ECE171A: Linear Control System Theory Lecture 12: Nyquist Stability

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Principle of the Argument](#page-2-0)

[Nyquist's Stability Criterion](#page-13-0)

Outline

[Principle of the Argument](#page-2-0)

[Nyquist's Stability Criterion](#page-13-0)

Contours in the Complex Plane

- \blacktriangleright A contour C is a piecewise smooth path in the complex plane
- \triangleright A contour C is **closed** if it starts and ends at the same point
- \triangleright A contour C is simple if it does not cross itself at any point
- ▶ A parameterization $z(\theta) \in \mathbb{C}$ of a contour has direction indicated by increasing the parameter $\theta \in \mathbb{R}$

▶ Cauchy's Principle of the Argument: relates the arguments (phases) of the zeros and poles of a rational function $G(s)$ inside a contour C to the shape of new closed contour $G(C)$ obtained by evaluating $G(s)$ at all s on C

Evaluating $G(s)$ along a Contour

▶ Consider a rational function:

$$
G(s) = \kappa \frac{(s-z_1)\cdots(s-z_m)}{(s-p_1)\cdots(s-p_n)}
$$

At each s, $G(s)$ is a complex number with magnitude and phase:

$$
|G(s)| = |\kappa| \frac{\prod_{i=1}^m |s - z_i|}{\prod_{i=1}^n |s - p_i|} \qquad \angle G(s) = \text{Ex} + \sum_{i=1}^m \angle (s - z_i) - \sum_{i=1}^n \angle (s - p_i)
$$

 \triangleright Graphical evaluation of the magnitude and phase:

- ▶ $|s z_i|$ is the length of the vector from z_i to s
- ▶ $|s p_i|$ is the length of the vector from p_i to s
- ▶ $/(s z_i)$ is the angle from the real axis to the vector from z_i to s
- ▶ $/(s p_i)$ is the angle from the real axis to the vector from p_i to s

Evaluating $G(s)$ along a Contour

- \triangleright Let C be a simple closed clockwise contour C in the complex plane
- \triangleright Evaluating $G(s)$ at all points on C produces a new closed contour $G(C)$
- ▶ Assumption: *C* does not pass through the origin or any of the poles or zeros of $G(s)$ (otherwise $/G(s)$ is undefined)
- \blacktriangleright A zero z_i outside the contour C:
	- ▶ As s moves around the contour C, the vector $s z_i$ swings up and down but not all the way around
	- ▶ The net change in $/(s z_i)$ is 0
- A zero z_i inside the contour C:
	- ▶ As s moves around the contour C, the vector $s z_i$ turns all the way around ▶ The net change in $/(s - z_i)$ is -360°
- ▶ A pole p_i outside the contour C: the net change in $/(s p_i)$ is 0
- A pole p_i inside the contour C: the net change in $/(s p_i)$ is -360°

Evaluating $G(s)$ along a Contour

Principle of the Argument

- \triangleright Let Z and P be the number of zeros and poles of $G(s)$ inside C
- ▶ As s moves around C, $/G(s)$ undergoes a net change of $-(Z P)360^\circ$
- ▶ A net change of -360° means that the vector from 0 to $G(s)$ swings clockwise around the origin one full rotation
- ▶ A net change of $-(Z P)360^\circ$ means that the vector from 0 to $G(s)$ must encircle the origin in clockwise direction $(Z - P)$ times

Cauchy's Principle of the Argument

Consider a rational function $G(s)$ and a simple closed clockwise contour C. Let Z and P be the number of zeros and poles of $G(s)$ inside C. Then, the contour generated by evaluating $G(s)$ along C will encircle the origin in a clockwise direction $Z - P$ times.

