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Contours in the Complex Plane

▶ A contour C is a piecewise smooth
path in the complex plane

▶ A contour C is closed if it starts and
ends at the same point

▶ A contour C is simple if it does not
cross itself at any point

▶ A parameterization z(θ) ∈ C of a
contour has direction indicated by
increasing the parameter θ ∈ R

▶ Cauchy’s Principle of the Argument: relates the arguments (phases) of
the zeros and poles of a rational function G (s) inside a contour C to the
shape of new closed contour G (C ) obtained by evaluating G (s) at all s on C
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Evaluating G (s) along a Contour

▶ Consider a rational function:

G (s) = κ
(s − z1) · · · (s − zm)

(s − p1) · · · (s − pn)

▶ At each s, G (s) is a complex number with magnitude and phase:

|G (s)| = |κ|
∏m

i=1 |s − zi |∏n
i=1 |s − pi |

G (s) = κ+
m∑
i=1

(s − zi )−
n∑

i=1

(s − pi )

▶ Graphical evaluation of the magnitude and phase:
▶ |s − zi | is the length of the vector from zi to s

▶ |s − pi | is the length of the vector from pi to s

▶ (s − zi ) is the angle from the real axis to the vector from zi to s

▶ (s − pi ) is the angle from the real axis to the vector from pi to s
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Evaluating G (s) along a Contour

▶ Let C be a simple closed clockwise contour C in the complex plane

▶ Evaluating G (s) at all points on C produces a new closed contour G (C )

▶ Assumption: C does not pass through the origin or any of the poles or zeros
of G (s) (otherwise G (s) is undefined)

▶ A zero zi outside the contour C :
▶ As s moves around the contour C , the vector s − zi swings up and down but

not all the way around
▶ The net change in (s − zi ) is 0

▶ A zero zi inside the contour C :
▶ As s moves around the contour C , the vector s − zi turns all the way around
▶ The net change in (s − zi ) is −360◦

▶ A pole pi outside the contour C : the net change in (s − pi ) is 0

▶ A pole pi inside the contour C : the net change in (s − pi ) is −360◦
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Evaluating G (s) along a Contour
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Principle of the Argument

▶ Let Z and P be the number of zeros and poles of G (s) inside C

▶ As s moves around C , G (s) undergoes a net change of −(Z − P)360◦

▶ A net change of −360◦ means that the vector from 0 to G (s) swings
clockwise around the origin one full rotation

▶ A net change of −(Z − P)360◦ means that the vector from 0 to G (s) must
encircle the origin in clockwise direction (Z − P) times

Cauchy’s Principle of the Argument

Consider a rational function G (s) and a simple closed clockwise contour C . Let Z
and P be the number of zeros and poles of G (s) inside C . Then, the contour
generated by evaluating G (s) along C will encircle the origin in a clockwise
direction Z − P times.
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Winding Number
▶ To determine the number of encirclements of a point s by a contour Γ:

1. Fix a pin at s pointing out of the page

2. Attach a string from the pin to the contour Γ

3. Let the end of the string attached to Γ traverse the contour

▶ The winding number n(Γ, s) of Γ about s is equal to the number of times
the string winds up on the pin when Γ is traversed:

n(Γ, s) =
1

2πj

∮
Γ

1

s − z
dz
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Principle of the Argument: Example
▶ Pole-zero map for G (s) = 10(s+1)

(s+2)(s2+1)(s+6)
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Principle of the Argument: Example

▶ A circle contour C
centered at the origin
with radius 0.5 (green)

▶ The contour may be
parameterized by
z(θ) = 0.5e−jθ for
θ ∈ [0, 2π]

▶ The contour C is
mapped by G (s) to a
new contour (from blue
to red), e.g.,
parameterized by
G (z(θ)) for θ ∈ [0, 2π]
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Figure: The origin is encircled 0 times clockwise
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Principle of the Argument: Example

▶ A circle contour C
centered at (−1, 0) with
radius 1 (red)

▶ The contour C is
mapped by G (s) to a
new contour (from blue
to red)
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Figure: The origin is encircled 1 time clockwise
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Principle of the Argument: Example

