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Contours in the Complex Plane

» A contour C is a piecewise smooth Jjo
path in the complex plane

» A contour C is closed if it starts and c
ends at the same point s
» A contour C is simple if it does not
. . » o
cross itself at any point 0
o)

> A parameterization z(6) € C of a
contour has direction indicated by
increasing the parameter § € R

» Cauchy’s Principle of the Argument: relates the arguments (phases) of
the zeros and poles of a rational function G(s) inside a contour C to the
shape of new closed contour G(C) obtained by evaluating G(s) at all s on C



Evaluating G(s) along a Contour

» Consider a rational function:

(s —21)- (s — zm)

) = ) (s~ )

> At each s, G(s) is a complex number with magnitude and phase:

SO =A<t 3 fs 23 fs )

i=1

» Graphical evaluation of the magnitude and phase:
> |s — z| is the length of the vector from z; to s

» |s — pj| is the length of the vector from p; to s
> /(s — z) is the angle from the real axis to the vector from z; to s

> f(s — p,-) is the angle from the real axis to the vector from p; to s



Evaluating G(s) along a Contour

v

Let C be a simple closed clockwise contour C in the complex plane

v

Evaluating G(s) at all points on C produces a new closed contour G(C)

v

Assumption: C does not pass through the origin or any of the poles or zeros
of G(s) (otherwise /G(s) is undefined)

v

A zero z; outside the contour C:
» As s moves around the contour C, the vector s — z; swings up and down but
not all the way around
» The net change in /(s — z) is 0

v

A zero z; inside the contour C:
> As s moves around the contour C, the vector s — z; turns all the way around

> The net change in /(s — z) is —360°

» A pole p; outside the contour C: the net change in f(s —pi)is0
> A pole p; inside the contour C: the net change in /(s — p;) is —360°



Evaluating G(s) along a Contour

conlour

> o




Principle of the Argument

» Let Z and P be the number of zeros and poles of G(s) inside C
> As s moves around C, /G(s) undergoes a net change of —(Z — P)360°

> A net change of —360° means that the vector from 0 to G(s) swings
clockwise around the origin one full rotation

> A net change of —(Z — P)360° means that the vector from 0 to G(s) must
encircle the origin in clockwise direction (Z — P) times

Cauchy's Principle of the Argument

Consider a rational function G(s) and a simple closed clockwise contour C. Let Z
and P be the number of zeros and poles of G(s) inside C. Then, the contour
generated by evaluating G(s) along C will encircle the origin in a clockwise
direction Z — P times.




Winding Number

» To determine the number of encirclements of a point s by a contour I':
1. Fix a pin at s pointing out of the page

2. Attach a string from the pin to the contour I'

3. Let the end of the string attached to I traverse the contour

> The winding number n(I',s) of I' about s is equal to the number of times
the string winds up on the pin when [ is traversed:

n(r,s):i]{ 1 dz
2mj Jrs—z




Principle of the Argument: Example

> Pole-zero map for G(s) =

.1)

10(s+1)

(s+2)(s*>+1)(s+6)

Pole-Zero Map
T T

Imaginary Axis (seconds

-4 -3 -2

Real Axis (seconds

_1)
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Principle of the Argument: Example

> A circle contour C
centered at the origin
with radius 0.5 (green)

» The contour may be 05 - o
parameterized by |
z(#) = 0.5e49 for of ; 9
0 € [0, 27] “

» The contour C is
mapped by G(s) to a
new contour (from blue
to red), e.g., 45

4‘5 ‘1 70‘5 é 0‘5 1‘ w‘s é
parameterized by ) L . . .
G(2(8)) for 6 € [0, 2] Figure: The origin is encircled 0 times clockwise
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Principle of the Argument: Example

» A circle contour C 05
centered at (—1,0) with

radius 1 (red) .