Winding Number

▶ To determine the number of encirclements of a point s by a contour Γ:

- 1. Fix a pin at s pointing out of the page
- 2. Attach a string from the pin to the contour Γ
- 3. Let the end of the string attached to Γ traverse the contour
- **►** The winding number $n(\Gamma, s)$ of Γ about s is equal to the number of times the string winds up on the pin when Γ is traversed:

Principle of the Argument: Example

▶ Pole-zero map for $G(s) = \frac{10(s+1)}{(s+2)(s^2+1)(s+6)}$

Principle of the Argument: Example

Principle of the Argument: Example

Figure: The origin is encircled 1 time clockwise

Principle of the Argument: Example

Figure: The origin is encircled 1 time counterclockwise

Outline

[Principle of the Argument](#page-2-0)

[Nyquist's Stability Criterion](#page-13-0)

Stability of Feedback Systems

 \triangleright Consider a feedback control system with open-loop transfer function $G(s)$ (controller and plant) and closed-loop transfer function:

$$
\mathcal{T}(s) = \frac{G(s)}{1+G(s)}
$$

- **Example 3** Testing BIBO stability using the poles of $T(s)$ requires knowledge of $G(s)$ and gives little guidance for control design, i.e., how should the controller be modified to make an unstable system stable?
- ▶ Given a Bode plot of $G(s)$, we aim to understand the stability of $T(s)$

Nyquist's Idea

- \blacktriangleright Harry Nyquist made important contributions to control theory (stability of feedback systems), electronics (thermal noise), and communication theory (telegraph)
- ▶ Nyquist proposed an idea to determine the stability of a closed-loop system by investigating how sinusoidal signal propagate around the feedback loop

H. Nyquist

- ▶ Similar to return difference, break the feedback loop and ask whether a signal injected at $G(s)$ has larger or smaller magnitude when it returns to $G(s)$
- ▶ Nyquist's idea allows reasoning about **closed-loop stability** based on the frequency response of the open-loop transfer function
- \triangleright Nyquist's stability criterion utilizes a contour C in the complex plane to relate the locations of the open-loop poles and the closed-loop poles

Nyquist's Idea

- **•** Suppose that a sinusoid of frequency ω is injected at $A_1(s)$. In steady state, the signal at $A_2(s)$ will be a sinusoid with the same frequency ω , magnitude $|G(j\omega)|$, and phase $180^{\circ} + \angle G(j\omega)$
- **Critical point**: the signals at $A_1(s)$ and $A_2(s)$ are identical if:

$$
|G(j\omega)| = 1
$$
 and $\angle G(j\omega) = -180^{\circ}$ \Leftrightarrow $G(j\omega) = -1$

▶ Nyquist's idea: Let ω_p be such that $\angle G(j\omega_p) = -180^\circ$. A feedback control system is stable if $|G(j\omega_p)| < 1$ since the signal at $A_2(s)$ will have smaller amplitude than the injected signal at $A_1(s)$.

Open-Loop Poles vs Closed-Loop Poles

- ▶ Open-loop transfer function: $G(s) = \frac{b(s)}{a(s)}$
- ▶ Closed-loop transfer function: $T(s) = \frac{G(s)}{1 + G(s)} = \frac{b(s)}{a(s) + b(s)}$ $a(s) + b(s)$
- \blacktriangleright Let $\Delta(s) = 1 + G(s)$
	- ▶ The closed-loop poles are the zeros of $\Delta(s)$
	- ▶ The open-loop poles are the poles of $\Delta(s)$:

$$
\Delta(s) = 1 + G(s) = 1 + \frac{b(s)}{a(s)} = \frac{a(s) + b(s)}{a(s)}
$$

Nyquist Contour

- \triangleright To determine how many closed-loop poles lie in the closed right half-plane, we apply the Principle of the Argument to $\Delta(s)$
- \triangleright Define a clockwise contour C that covers the closed right half-plane

Nyquist Contour

- ▶ The Nyquist contour is made up of three parts:
	- ▶ Contour C_1 : points $s = i\omega$ on the positive imaginary axis, as ω ranges from 0 to ∞
	- **Contour** C_2 : points $s = re^{j\theta}$ on a semi-circle as $r \to \infty$ and θ ranges from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
	- ▶ Contour C_3 : points $s = j\omega$ on the negative imaginary axis, as ω ranges from $-\infty$ to 0

Nyquist Plot

▶ A Nyquist plot evaluates $\Delta(s) = 1 + G(s)$ over the Nyquist contour C

▶ Contour $\Delta(C)$ is obtained by shifting contour $G(C)$ by one unit to the right

Nyquist contour $C \Rightarrow$ Nyquist plot $G(C)$

 \blacktriangleright The contour $G(C)$ is obtained by combining $G(C_1)$, $G(C_2)$, and $G(C_3)$: \blacktriangleright Contour C_1 :