▶ A circle contour C
centered at the origin
with radius 1.5
(magenta)

▶ The contour C is
mapped by G (s) to a
new contour (from blue
to red)
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Figure: The origin is encircled 1 time counterclockwise
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Stability of Feedback Systems

▶ Consider a feedback control system with open-loop transfer function G (s)
(controller and plant) and closed-loop transfer function:

T (s) =
G (s)

1 + G (s)

▶ Testing BIBO stability using the poles of T (s) requires knowledge of G (s)
and gives little guidance for control design, i.e., how should the controller be
modified to make an unstable system stable?

▶ Given a Bode plot of G (s), we aim to understand the stability of T (s)
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Nyquist’s Idea

▶ Harry Nyquist made important contributions to control
theory (stability of feedback systems), electronics (thermal
noise), and communication theory (telegraph)

▶ Nyquist proposed an idea to determine the stability of a
closed-loop system by investigating how sinusoidal signal
propagate around the feedback loop

H. Nyquist

▶ Similar to return difference, break the feedback loop and ask whether a signal
injected at G (s) has larger or smaller magnitude when it returns to G (s)

▶ Nyquist’s idea allows reasoning about closed-loop stability based on the
frequency response of the open-loop transfer function

▶ Nyquist’s stability criterion utilizes a contour C in the complex plane to
relate the locations of the open-loop poles and the closed-loop poles
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Nyquist’s Idea

▶ Suppose that a sinusoid of frequency ω is injected at A1(s). In steady state,
the signal at A2(s) will be a sinusoid with the same frequency ω, magnitude
|G (jω)|, and phase 180◦ + ∠G (jω)

▶ Critical point: the signals at A1(s) and A2(s) are identical if:

|G (jω)| = 1 and ∠G (jω) = −180◦ ⇔ G (jω) = −1

▶ Nyquist’s idea: Let ωp be such that ∠G (jωp) = −180◦. A feedback control
system is stable if |G (jωp)| < 1 since the signal at A2(s) will have smaller
amplitude than the injected signal at A1(s).
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Open-Loop Poles vs Closed-Loop Poles

▶ Open-loop transfer function: G (s) =
b(s)

a(s)

▶ Closed-loop transfer function: T (s) =
G (s)

1 + G (s)
=

b(s)

a(s) + b(s)

▶ Let ∆(s) = 1 + G (s)

▶ The closed-loop poles are the zeros of ∆(s)

▶ The open-loop poles are the poles of ∆(s):

∆(s) = 1 + G(s) = 1 +
b(s)

a(s)
=

a(s) + b(s)

a(s)
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Nyquist Contour
▶ To determine how many closed-loop poles lie in the closed right half-plane,

we apply the Principle of the Argument to ∆(s)

▶ Define a clockwise contour C that covers the closed right half-plane
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Nyquist Contour

▶ The Nyquist contour is made up of
three parts:

▶ Contour C1: points s = jω on the
positive imaginary axis, as ω ranges
from 0 to ∞

▶ Contour C2: points s = re jθ on a
semi-circle as r → ∞ and θ ranges
from π

2
to −π

2

▶ Contour C3: points s = jω on the
negative imaginary axis, as ω ranges
from −∞ to 0
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Nyquist Plot
▶ A Nyquist plot evaluates ∆(s) = 1 + G (s) over the Nyquist contour C

▶ Contour ∆(C ) is obtained by shifting contour G (C ) by one unit to the right

Nyquist contour C ⇒ Nyquist plot G (C )

▶ The contour G (C ) is obtained by combining G (C1), G (C2), and G (C3):
▶ Contour C1:

▶ plot G(jω) for ω ∈ (0,∞) in the complex plane
▶ equivalent to a polar plot for G(s)

▶ Contour C2:
▶ plot G(re jθ) for r → ∞ and θ from π

2
to −π

2
▶ as r → ∞, s = re jθ dominates every factor it appears in
▶ if G(s) is strictly proper, then G(re jθ) → 0
▶ if G(s) is not strictly proper, then G(re jθ) → const