»> The contour C is
mapped by G(s) to a
new contour (from blue
to red)

-25 -2 -15 -1 -0.5 0 0.5 1

Figure: The origin is encircled 1 time clockwise
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Principle of the Argument: Example

» A circle contour C

/

// \
centered at the origin ) / |
with radius 1.5
(magenta) ° ‘4 |

» The contour C is o8 f \\ K_ / i

\\\ —

AN

mapped by G(s) to a
new contour (from blue
to red)

/
N

45 L1 L L L L L L L L

Figure: The origin is encircled 1 time counterclockwise
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Outline

Nyquist's Stability Criterion
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Stability of Feedback Systems

R (s)}.\

A 4

G(s)

Y(s)

> Consider a feedback control system with open-loop transfer function G(s)

(controller and plant) and closed-loop transfer function:

T(s)

__G(s)
1+ G(s)

> Testing BIBO stability using the poles of T(s) requires knowledge of G(s)
and gives little guidance for control design, i.e., how should the controller be

modified to make an unstable system stable?

> Given a Bode plot of G(s), we aim to understand the stability of T(s)
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Nyquist’s Idea

» Harry Nyquist made important contributions to control
theory (stability of feedback systems), electronics (thermal
noise), and communication theory (telegraph)

» Nyquist proposed an idea to determine the stability of a
closed-loop system by investigating how sinusoidal signal
propagate around the feedback loop

H. Nyquist

» Similar to return difference, break the feedback loop and ask whether a signal
injected at G(s) has larger or smaller magnitude when it returns to G(s)

» Nyquist's idea allows reasoning about closed-loop stability based on the
frequency response of the open-loop transfer function

» Nyquist's stability criterion utilizes a contour C in the complex plane to
relate the locations of the open-loop poles and the closed-loop poles
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Nyquist’s Idea

R(s) + Az2(s) Ai(s) Y(s)
G(s)

> Suppose that a sinusoid of frequency w is injected at A;(s). In steady state,
the signal at Ax(s) will be a sinusoid with the same frequency w, magnitude
|G(jw)|, and phase 180° + £ G (jw)

> Critical point: the signals at A;(s) and Ax(s) are identical if:
|Gjw)|=1 and ZLG(jw)=-180° <& G(w)=-1

> Nyquist’s idea: Let w, be such that ZG(jw,) = —180°. A feedback control
system is stable if | G(jwp)| < 1 since the signal at Ay(s) will have smaller
amplitude than the injected signal at A;(s).
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Open-Loop Poles vs Closed-Loop Poles

R(s) Y(s)
G(s)
» Open-loop transfer function: G(s) = i)g;
» Closed-loop transfer function: T(s) = T —f(Gszs) = a(s)b—(i)b(s)
> Let A(s) =1+ G(s)
» The closed-loop poles are the zeros of A(s)
> The open-loop poles are the poles of A(s):
A(s):1+G(s):l+%:%
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Nyquist Contour
» To determine how many closed-loop poles lie in the closed right half-plane,
we apply the Principle of the Argument to A(s)

» Define a clockwise contour C that covers the closed right half-plane

Jjo
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Nyquist Contour

» The Nyquist contour is made up of
three parts:

» Contour C;: points s = jw on the
positive imaginary axis, as w ranges
from 0 to co

> Contour G: points s = re’ on a
semi-circle as r — oo and 6 ranges
from 3 to —%

» Contour Cs: points s = jw on the
negative imaginary axis, as w ranges
from —oo to 0

Cs

20



Nyquist Plot
> A Nyquist plot evaluates A(s) =1+ G(s) over the Nyquist contour C

> Contour A(C) is obtained by shifting contour G(C) by one unit to the right

Nyquist contour C = Nyquist plot G(C)

» The contour G(C) is obtained by combining G(C;), G((&,), and G(G):
»> Contour Ci:

»
>

plot G(jw) for w € (0,00) in the complex plane
equivalent to a polar plot for G(s)

» Contour G;:

>

vvyy

jo
plot G(re/?) for r — oo and 6 from 3 to — 7%

as r — 00, s = rel? dominates every factor it appears in
if G(s) is strictly proper, then G(re/?) -0
if G(s) is not strictly proper, then G(re/?) — const

» Contour G;:

>
>
>
>

plot G(jw) for w € (—o0,0) in the complex plane

G(—jb) is the complex conjugate of G(jb)

G(—jb) and G(jb) have the same magnitude but opposite phases
G(G3) is a reflected version of G(Cy) about the real axis
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Nyquist Plot: Example 1

> Draw a Nyquist plot of G(s) = =5

» Contour C;: s = jw with w € (0,0):
» w=0and w— oo:

6(j0) = 15/0° Gljoc) = 1/0°
> for 0 < w < oo:
. _ i V 1+ w? . _ —1 _ —1
|G(jw)| = 10 Ar 07 G107 /G(jw) =tan™ " (w) —tan” " (w/10)
> Contour G: s = re/’ with r — 0o and 6 from Z to —3:
lim G(re®) = lim ‘&t 100
r—o0 B r—00 reJ'9 —|— ].O o

» Contour G3: s = jw with w € (—00,0):
> G(G) is a reflection (complex conjugate) of G(C;) about the real axis
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Nyquist Plot: Example 1
» Nyquist plot of G(s) = =L

» Type 0 system as on Slide 51 of Lecture 9 with lim, . G(re/®) =1

Imaginary Axis

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

T s+10

Nyquist Diagram
T

4 dB 2dB 0dB -2dB <4 dB
6 dB -6 dB
[10dB -10dB
20 dB -20 dB
+
L I | 1
1 -0.5 0 0.5
Real Axis
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Nyquist Plot: Example 2

100

» Draw a Nyquist plot of G(s) = (1+Tls)”21+7_25) =1

» Contour C;: G(j0) = k/0°, G(joo) = 0/—180°

» Contour G: lim, o, G(re/?) =0

1+s)(1+s/10)

jo Jjv .
A Negative frequency
—w=—0.76
__'/]5/0// ‘\\\L(x)—plzme
Radius ‘y»p]anc _ . %
w=-3.2 A5 \\
[ w =00 o=0
\
» — l\l / I I I \/;
» O 1 T »u
1 B =10 100
T3
w=32 \
Nyquist ‘Posilivc
contour T —j50 lrequency
| s w=0.76
(a) (b)
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Nyquist Plot: Poles on the Imaginary Axis

» The Principle of the Argument assumes C
does not pass through zeros or poles of A(s)

There might be poles of G(s) on the
imaginary axis, which are poles of A(s)

The Nyquist contour needs to be modified
to take a small detour around poles of G(s)
on the imaginary axis

Contour C;: avoid poles of G(s) at origin:

> plot G(ee!’) fore —+0and 0 € (—%, %)

G

Jjo

s-plane

c Radius € C
< 2
C, \B N
A \\\
Radius™~ _
Cs| r—

Nyquist contour

If G(s) has other poles p on the imaginary axis, more contours need to be

introduced. Substitute s = p + ee/? into G(s) and examine what happens as

e—0andfc(-3,7).
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Nyquist Plot: Example 3

> Draw a Nyquist plot of a type 1 system: G(s) =

Kk
s(1+7s)

> Since there is a pole at the origin, we need to use a modified Nyquist contour

Jjo

Radius €

s-plane

i
Radius ™~

r— o0

Nyquist contour

w =0
A

J

v
A

Radius =00

(b)
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Nyquist Plot: Example 3
» Contour C;: s = jw with w € (0,00): polar plot as on Slide 58 of Lecture 9:

G(jOT) = 00/=90°

G(j lim —— ‘
(joo) = wmeJw(1+JWT) w%oo Tw?

’/ 90° — tan~(wr) = 0/—180°
» Contour G: s = re/’ with r — 0o and 6 from Z to —3:

lim G(re’’) = lim iz‘ e %% =0/-26

r—oo r—oo | Tr

» The phase of G(s) changes from —180° at w = oo to 180° at w = —o0

> Contour G3: s = jw with w € (—o0,0):
> G(G) is a reflection (complex conjugate) of G(C1) about the real axis

> Contour C: s =ee/’ withe —0and 6 € (-5, 5):

lim G(ee/?) = lim il e — kT + lim Se? = oo/—0
e—0 e—0 cel?(1 + Teel?) e—0 €

> G(ee’’) approaches an asymptote at —x7 as € — 0

> The phase of G(s) changes from 90° at w = 0~ to —90° at w = 07
27



Nyquist Plot: Example 4

v

Draw a Nyquist plot of a type 1 system: G(s) = m

v

Contour G;: s = e/’ withe —0and 0 € (—%, %):

» (C,; maps into a semicircle with infinite radius as in Example 3:
G(j0) = oco/=0

Contour GC: s = re/® with r — oo and 6 from 5 to —3:
» ( maps into a point at 0 with phase /—30

v

v

Contour C;: s = jw with w € (0,00): polar plot as on Slide 59 of Lecture 9:

G(joo) = 0/—270°

Contour C3: G(G) is a reflection of G(C;) about the real axis

v

28



Nyquist Plot: Example 4
> Contour C; with w € (0, 00):
Gljw) = K _ —K(n ) — jr(l — winin)w
Jw(1 + jwr)(1 + jwm) 1+ w?(18 + 72) + whrir?
K
B VWt + 12)? + w2 (1 — wrim)?