- \triangleright plot $G(j\omega)$ for $\omega \in (0,\infty)$ in the complex plane
- \blacktriangleright equivalent to a **polar plot** for $G(s)$
- \blacktriangleright Contour C_2 :
	- ▶ plot $G(re^{j\theta})$ for $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
	- ▶ as $r \to \infty$, $s = re^{j\theta}$ dominates every factor it appears in
	- if $G(s)$ is strictly proper, then $G(re^{j\theta})\to 0$
	- if $G(s)$ is not strictly proper, then $G(re^{j\theta}) \rightarrow$ const

\blacktriangleright Contour C_3 :

- \triangleright plot $G(i\omega)$ for $\omega \in (-\infty, 0)$ in the complex plane
- ▶ $G(-jb)$ is the complex conjugate of $G(jb)$
- ▶ $G(-jb)$ and $G(jb)$ have the same magnitude but opposite phases
- G(C_3) is a reflected version of $G(C_1)$ about the real axis

▶ Draw a Nyquist plot of $G(s) = \frac{s+1}{s+10}$

► Contour
$$
C_1
$$
: $s = j\omega$ with $\omega \in (0, \infty)$:
\n► $\omega = 0$ and $\omega \to \infty$:
\n
$$
C(i\omega) = \frac{1}{2} \cos \omega \qquad C(i\infty) = 1
$$

$$
G(j0) = \frac{1}{10}\underline{\sqrt{0^{\circ}}} \qquad G(j\infty) = 1\underline{\sqrt{0^{\circ}}}
$$

 \triangleright for 0 < ω < ∞ :

$$
|G(j\omega)| = \frac{1}{10} \frac{\sqrt{1+\omega^2}}{\sqrt{1+(\omega/10)^2}} \qquad \underline{/G(j\omega)} = \tan^{-1}(\omega) - \tan^{-1}(\omega/10)
$$

▶ Contour C_2 : $s = re^{j\theta}$ with $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
\lim_{r\to\infty} G(re^{j\theta}) = \lim_{r\to\infty} \frac{re^{j\theta} + 1}{re^{j\theta} + 10} = 1/\underline{0^{\circ}}
$$

► Contour C_3 : $s = j\omega$ with $\omega \in (-\infty, 0)$: G(C_3) is a reflection (complex conjugate) of $G(C_1)$ about the real axis

- ▶ Nyquist plot of $G(s) = \frac{s+1}{s+10}$
- ▶ Type 0 system as on Slide 51 of Lecture 9 with $\lim_{r\to\infty} G(re^{j\theta}) = 1$

▶ Draw a Nyquist plot of $G(s) = \frac{\kappa}{(1+\tau_1s)(1+\tau_2s)} = \frac{100}{(1+s)(1+s/10)}$

$$
\blacktriangleright \text{ Contour } C_1: G(j0) = \kappa \underline{\text{/}0^{\circ}}, G(j\infty) = 0 \underline{\text{/} - 180^{\circ}}
$$

• Contour
$$
C_2
$$
: $\lim_{r\to\infty} G(re^{j\theta}) = 0$

Nyquist Plot: Poles on the Imaginary Axis

- \blacktriangleright The Principle of the Argument assumes C does not pass through zeros or poles of $\Delta(s)$
- \blacktriangleright There might be poles of $G(s)$ on the imaginary axis, which are poles of $\Delta(s)$
- ▶ The Nyquist contour needs to be modified to take a small detour around poles of $G(s)$ on the imaginary axis
- ▶ Contour C_4 : avoid poles of $G(s)$ at origin:
	- ▶ plot $G(\epsilon e^{j\theta})$ for $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 \blacktriangleright If $G(s)$ has other poles p on the imaginary axis, more contours need to be introduced. Substitute $s=p+\epsilon e^{j\theta}$ into $G(s)$ and examine what happens as $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- **Draw a Nyquist plot of a type 1 system:** $G(s) = \frac{\kappa}{s(1+\tau s)}$
- ▶ Since there is a pole at the origin, we need to use a modified Nyquist contour