▶ Contour C3:
▶ plot G(jω) for ω ∈ (−∞, 0) in the complex plane
▶ G(−jb) is the complex conjugate of G(jb)
▶ G(−jb) and G(jb) have the same magnitude but opposite phases
▶ G(C3) is a reflected version of G(C1) about the real axis
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Nyquist Plot: Example 1

▶ Draw a Nyquist plot of G (s) = s+1
s+10

▶ Contour C1: s = jω with ω ∈ (0,∞):
▶ ω = 0 and ω → ∞:

G(j0) =
1

10
0◦ G(j∞) = 1 0◦

▶ for 0 < ω < ∞:

|G(jω)| = 1

10

√
1 + ω2√

1 + (ω/10)2
G(jω) = tan−1(ω)− tan−1(ω/10)

▶ Contour C2: s = re jθ with r → ∞ and θ from π
2 to −π

2 :

lim
r→∞

G (re jθ) = lim
r→∞

re jθ + 1

re jθ + 10
= 1 0◦

▶ Contour C3: s = jω with ω ∈ (−∞, 0):
▶ G(C3) is a reflection (complex conjugate) of G(C1) about the real axis
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Nyquist Plot: Example 1
▶ Nyquist plot of G (s) = s+1

s+10

▶ Type 0 system as on Slide 51 of Lecture 9 with limr→∞ G (re jθ) = 1
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Nyquist Plot: Example 2
▶ Draw a Nyquist plot of G (s) = κ

(1+τ1s)(1+τ2s)
= 100

(1+s)(1+s/10)

▶ Contour C1: G (j0) = κ 0◦, G (j∞) = 0 −180◦

▶ Contour C2: limr→∞ G (re jθ) = 0
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Nyquist Plot: Poles on the Imaginary Axis

▶ The Principle of the Argument assumes C
does not pass through zeros or poles of ∆(s)

▶ There might be poles of G (s) on the
imaginary axis, which are poles of ∆(s)

▶ The Nyquist contour needs to be modified
to take a small detour around poles of G (s)
on the imaginary axis

▶ Contour C4: avoid poles of G (s) at origin:
▶ plot G(ϵe jθ) for ϵ → 0 and θ ∈ (−π

2
, π

2
)

▶ If G (s) has other poles p on the imaginary axis, more contours need to be
introduced. Substitute s = p + ϵe jθ into G (s) and examine what happens as
ϵ → 0 and θ ∈ (−π

2 ,
π
2 ).
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Nyquist Plot: Example 3

▶ Draw a Nyquist plot of a type 1 system: G (s) = κ
s(1+τs)

▶ Since there is a pole at the origin, we need to use a modified Nyquist contour
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Nyquist Plot: Example 3
▶ Contour C1: s = jω with ω ∈ (0,∞): polar plot as on Slide 58 of Lecture 9:

G (j0+) = ∞ −90◦

G (j∞) = lim
ω→∞

κ

jω(1 + jωτ)
= lim

ω→∞

∣∣∣ κ

τω2

∣∣∣ −90◦ − tan−1(ωτ) = 0 −180◦

▶ Contour C2: s = re jθ with r → ∞ and θ from π
2 to −π

2 :

lim
r→∞

G (re jθ) = lim
r→∞

∣∣∣ κ

τ r2

∣∣∣ e−2jθ = 0 −2θ

▶ The phase of G(s) changes from −180◦ at ω = ∞ to 180◦ at ω = −∞

▶ Contour C3: s = jω with ω ∈ (−∞, 0):
▶ G(C3) is a reflection (complex conjugate) of G(C1) about the real axis

▶ Contour C4: s = ϵe jθ with ϵ → 0 and θ ∈ (−π
2 ,

π
2 ):

lim
ϵ→0

G (ϵe jθ) = lim
ϵ→0

κ

ϵe jθ(1 + τϵe jθ)

