

-10

Inverted Pendulum Root,Locus (PID Control)
T T

(s+3)(s+4)

S

5 [076

[0.94

2 Fo.8s5

0

T
0.64. 05 034 0.6

System: untitled1
" Gain: 19.8
Pole: -3.52 - 0.721i
_ Damping: 0.98
Overshoot (%): 0

Frequency (rad/s): 3.6

_g Jpu-00

8076

0.64 0.5

6

8
0.34. 0.16

-10

-5

)

Real Axis (seconds A )

G(s)

To achieve t; < 5 sec, we need the
real parts of the dominant
closed-loop poles to be less than
—4/5=-0.8

To ensure that p.o. < 5%, we also
need sufficient damping for the
dominant closed-loop poles

Placing the dominant poles near
the real axis increases the
damping ratio ¢

Choose k ~ 20
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Inverted Pendulum: PID Control

T = feedback(G,20*(s+3)*(s+4)/s);

t=0:0.01:10;

impulse(T,t);

title({’Impulse Disturbance Response of Pendulum Angle’; ’under PID Control:
= 140, Ki = 240, Kd = 20°});

Kp

Amplitude

Impulse Disturbance Response of Pendulum Angle
under PID Control: Kp = 140, Ki = 240, Kd = 20

02 T T T
0.15 - 4
0.1 - B
System: T . .
Z‘i‘akar:‘plitud:;lg4l}239 > Settllng time: 1580 sec
f meets the specifications
0 T
i System: T
el :Se\tlmg\lme(secunds)158 | > Peak response: 0043 rad
meets the specifications
01 H i B
0.15 H : B
02 ‘ ‘ L ‘
0 0.5 5 2 25

1 1
Time (seconds)
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Outline

Lead-Lag Compensation

45



Loop Shaping

R(s) w}_\ E(s)

C(s)

u(s)

P(s)

Y(s)

> Loop shaping: a trial and error procedure to choose a controller C(s) that
gives a loop transfer function L(s) = C(s)P(s) with a desired shape

» Backward method:

» Determine a desired loop transfer function L(s)

» Compute the controller as C(s) = L(s)/P(s)

» Forward method:

> Adjust proportional gain C(s) = kp to obtain desired closed-loop bandwidth

> Add stable poles and zeros to C(s) until a desired shape of L(s) is obtained

46



Design Considerations

D(s)
R(s) % U(s) +,l{ Y(s)
C(s) U P(s)
N +
"
N(s)
» Tracking error with input disturbance and measurement noise:
1 P(s) L(s)
E(s)= ——— R(s)— ———=D —F— N
———— ———
Sensitivity S(s) Complementary Sensitivity T(s)

» We need a loop transfer function L(s) = C(s)P(s) that leads to good
closed-loop performance and good stability margins

» |L(s)| should be large at low frequencies s = jw to ensure good reference
tracking and low sensitivity to input disturbances (associated with low w)

> |L(s)| should be small at high frequencies s = jw to ensure low sensitivity to
measurement noise (associated with high w)
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Design Considerations
> An ideal loop transfer function L(jw) should have the shape below:
> Unit gain at gain crossover: |L(jwg)| =1
> Large gain at w < wg
» Small gain at w > w;

, r R Sy IRRRSH e

C\ Load disturbance ] § mRobusmess

attenuation s %
- | "o [ Load disturbance B
) 2 attenuation
=L Robustness 4 :
i T T T T T T
z = mRobusmess
2 3

. = .

B High frequency o High frequency d
measurement noise < measurement noise
aul n sl Lo T W n Lk n Loy n T
log w T log w S~

(a) Gain plot of loop transfer function (b) Gain plot of sensitivity functions

> The phase margin is inversely proportional to the slope of L(jw) around
gain crossover frequency w, (transition from high gain at low w to low
gain at high w cannot be too fast)
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Loop Shaping via Lead and Lag Compensation

v

Loop shaping is a trial-and-error procedure

v

Start with a Bode plot of the plant transfer function P(s)

v

Adjust the proportional gain to choose the gain crossover frequency w,
(compromise between disturbance attenuation and measurement noise)

v

Add left-half-plane poles and zeros to C(s) to shape L(s)

v

The behavior around wg can be changed by lead compensation

v

The loop gain at low frequencies can be increased by lag compensation
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Lead and Lag Compensation
» Consider a controller with transfer function:

. s+ z

C(s)=k z>0 >0
(s) =k p . P
» Lead compensator: z < p A e
> Adds phase lead in the frequency range w € [z, p]
< o) N
> Provides additional phase margin at w, h ~ Re(s)
» Equivalent to PD control with filtering
v
» Root locus branches move left (When we want a Zero)
N
» Lag compensator: z > p Im(s)
> Increases the gain at low frequencies leading to
improved tracking and disturbance attenuation “— 3>
Re(s)
» Pl control is a special case with p =0
Y

» Root locus branches move right (when we want a pole)
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Lead and Lag Compensation

10_] 1 1 1
0 T T T
3
= —45F 4
0
< il
-90 e e T 1
a b b a
Frequency w [rad/s] Frequency w [rad/s]

(a) Lead compensation, a < b (b) Lag compensation, b < a



Example 1

4(1 — e=5/*)

