ECE171A: Linear Control System Theory Lecture 12: Root Locus

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Root Locus Definition

Positive Root Locus

Negative Root Locus

Outline

Root Locus Definition

Positive Root Locus

Negative Root Locus

Root Locus Overview

- The response of a control system is determined by the locations of the poles of its transfer function in the complex domain
- Feedback control can be used to move the poles of the transfer function by choosing appropriate controller type and gains
- The root locus provides all possible closed-loop pole locations as a system parameter, e.g., the gain k of a proportional controller, varies

Root locus plot

- By computer: find the roots of the closed-loop characteristic polynomial at different values of the parameter
- By hand: sketch the root locus shape by following rules determined by the feedback-loop pole and zero locations and phases
- Besides adjusting the proportional gain k of the controller, it is important to understand how to manipulate the root locus by changing the controller type

- Consider a feedback control system
 - Controller F(s) = k

• Plant
$$G(s) = \frac{1}{s(s+2)}$$

Sensor H(s) = 1

► Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{k}{s^2 + 2s + k}$$

Root locus: how do the transfer function poles vary as a function of k?

• Root locus of $G(s)H(s) = \frac{1}{s(s+2)}$

rlocus(tf([1],[1 2 0]));
sgrid; axis equal;

Closed-loop characteristic polynomial $s^2 + 2s + k$ has roots $p_{1,2} = -1 \pm \sqrt{1-k}$

Add a left-half-plane zero to the plant:

- Controller F(s) = k
- ▶ Plant $G(s) = \frac{(s+3)}{s(s+2)}$
- Sensor H(s) = 1

► Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{k(s+3)}{s^2 + (s+k)s + 3k}$$

• Root locus of $G(s)H(s) = \frac{(s+3)}{s(s+2)}$

rlocus(tf([1 3],[1 2 0]));
sgrid; axis equal;

Adding a stable zero increases the relative stability of the system by attracting the branches of the root locus

Add a left-half-plane pole to the plant:

• Controller F(s) = k

• Plant
$$G(s) = \frac{1}{s(s+2)(s+3)}$$

Sensor
$$H(s) = 1$$

• Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{k}{s^3 + 5s^2 + 6s + k}$$

• Root locus for
$$G(s) = \frac{1}{s(s+2)(s+3)}$$

rlocus(tf([1],[1 5 6 0]));
sgrid; axis equal;

Adding a stable pole decreases the relative stability of the system by repelling the branches of the root locus

Root Locus Definition

► Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{kG(s)}{1 + kG(s)H(s)}$$

The poles of the closed-loop transfer function satisfy:

$$\Delta(s) = 1 + kG(s)H(s) = 0 \qquad \Leftrightarrow \qquad G(s)H(s) = -rac{1}{k}$$

Root locus: a graph of the roots of $\Delta(s)$ as the gain k varies from 0 to ∞

Positive vs Negative Root Locus

Root locus: points *s* such that:

$$1 + kG(s)H(s) = 0 \qquad \Leftrightarrow \qquad G(s)H(s) = -\frac{1}{k}$$

▶ Positive root locus: for k ≥ 0, the points s on the root locus satisfy:
 ▶ Magnitude condition: |G(s)H(s)| = 1/k

• Phase condition: $\underline{/G(s)H(s)} = (1+2l)180^{\circ}$ for $l = 0, \pm 1, \pm 2, \ldots$

Negative root locus: for $k \le 0$, the points *s* on the root locus satisfy:

• Magnitude condition: $|G(s)H(s)| = -\frac{1}{k}$

▶ Phase condition: $/G(s)H(s) = (2l)180^{\circ}$ for $l = 0, \pm 1, \pm 2, ...$

Outline

Root Locus Definition

Positive Root Locus

Negative Root Locus

Positive Root Locus

• Consider the zeros and poles of G(s)H(s) explicitly:

$$G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \frac{b_m}{a_n} \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

Positive root locus: for $k \ge 0$, the points *s* on the root locus satisfy:

Magnitude condition: used to determine the gain k corresponding to a point s on the root locus:

$$|G(s)H(s)| = \left|\frac{b_m}{a_n}\right| \frac{\prod_{i=1}^m |s-z_i|}{\prod_{i=1}^n |s-p_i|} = \frac{1}{k}$$

Phase condition: used to check if a point s is on the root locus:

$$\underline{/G(s)H(s)} = \underline{/\frac{b_m}{a_n}} + \sum_{i=1}^m \underline{/(s-z_i)} - \sum_{i=1}^n \underline{/(s-p_i)} = (1+2l)180^\circ,$$

where $I \in \{0, \pm 1, \pm 2, \ldots\}$

Phase Condition Example

• Consider
$$G(s)H(s) = \frac{s+4}{s((s+1)^2+1)} = \frac{s+4}{s(s+1+j)(s+1-j)}$$

The phase condition allows checking if a point s is on the root locus

Using this method to determine all points on the root locus is cumbersome

We need more general rules

Root Locus Symmetry

- The closed-loop poles are either real or complex conjugate pairs
- The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of G(s)H(s)
- We can divide the root locus into:
 - points on the real axis
 - symmetric parts off the real axis

Points on the Real Axis

Phase condition:

$$\underline{/G(s)H(s)} = \underline{/\frac{b_m}{a_n}} + \sum_{i=1}^m \underline{/(s-z_i)} - \sum_{i=1}^n \underline{/(s-p_i)} = (1+2l)180^\circ, \quad l \in \{0, \pm 1, \pm 2, \ldots\}$$

For real s = a:

(a) A zero to the right contributes 180°

(b) A conjugate pair of zeros does not contribute since the phases sum to zero $% \left({{{\left({{L_{\rm{p}}} \right)} \right)}_{\rm{s}}}} \right)$

Points on the Real Axis

Phase condition:

$$\underline{/G(s)H(s)} = \underline{/\frac{b_m}{a_n}} + \sum_{i=1}^m \underline{/(s-z_i)} - \sum_{i=1}^n \underline{/(s-p_i)} = (1+2l)180^\circ, \quad l \in \{0, \pm 1, \pm 2, \ldots\}$$

- If s is real:
 - Each zero to the right of s contributes 180°
 - Each pole to the right of s contributes -180°
 - A pole or zero to the left of s does not contribute since its phase is 0°
 - Pairs of complex conjugate poles or zeros do not contribute since their phases sum to zero
- Rule: The positive root locus contains all points on the real axis that are to the left of an odd number of zeros or poles

Points on the Real Axis: Example 1

Determine the real axis portions of the root locus of

$$G(s)H(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)}$$

Points on the Real Axis: Example 2

Determine the real axis portions of the root locus of

$$G(s)H(s) = \frac{(s+3)(s+7)}{s^2((s+1)^2+1)(s+5)}$$

Departure and Arrival Points

Root locus: graphs the roots of the closed-loop characteristic polynomial:

$$\Delta(s) = 1 + kG(s)H(s) = 0 \qquad \Rightarrow \qquad a(s) + kb(s) = 0,$$

where a(s) is *n*-degree polynomial, b(s) is *m*-degree polynomial

- Since $n \ge m$, a(s) + kb(s) is an *n*-degree polynomial and has *n* roots
- The root locus has n branches
- Departure points:
 - if k = 0, the roots of a(s) + kb(s) are roots of a(s), i.e., **poles** of G(s)H(s)

Arrival points:

- ▶ if $k \to \infty$, the solutions of $\frac{b(s)}{a(s)} = -\frac{1}{k}$ are roots of b(s), i.e., zeros of G(s)H(s)
- ▶ **Rule**: The *n* root locus branches begin at the **poles** of G(s)H(s) (when k = 0), and *m* of the branches end at the zeros of G(s)H(s) (as $k \to \infty$)

Asymptotic Behavior

- The root locus has n branches starting at the poles of G(s)H(s) and m of them terminate at the zeros of G(s)H(s)
- ▶ What happens with the remaining *n* − *m* branches?