1
1+ϵ≈1−ϵ
======= −κτ + lim

ϵ→0

κ

ϵ
e−jθ = ∞ −θ

▶ G(ϵe jθ) approaches an asymptote at −κτ as ϵ → 0

▶ The phase of G(s) changes from 90◦ at ω = 0− to −90◦ at ω = 0+
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Nyquist Plot: Example 4

▶ Draw a Nyquist plot of a type 1 system: G (s) = κ
s(1+τ1s)(1+τ2s)

▶ Contour C4: s = ϵe jθ with ϵ → 0 and θ ∈ (−π
2 ,

π
2 ):

▶ C4 maps into a semicircle with infinite radius as in Example 3:

G(j0) = ∞ −θ

▶ Contour C2: s = re jθ with r → ∞ and θ from π
2 to −π

2 :
▶ C2 maps into a point at 0 with phase −3θ

▶ Contour C1: s = jω with ω ∈ (0,∞): polar plot as on Slide 59 of Lecture 9:

G (j∞) = 0 −270◦

▶ Contour C3: G (C3) is a reflection of G (C1) about the real axis
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Nyquist Plot: Example 4
▶ Contour C1 with ω ∈ (0,∞):

G (jω) =
κ

jω(1 + jωτ1)(1 + jωτ2)
=

−κ(τ1 + τ2)− jκ(1− ω2τ1τ2)ω

1 + ω2(τ 21 + τ 22 ) + ω4τ 21 τ
2
2

=
κ√

ω4(τ1 + τ2)2 + ω2(1− ω2τ1τ2)2
−90◦ − tan−1(ωτ1)− tan−1(ωτ2)
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Nyquist Plot: Example 5

▶ Draw a Nyquist plot of a type 2 system: G (s) = κ
s2(1+τs)

▶ Two poles at the origin ⇒ need to use a modified Nyquist contour

▶ Magnitude and phase:

G (jω) =
κ

(jω)2(1 + jωτ)
=

|κ|√
ω4 + ω6τ 2

−180◦ − tan−1(ωτ)

▶ Contour C1: s = jω with ω ∈ (0,∞):

G (j0+) = ∞ −180◦

G (j∞) = lim
ω→∞

κ

(jω)2(1 + jωτ)
= lim

ω→∞

∣∣∣ κ

τω3

∣∣∣ −180◦ − tan−1(ωτ)

= 0 −270◦

▶ Contour C3: s = jω with ω ∈ (−∞, 0):
▶ G(C3) is a reflection (complex conjugate) of G(C1) about the real axis
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Nyquist Plot: Example 5

▶ Magnitude and phase:

G (jω) =
κ

(jω)2(1 + jωτ)
=

|κ|√
ω4 + ω6τ 2

−180◦ − tan−1(ωτ)

▶ Contour C2: s = re jθ with r → ∞ and θ from π
2 to −π

2 :

lim
r→∞

G (s) = lim
r→∞

κ

τs3
= lim

r→∞

∣∣∣ κ

τ r3

∣∣∣ e−3jθ = 0 −3θ

▶ The phase of G(s) changes from −270◦ at ω = ∞ to 270◦ at ω = −∞

▶ Contour C4: s = ϵe jθ with ϵ → 0 and θ ∈ (−π
2 ,

π
2 ):

lim
ϵ→0

G (s) = lim
ϵ→0

κ

s2
= lim

ϵ→0

κ

ϵ2
e−2jθ = ∞ −2θ

▶ The phase of G(s) changes from 180◦ at ω = 0− to −180◦ at ω = 0+
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Nyquist Plot: Example 5
▶ Nyquist plot of a type 2 system: G (s) = κ

s2(1+τs) =
1

s2(s+1)

▶ Caution: Matlab’s nyquistplot does not generate G (C4)
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Nyquist Plot: Example 5

▶ Nyquist plot of a type 2 system: G (s) = κ
s2(1+τs)
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Nyquist Plot: Example 6

▶ Draw a Nyquist plot of G (s) = 1
(s+a)3

G (jω) =
1

(jω + a)3
=

(a− jω)3

(a2 + ω2)3
=

a3 − 3aω2

(a2 + ω2)3
+ j

ω3 − 3a2ω

(a2 + ω2)3

▶ Contour C1: s = jω with ω ∈ (0,∞):

G (j0) =
1

a3
0◦, G (j∞) = 0 −270◦

▶ Contour C2: s = re jθ with r → ∞ and θ from π
2 to −π

2 .