—90° — tan~}(wm) — tan~1(wm)

" Jjv
Jw
$ 4 L(s)-plane
T~
_ A
s-plane K175 | \\
T+, 1 \
c Radius € \Al \
=+
\?\B » o } d ] ! » u
N« T
! AT S - I
i Radius™>~ _ //
r— 0o . / I,
Nyquist contour )/
//
|5 I
w=0,

29



Nyquist Plot: Example 5

> Draw a Nyquist plot of a type 2 system: G(s) = 52(17’175)

» Two poles at the origin = need to use a modified Nyquist contour
» Magnitude and phase:

jw) = il = %] ° —tan Y (wT
CU) = Gop 1 Jor) ~ var T oe 80 —tan ()

» Contour Ci: s = jw with w € (0,00):

G(jot) = oog—180°

. K o
=0/-270°

» Contour G3: s = jw with w € (—00,0):
> G(G) is a reflection (complex conjugate) of G(C;) about the real axis

30



Nyquist Plot: Example 5

» Magnitude and phase:

r = 1] ° —tan (wT
G(jw) = (o) (1+jw7')7\/m/ 180° — tan~!(wT)

> Contour G: s = re/’ with r — 0o and 6 from J to —3:

e ¥ =0/-30

. R .
lim G(s)= lim — = lim ‘ ‘
r—o0 r—oo 7'53 r—oo | Tr

» The phase of G(s) changes from —270° at w = oo to 270° at w = —o0

> Contour C4: s = ee/’ withe —»0and 6 € (-3, 3):

K K ;
lim G(s) = lim — = lim —e %% = c0/—20
e—0 ( ) e—=0S e—0 62 L

> The phase of G(s) changes from 180° at w = 0~ to —180° at w = 07
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Nyquist Plot: Example 5
> Nyquist plot of a type 2 system: G(s) =

K _ 1
s2(1+7s) — s2(s+1)

» Caution: Matlab's nyquistplot does not generate G((y)

Nyquist Diagram
T

0.8 [

-4 dB

0.6

04110 dB

0.2
20dB 20 dB

Imaginary Axis
o
T

-0.2 -

-0.4

-0.6 -

-0.8E | Ny

-6 dB

-10 dB

-1 -0.5

0
Real Axis

0.5
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Nyquist Plot: Example 5

» Nyquist plot of a type 2 system: G(s) = zi=g =)

33



Nyquist Plot: Example 6

» Draw a Nyquist plot of G(s) = (s_&a)3

1 (a—jw)* & —-3aw? W -32%w

T wtap (@12} (2t (@R

G(jw)
» Contour C;: s = jw with w € (0,00):

G(j0) = %@, G(joo) = 0/—270°

> Contour Gy: s = ref? with r — oo and @ from 5 to —7.

1

0\

> Contour G;: a reflection (complex conjugate) of G(C;) about the real axis
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Nyquist Plot: Example 6

> Draw a Nyquist plot of G(s) = 0

I S
5+0.6)3
| Im L(iw)
- .
= ~
41 2 N

\
\ Re L(iw)

Figure 10.5: Nyquist plot for a third-order transfer function L(s). The Nyquist
plot consists of a trace of the loop transfer function L(s) = 1/(s+a)® with a = 0.6.
The solid line represents the portion of the transfer function along the positive
imaginary axis, and the dashed line the negative imaginary axis. The outer arc of
the Nyquist contour I' maps to the origin.
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Nyquist Plot: Example 7

» Draw a Nyquist plot of G(s) = —(SS(JﬁOl))z

Nyquist Diagram
T

0.8F ¥ I

4.dB 2d8  0dB  -2dB 4 dB
6 dB
0.6
0471048
0 027
E: 20 dB
& ol [+
£
o
©
€
= .02}
0.4
0.6
0.8 . | . ‘ !
1 0.5 0 0.5 1