• As
$$k \to \infty$$
, $G(s)H(s) = -\frac{1}{k} \to 0$

$$G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

$$= \frac{b_m \frac{1}{s^{n-m}} + b_{m-1} \frac{1}{s^{n-m+1}} + \dots + b_1 \frac{1}{s^{n-1}} + b_0 \frac{1}{s^n}}{a_n + a_{n-1} \frac{1}{s} + \dots + a_1 \frac{1}{s^{n-1}} + a_0 \frac{1}{s^n}}$$

- The numerator of G(s)H(s) goes to zero if |s| → ∞, i.e., there are n − m zeros at infinity
- As k → ∞, m branches go to the zeros of G(s)H(s) and the remaining n − m branches go off to infinity along asymptotes

Asymptotic Behavior

Phase condition:

$$\underline{/G(s)H(s)} = \underline{/\frac{b_m}{a_n}} + \sum_{i=1}^m \underline{/(s-z_i)} - \sum_{i=1}^n \underline{/(s-p_i)} = (1+2l)180^\circ, \quad l \in \{0, \pm 1, \pm 2, \dots\}$$

▶ As $|s| \rightarrow \infty$, all angles become the same:

$$\frac{\theta \approx \underline{/(s-z_1)} \approx \cdots \approx \underline{/(s-z_m)}}{\approx \underline{/(s-p_1)} \approx \cdots \approx \underline{/(s-p_n)}}$$

Asymptote angles:

$$heta_I = rac{(1+2I)}{|n-m|} 180^\circ - \underline{\sum_{a_n}^{b_m}}$$

for $I \in \{0, \ldots, |n-m|-1\}$

Asymptotic Behavior: Example

- ▶ Determine the root locus asymptotes of $G(s)H(s) = \frac{s^2+s+1}{s^6+2s^5+5s^4-s^3+2s^2+1}$
- ► There are m = 2 zeros and n = 6 poles and hence n − m = 4 asymptotes with angles:

Asymptotic Behavior

- Where do the asymptote lines start?
- If we consider a point s with very large magnitude, the poles and zeros of G(s)H(s) will appear clustered at one point α on the real axis
- The asymptote centroid is a point α such that as $k \to \infty$:

$$G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \approx \frac{b_m}{a_n (s-\alpha)^{n-m}}$$

Recall the Binomial theorem:

$$(s-\alpha)^{n-m} = s^{n-m} - \alpha(n-m)s^{n-m-1} + \cdots$$

Recall polynomial long division:

$$\frac{s^{n} + \frac{a_{n-1}}{a_{n}}s^{n-1} + \dots + \frac{a_{1}}{a_{n}}s + \frac{a_{0}}{a_{n}}}{s^{m} + \frac{b_{m-1}}{b_{m}}s^{m-1} + \dots + \frac{b_{1}}{b_{m}}s + \frac{b_{0}}{b_{m}}} = s^{n-m} + \left(\frac{a_{n-1}}{a_{n}} - \frac{b_{m-1}}{b_{m}}\right)s^{n-m-1} + \dots$$

Asymptotic Behavior

• Matching the coefficients of s^{n-m-1} shows the asymptote centroid:

$$\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right)$$

Recall Vieta's formulas:

$$\sum_{i=1}^{n} p_i = -\frac{a_{n-1}}{a_n} \qquad \qquad \sum_{i=1}^{m} z_i = -\frac{b_{m-1}}{b_m}$$

Rule: the n - m branches of the root locus that go to infinity approach asymptotes with angles θ_l coming out of the centroid $s = \alpha$, where:

Angles:

$$heta_I = rac{(1+2I)}{|n-m|} 180^\circ - \underline{/rac{b_m}{a_n}}, \qquad I \in \{0, \dots, |n-m|-1\}$$

Centroid:

$$\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$$

Asymptotic Behavior: Example

- Determine the root locus asymptotes of $G(s)H(s) = \frac{s^2+s+1}{s^6+2s^5+5s^4-s^3+2s^2+1}$
- There are 4 asymptotes with angles $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$ and centroid:

$$\alpha = \frac{1}{4} \left(\frac{1}{1} - \frac{2}{1} \right) = -\frac{1}{4}$$

Determine the real axis portions and the asymptotes of the positive root locus of G(s)H(s) = ¹/_{s(s+2)}