Copyright @2017 Pearson Education, All Rights Reserved

► Contour C_1 : $s = j\omega$ with $\omega \in (0, \infty)$: polar plot as on Slide 58 of Lecture 9:

$$
G(j0^{+}) = \infty \underline{\underline{\hspace{1cm}}\hspace{1cm}}_{0} = \underbrace{\infty \underline{\hspace{1cm}}\hspace{1cm}}_{\omega \to \infty} \underbrace{\frac{\kappa}{j\omega(1+j\omega\tau)}} = \lim_{\omega \to \infty} \left| \frac{\kappa}{\tau\omega^{2}} \right| \underbrace{\phantom{\frac{\kappa}{j}}}_{\angle -90^{\circ} - \tan^{-1}(\omega\tau)} = 0 \underline{\hspace{1cm}} \underline{\hspace{1cm}}_{0} = 0 \underline{\hspace{1cm}} - 180^{\circ}
$$

▶ Contour C_2 : $s = re^{j\theta}$ with $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
\lim_{r \to \infty} G(re^{j\theta}) = \lim_{r \to \infty} \left| \frac{\kappa}{\tau r^2} \right| e^{-2j\theta} = 0/2\theta
$$

► The phase of *G*(*s*) changes from -180° at $\omega = \infty$ to 180° at $\omega = -\infty$

\n- **Contour**
$$
C_3
$$
: $s = j\omega$ with $\omega \in (-\infty, 0)$:
\n- **•** $G(C_3)$ is a reflection (complex conjugate) of $G(C_1)$ about the real axis.
\n

▶ Contour C_4 : $s = \epsilon e^{j\theta}$ with $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\lim_{\epsilon \to 0} G(\epsilon e^{j\theta}) = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon e^{j\theta} (1 + \tau \epsilon e^{j\theta})} \frac{\frac{1}{1+\epsilon} \approx 1-\epsilon}{\tau} - \kappa \tau + \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon} e^{-j\theta} = \infty \underline{/ - \theta}
$$

► $G(\epsilon e^{j\theta})$ approaches an asymptote at $-\kappa\tau$ as $\epsilon \to 0$

▶ The phase of $G(s)$ changes from 90° at $\omega = 0^{-}$ to -90° at $\omega = 0^{+}$

Draw a Nyquist plot of a type 1 system: $G(s) = \frac{\kappa}{s(1+\tau_1s)(1+\tau_2s)}$

▶ Contour C_4 : $s = \epsilon e^{j\theta}$ with $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$: \triangleright C_4 maps into a semicircle with infinite radius as in Example 3:

 $G(i0) = \infty/-\theta$

▶ Contour C_2 : $s = re^{j\theta}$ with $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$. ▶ C_2 maps into a point at 0 with phase $\sqrt{-3\theta}$

► Contour C_1 : $s = j\omega$ with $\omega \in (0, \infty)$: polar plot as on Slide 59 of Lecture 9:

$$
G(j\infty)=0\underline{/-270^\circ}
$$

▶ Contour C_3 : $G(C_3)$ is a reflection of $G(C_1)$ about the real axis

▶ Contour C_1 with $\omega \in (0, \infty)$:

$$
G(j\omega) = \frac{\kappa}{j\omega(1+j\omega\tau_1)(1+j\omega\tau_2)} = \frac{-\kappa(\tau_1+\tau_2) - j\kappa(1-\omega^2\tau_1\tau_2)\omega}{1+\omega^2(\tau_1^2+\tau_2^2)+\omega^4\tau_1^2\tau_2^2}
$$

$$
= \frac{\kappa}{\sqrt{\omega^4(\tau_1+\tau_2)^2+\omega^2(1-\omega^2\tau_1\tau_2)^2}} \angle -90^\circ - \tan^{-1}(\omega\tau_1) - \tan^{-1}(\omega\tau_2)
$$

- **Draw a Nyquist plot of a type 2 system:** $G(s) = \frac{\kappa}{s^2(1+\tau s)}$
- ▶ Two poles at the origin \Rightarrow need to use a modified Nyquist contour
- ▶ Magnitude and phase:

$$
G(j\omega) = \frac{\kappa}{(j\omega)^2(1+j\omega\tau)} = \frac{|\kappa|}{\sqrt{\omega^4 + \omega^6\tau^2}} \sqrt{-180^\circ - \tan^{-1}(\omega\tau)}
$$