Real Axis



Nyquist’s Stability Criterion

» Consider the stability of the closed-loop transfer function:

G(s) G(s)

Te) =166 ~ as)

> Open-loop poles: the poles of A(s) are the poles of G(s)

> Closed-loop poles: the zeros of A(s) are the poles of T(s)

» Principle of the Argument applied to A(s) =1+ G(s):

> Let C be a Nyquist contour

> Let P be the number of poles of A(s) (open-loop poles) inside C
> Let Z be the number of zeros of A(s) (closed-loop poles) inside C
>

Then, A(C) encircles the origin in clockwise direction N = Z — P times

37



Nyquist’s Stability Criterion

» From the Principle of the Argument applied to A(s), the number of
closed-loop poles in the closed right half-plane is:

Z=N+P

where:
> N: the clockwise encirclements of the origin by A(C) correspond to the
clockwise encirclements of —1 + j0 by G(C) and can be determined from a
Nyquist plot of G(s)

> P: the number of poles of A(s) inside C corresponds to the number of poles
of G(s) inside C and can be determined from G(s) or its Bode plot

Nyquist's Stability Criterion

Consider a unity feedback control system with open-loop transfer function G(s).
Let C be a Nyquist contour. The system is stable if and only if the number of
counterclockwise encirclements of —1 + jO by G(C) is equal to the number of
poles of G(s) inside C.
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Nyquist Stability: Example 4
» Determine the closed-loop stability of G(s) =
> G(C) crosses the real axis when:

K
1+7‘15)(1+T25) s(1+s)?

k(r+ 1) —Jjr(l —w 7’17'2)w

G(jw) = — a+j0
1+ w?(72 + 72) + wrlr?
1 KT1T2
> W= — o=
VTIT2 L+ T2
» The system is stable when o = — 2822 > ]
TitT2 T
15 T 1.5 15
\ IL(s)-plane L(s)-plane L(s)-plane
1 \ 1 1
\
\ \
2 05 > 0.5 2 05 (-1,0)
: 1o\ ANET) E
£ o B £ o0 ks R '
E{ ‘ .; SeL= E{ /\\'\__’//
E—os| k=1, £ —05 f£=2, E 05| k=3
stable marginally unstable
i system . stable system . Syrer
—-15 =1.5 13
-2 <15 -1 -05 O 05 1 =2, =148 =1 —Q8 0 05 1 =2 —18 =1 —08 0 05 1
Real axis Real axis Real axis
(a) (b) (c)
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Nyquist Plot: Example 8

» Open-loop transfer function: G(s) = =5

1
s+1

» Number of closed-loop poles in CRHP: Z=N+P =0

05

Nyquist Diagram

041

031

021

0.1

-0.1F

Imaginary Axis

02

03

04f

N
// AN
/ \
/ \ ]

-05
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Nyquist Plot: Example 9

1

» Open-loop transfer function: G(s) = —»

(s+1)?

» Number of closed-loop poles in CRHP: Z=N+P =0

Nyquist Diagram

0.8
e
06 — ~
// .
04r / \\\ i
[ \
2 02f | \
< \ \
> |
=) / I
& I |
E 02 ( /
(
\ //
04 \\ / 1
-
06} N~ — ]
0.8
-1 05 0 0.5 1
Real Axis
G(s) 1

» Closed-loop transfer function: T(s) =

1+G(s) ~ s2t2s5+2
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Nyquist Plot: Example 10

» Open-loop transfer function: G(s) = ﬁ

» Number of closed-loop poles in CRHP: Z=N+P =0

Nyquist Diagram
20

Imaginary Axis
)

-1 -0.8 -06 -04 -0.2 0
Real Axis

G(s) 1

» Closed-loop transfer function: T(s) = T¥G(s) — 2tst1

42



Nyquist Plot: Example 11

» Open-loop transfer function: G(s) = m

» Number of closed-loop poles in CRHP: Z=N+4+ P =2

Nyquist Diagram
20

15
10

Imaginary Axis
o
1
1
|
|

-10

-15

-20
Real Axis

» Closed-loop transfer function: T(s) = G(s)

_ 1
1+G(s) = s3+1.5s2+0.5s5+1
> Closed-loop poles: p; » = 0.0416 £ 0.7937 and p3 = —1.5832
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