> Plant: P(s) = G110

Nyquist Diagram

Bode Diagram
Gm = 26.8 dB (at 13.2 rad/s) , Pm = Inf

-

06 0
@ -
04l g0
€
S 200
» 02f i °
2 \| = -300
N
g 0 > 400
£ (
=3
€ ‘ /
To2f \ h 5
\ £ or
@
2
04 2-80f
-270
-0.6 2
Bl 05 0 05 1 10

Real Axis

(a) Nyquist plot

10" 10° 10’ 102
Frequency (rad/s)

(b) Bode plot
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Example 1: Tracking Performance

r

e

u Yy

C(s)

= P(s) -

—1 |-

Figure: Proportional control: C(s) =1

Step Response

1

(a) Step response

2

0 . .
0 20 40 60

(b) Frequency response at w = 7/5
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Example 1: Lag Compensation

-100 -

Magnitude (dB)

-300 -

-400
0

Phase (deg)

-270

Bode Diagram
26.8 dB (at 13.2 rad/s) , Pm =Inf

Gm =

-]

1072

107

10° 10
Frequency (rad/s)

Figure: P(s)

Magnitude (dB)

n
S

Figure: Lag

Phase (deg)

@
S

Bode Diagram

o
S

IS
S

@
S

oo

A
o

10° 10’ 102

Frequency (rad/s)

107

compensator C(s) =3.5+ 8?3 (P1)
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Example 1: Lag Compensation

Magnitude (dB)

Phase (deg)

-100
-200
-300 [

-400

-135
-180
-225

-270 =

Bode Diagram

Gm = 13.6 dB (at 11.6 rad/s) , Pm = 45.4 deg (at 3.83 rad/s)

100

|

90

102

107 10° 10
Frequency (rad/s)

Figure: Margins for L(s) = C(s)P(s)

55



Example 1: Lag Compensation

T e

C(s) = P(s) -

—1 |-

. k;
Figure: Lag compensator C(s) = k, + &

Step Response 3
1
3 2
2
2
Zos} ]
0 : ‘ : 0 ‘ ‘
0 0.5 1 1.5 0 20 40 60

(a) Step response (b) Frequency response at w = /5 56



Example 2

> Plant: ,
P(s) = — r=0.25, J=0.0475

» Objectives:
> Steady-state step error at most 1%

> Tracking error with w < 10 rad/s at most 10%

Bode Diagram
Gm = -1.93e-15 dB (at 2.29 rad/s) , Pm = 0 deg (at 2.29 rad/s)

10— Step Response
g o \\\\ 2 : :
é 0 e ~Z
2. — o5
o
g 2
s 1
5-1795 E
g <05
i -180.5
181 ; 0 L L L )
10 107 10° 10" 102
0 2 4 6 8 10

Frequency (rad/s)

(a) Bode plot (b) Step response for unit negative feedback

57



Example 2: Lead Compensation

Bode Diagram

Bode Diagram 50
Gm =-1.93e-15 dB (at 2.29 rad/s) , Pm = 0 deg (at 2.29 rad/s)
100 o
— D40+
@ 50 T 3
) T 2
3, ~_ €30
2 = 3
5 T =
g
g 5 20
100 . . . El)
479
=)
5-1795 geor
2 k=i
= 2
o 180 <3
3 30
g £
T 1805
-181 , 2
107 10" 10° 10 102 10
Frequency (rad/s)
Figure: P(s) Figure:

10° 10° 102
Frequency (rad/s)

Lead compensator C(s) = 200

103

s+2

s+ 50
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Example 2:

Magnitude (dB)

Phase (deg)

-100

-120 [

-150 [

-180

Lead Compensation

Bode Diagram

Gm = -Inf dB (at 0 rad/s) , Pm = 62.7 deg (at 19.7 rad/s)

150

50

,90 =

102

Figure:

10° 10° 10° 10°
Frequency (rad/s)

Margins for L(s) = C(s)P(s)
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Example 2: Lead Compensation

Step Response

Amplitude
o
[6;]

0 0.5 1
(a) Step response

(c) Frequency response w =1

0.5

-0.5

o

1 2 3 4

(b) Frequency response w = 10

0.2 0.4 0.6 0.8
(d) Frequency response w = 50
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Example 3

» Plant: 1
P(s) = —
(s) Tl
» Objectives:
> Percent overshoot of at most 20% = ¢>05
> Settling time of at most 4 sec = Cwp>1

P Desired closed-loop poles: s, = —1 + /3

> Can we place s; > on the root locus using lead-lag compensation?
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Example 3

» Is s; = —1 + j/3 already on the Root Locus?

» Check via the phase condition:

/G(s1) = —/s1 — /51 + 1 = —120° — 90° = —210°

s is not on the Root Locus and lacks 30° of phase

v

v

Need to add 30° at s;

» Add a zero at 60° and a pole at 30°:

V3 V3

tan 60O = m tan 300 = E

<

v

Lead compensator:

s+2
C(S):s+4




Example 3

542
» Root locus of L(s) = C(s)P(s) = ——~——
s(s+1)(s+4)
. Root Locus
T T T T T T T T
0.86 0.78 0.64  0.46 | 0.2 system: untitled1
Gain: 5.94
31093 Pole: -0.996 + 1.72i
Damping: 0.501
Overshoot (%): 16.2
_ 2r097 \ Frequency (rad/s): 1.99
- n
E \
S 1r0.992
o
Q
2
7 6
‘>£< 0
<
el
2 110992
>
g :
= 51097
-3-0.93
0.86
-4 ! I I
-7 -6 1 2
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