► Contour C_1 : $s = j\omega$ with $\omega \in (0, \infty)$:

$$
G(j0^{+}) = \infty \underline{/-180^{\circ}}
$$

\n
$$
G(j\infty) = \lim_{\omega \to \infty} \frac{\kappa}{(j\omega)^{2}(1 + j\omega\tau)} = \lim_{\omega \to \infty} \left| \frac{\kappa}{\tau \omega^{3}} \right| \underline{/-180^{\circ} - \tan^{-1}(\omega\tau)}
$$

\n
$$
= 0 \underline{/-270^{\circ}}
$$

► Contour C_3 : $s = j\omega$ with $\omega \in (-\infty, 0)$: G(C₃) is a reflection (complex conjugate) of $G(C_1)$ about the real axis

 \blacktriangleright Magnitude and phase:

$$
G(j\omega) = \frac{\kappa}{(j\omega)^2(1+j\omega\tau)} = \frac{|\kappa|}{\sqrt{\omega^4 + \omega^6\tau^2}} \sqrt{-180^\circ - \tan^{-1}(\omega\tau)}
$$

▶ Contour C_2 : $s = re^{j\theta}$ with $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
\lim_{r \to \infty} G(s) = \lim_{r \to \infty} \frac{\kappa}{\tau s^3} = \lim_{r \to \infty} \left| \frac{\kappa}{\tau r^3} \right| e^{-3j\theta} = 0 \underline{\ell} - 3\theta
$$

► The phase of *G*(*s*) changes from -270° at $\omega = \infty$ to 270° at $\omega = -\infty$

▶ Contour C_4 : $s = \epsilon e^{j\theta}$ with $\epsilon \to 0$ and $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\lim_{\epsilon \to 0} G(s) = \lim_{\epsilon \to 0} \frac{\kappa}{s^2} = \lim_{\epsilon \to 0} \frac{\kappa}{\epsilon^2} e^{-2j\theta} = \infty / -2\theta
$$

▶ The phase of $G(s)$ changes from 180° at $\omega = 0^-$ to -180° at $\omega = 0^+$

- ▶ Nyquist plot of a type 2 system: $G(s) = \frac{\kappa}{s^2(1+\tau s)} = \frac{1}{s^2(s+1)}$
- ▶ Caution: Matlab's *nyquistplot* does not generate $G(C_4)$

• Nyquist plot of a type 2 system: $G(s) = \frac{\kappa}{s^2(1+\tau s)}$

Copyright @2017 Pearson Education, All Rights Reserved

▶ Draw a Nyquist plot of $G(s) = \frac{1}{(s+a)^3}$ $G(j\omega)=\frac{1}{(j\omega+a)^3}=\frac{(a-j\omega)^3}{(a^2+\omega^2)^3}$ $\frac{(a - j\omega)^3}{(a^2 + \omega^2)^3} = \frac{a^3 - 3a\omega^2}{(a^2 + \omega^2)^3}$ $\frac{a^3 - 3a\omega^2}{(a^2 + \omega^2)^3} + j\frac{\omega^3 - 3a^2\omega}{(a^2 + \omega^2)^3}$ $(a^2 + \omega^2)^3$

► Contour C_1 : $s = j\omega$ with $\omega \in (0, \infty)$:

$$
G(j0) = \frac{1}{a^3} \underline{10^{\circ}}, \qquad G(j\infty) = 0 \underline{1} - 270^{\circ}
$$

▶ Contour C_2 : $s = re^{j\theta}$ with $r \to \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
G(re^{j\theta}) = \frac{1}{(re^{j\theta}+a)^3} \rightarrow 0 \underline{\smash{\diagup 13\theta}}
$$

▶ Contour C_3 : a reflection (complex conjugate) of $G(C_1)$ about the real axis

▶ Draw a Nyquist plot of $G(s) = \frac{1}{(s+0.6)^3}$

Figure 10.5: Nyquist plot for a third-order transfer function $L(s)$. The Nyquist plot consists of a trace of the loop transfer function $L(s) = 1/(s+a)^3$ with $a = 0.6$. The solid line represents the portion of the transfer function along the positive imaginary axis, and the dashed line the negative imaginary axis. The outer arc of the Nyquist contour Γ maps to the origin.