G (re jθ) =
1

(re jθ + a)3
→ 0 −3θ

▶ Contour C3: a reflection (complex conjugate) of G (C1) about the real axis
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Nyquist Plot: Example 6

▶ Draw a Nyquist plot of G (s) = 1
(s+0.6)3
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Nyquist Plot: Example 7

▶ Draw a Nyquist plot of G (s) = s(s+1)
(s+10)2
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Nyquist’s Stability Criterion

▶ Consider the stability of the closed-loop transfer function:

T (s) =
G (s)

1 + G (s)
=

G (s)

∆(s)

▶ Open-loop poles: the poles of ∆(s) are the poles of G (s)

▶ Closed-loop poles: the zeros of ∆(s) are the poles of T (s)

▶ Principle of the Argument applied to ∆(s) = 1 + G (s):

▶ Let C be a Nyquist contour

▶ Let P be the number of poles of ∆(s) (open-loop poles) inside C

▶ Let Z be the number of zeros of ∆(s) (closed-loop poles) inside C

▶ Then, ∆(C) encircles the origin in clockwise direction N = Z − P times
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Nyquist’s Stability Criterion

▶ From the Principle of the Argument applied to ∆(s), the number of
closed-loop poles in the closed right half-plane is:

Z = N + P

where:
▶ N: the clockwise encirclements of the origin by ∆(C) correspond to the

clockwise encirclements of −1 + j0 by G(C) and can be determined from a
Nyquist plot of G(s)

▶ P: the number of poles of ∆(s) inside C corresponds to the number of poles
of G(s) inside C and can be determined from G(s) or its Bode plot

Nyquist’s Stability Criterion

Consider a unity feedback control system with open-loop transfer function G (s).
Let C be a Nyquist contour. The system is stable if and only if the number of
counterclockwise encirclements of −1 + j0 by G (C ) is equal to the number of
poles of G (s) inside C .
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Nyquist Stability: Example 4
▶ Determine the closed-loop stability of G (s) = κ

s(1+τ1s)(1+τ2s)
= κ

s(1+s)2

▶ G (C1) crosses the real axis when:

G (jω) =
−κ(τ1 + τ2)− jκ(1− ω2τ1τ2)ω

1 + ω2(τ 21 + τ 22 ) + ω4τ 21 τ
2
2

= α+ j0

⇒ ω =
1

√
τ1τ2

α = − κτ1τ2
τ1 + τ2

▶ The system is stable when α = − κτ1τ2
τ1+τ2

≥ −1

39



Nyquist Plot: Example 8

▶ Open-loop transfer function: G (s) = 1
s+1

▶ Number of closed-loop poles in CRHP: Z = N + P = 0

▶ Closed-loop transfer function: T (s) = G(s)
1+G(s) =

1
s+2
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Nyquist Plot: Example 9

▶ Open-loop transfer function: G (s) = 1
(s+1)2

▶ Number of closed-loop poles in CRHP: Z = N + P = 0

▶ Closed-loop transfer function: T (s) = G(s)
1+G(s) =

1
s2+2s+2
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Nyquist Plot: Example 10

▶ Open-loop transfer function: G (s) = 1
s(s+1)

▶ Number of closed-loop poles in CRHP: Z = N + P = 0

▶ Closed-loop transfer function: T (s) = G(s)
1+G(s) =

1
s2+s+1
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Nyquist Plot: Example 11
▶ Open-loop transfer function: G (s) = 1

s(s+1)(s+0.5)

▶ Number of closed-loop poles in CRHP: Z = N + P = 2

▶ Closed-loop transfer function: T (s) = G(s)
1+G(s) =

1
s3+1.5s2+0.5s+1

▶ Closed-loop poles: p1,2 = 0.0416± j0.7937 and p3 = −1.5832
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