▶ Draw a Nyquist plot of $G(s) = \frac{s(s+1)}{(s+10)^2}$

Nyquist's Stability Criterion

 \triangleright Consider the stability of the closed-loop transfer function:

$$
T(s) = \frac{G(s)}{1 + G(s)} = \frac{G(s)}{\Delta(s)}
$$

- **Open-loop poles:** the poles of $\Delta(s)$ are the poles of $G(s)$
- ▶ Closed-loop poles: the zeros of $\Delta(s)$ are the poles of $T(s)$
- ▶ Principle of the Argument applied to $\Delta(s) = 1 + G(s)$:
	- \blacktriangleright Let C be a Nyquist contour
	- ▶ Let P be the number of poles of $\Delta(s)$ (open-loop poles) inside C
	- ▶ Let Z be the number of zeros of $\Delta(s)$ (closed-loop poles) inside C
	- \triangleright Then, $\Delta(C)$ encircles the origin in clockwise direction $N = Z P$ times

Nyquist's Stability Criterion

▶ From the Principle of the Argument applied to $\Delta(s)$, the number of closed-loop poles in the closed right half-plane is:

$$
Z=N+P
$$

where:

- ▶ N: the clockwise encirclements of the origin by $\Delta(C)$ correspond to the clockwise encirclements of $-1 + i0$ by $G(C)$ and can be determined from a Nyquist plot of $G(s)$
- ▶ P: the number of poles of $\Delta(s)$ inside C corresponds to the number of poles of $G(s)$ inside C and can be determined from $G(s)$ or its Bode plot

Nyquist's Stability Criterion

Consider a unity feedback control system with open-loop transfer function $G(s)$. Let C be a Nyquist contour. The system is stable if and only if the number of counterclockwise encirclements of $-1 + i0$ by $G(C)$ is equal to the number of poles of $G(s)$ inside C.

Nyquist Stability: Example 4

- ▶ Determine the closed-loop stability of $G(s) = \frac{\kappa}{s(1+\tau_1s)(1+\tau_2s)} = \frac{\kappa}{s(1+s)^2}$
- ▶ $G(C_1)$ crosses the real axis when:

$$
G(j\omega) = \frac{-\kappa(\tau_1 + \tau_2) - j\kappa(1 - \omega^2\tau_1\tau_2)\omega}{1 + \omega^2(\tau_1^2 + \tau_2^2) + \omega^4\tau_1^2\tau_2^2} = \alpha + j0
$$

$$
\Rightarrow \omega = \frac{1}{\sqrt{\tau_1\tau_2}} \qquad \alpha = -\frac{\kappa\tau_1\tau_2}{\tau_1 + \tau_2}
$$

▶ The system is stable when $\alpha = -\frac{\kappa \tau_1 \tau_2}{\tau_1 + \tau_2} \geq -1$

Copyright @2017 Pearson Education, All Rights Reserved

- ▶ Open-loop transfer function: $G(s) = \frac{1}{s+1}$
- ▶ Number of closed-loop poles in CRHP: $Z = N + P = 0$

▶ Closed-loop transfer function: $T(s) = \frac{G(s)}{1+G(s)} = \frac{1}{s+2}$

- ▶ Open-loop transfer function: $G(s) = \frac{1}{(s+1)^2}$
- ▶ Number of closed-loop poles in CRHP: $Z = N + P = 0$

▶ Closed-loop transfer function: $T(s) = \frac{G(s)}{1+G(s)} = \frac{1}{s^2+2s+2}$

- ▶ Open-loop transfer function: $G(s) = \frac{1}{s(s+1)}$
- ▶ Number of closed-loop poles in CRHP: $Z = N + P = 0$

▶ Closed-loop transfer function: $T(s) = \frac{G(s)}{1+G(s)} = \frac{1}{s^2+s+1}$

▶ Open-loop transfer function: $G(s) = \frac{1}{s(s+1)(s+0.5)}$

Number of closed-loop poles in CRHP: $Z = N + P = 2$

▶ Closed-loop transfer function: $T(s) = \frac{G(s)}{1+G(s)} = \frac{1}{s^3+1.5s^2+0.5s+1}$

▶ Closed-loop poles: $p_{1,2} = 0.0416 \pm j0.7937$ and $p_3 = -1.5832$