Determine the real axis portions and the asymptotes of the positive root locus of G(s)H(s) = ¹/_{s(s+4)(s+6)}

Determine the real axis portions and the asymptotes of the positive root locus of G(s)H(s) = ¹/_{s((s+1)²+1)}

Determine the real axis portions and the asymptotes of the positive root locus of G(s)H(s) = s+6 / s((s+1)^2+1)

Breakaway Points

- The root locus leaves the real axis at breakaway points s_b where two or more branches meet
- The characteristic polynomial Δ(s) = a(s) + kb(s) = 0 has repeated roots at the breakaway points:

$$\Delta(s)=(s-s_b)^qar{\Delta}(s)$$
 for $q\geq 2$

Since s_b is a root of multiplicity $q \ge 2$:

$$\Delta(s_b) = a(s_b) + k b(s_b) = 0$$
$$\frac{d\Delta}{ds}(s_b) = \frac{da}{ds}(s_b) + k \frac{db}{ds}(s_b) = 0$$

▶ Rule: The positive root locus breakaway points s_b occur when both:
 ▶ - (a(s_b))/(b(s_b)) = k is a positive real number
 ▶ b(s_b) da/ds(s_b) - a(s_b) db/ds(s_b) = 0

▶ Determine the root locus breakaway points of $G(s)H(s) = \frac{b(s)}{a(s)} = \frac{s+6}{s(s+2)}$

$$b(s)\frac{da}{ds}(s) - a(s)\frac{db}{ds}(s) = 2(s+6)(s+1) - s(s+2) = s^2 + 12s + 12 = 0$$

$$\Rightarrow \quad s_b = -6 \pm 2\sqrt{6} \quad \Rightarrow \quad -\frac{a(s_b)}{b(s_b)} = \frac{-48 \pm 20\sqrt{6}}{\pm 2\sqrt{6}} = 10 \mp 4\sqrt{6} > 0$$

Determine the root locus breakaway points of

$$G(s)H(s) = \frac{1}{s(s+4)(s+6)} = \frac{1}{s^3 + 10s^2 + 24s}$$

Determine the root locus breakaway points of

$$G(s)H(s) = \frac{(s+3)(s+4)}{(s+1)(s+2)} = \frac{s^2+7s+12}{s^2+3s+2}$$

▶ Determine the root locus breakaway points of $G(s)H(s) = \frac{s+1}{s^2-0.5}$

Angle of Departure

- The root locus starts at the poles of G(s)H(s). At what angles does the root locus depart from the poles?
- > To determine the **departure angle**, look at a small region around a pole

Angle of Departure

Phase condition:

$$\frac{/G(s)H(s)}{/(s-p_i)} = \frac{/\frac{b_m}{a_n}}{+} + \sum_{i=1}^m \frac{/(s-z_i)}{-} - \sum_{i=1}^n \frac{/(s-p_i)}{-(s-p_i)} = (1+2l)180^\circ$$

$$\stackrel{\text{Consider } s \text{ very close to a pole } p_j:$$

$$\stackrel{\text{L}_{dep}}{=} \frac{/(s-p_j)}{/(s-z_i)} \approx \frac{/(p_j-z_i)}{-(p_j-p_i)} \text{ for all } i$$

$$\stackrel{\text{L}_{dep}}{=} \frac{/(s-p_j)}{/(p_j-p_j)} = 0$$

► Angle of departure at *p_j*:

$$\frac{\langle G(s)H(s) \rangle}{\langle G(s)H(s) \rangle} = \frac{\langle \frac{b_m}{a_n} \rangle}{\sum_{i=1}^m \frac{\langle (s-z_i) \rangle}{\sum_{i=1}^n \frac{\langle (s-p_i) \rangle}{\sum_{i=1}^m \frac{\langle (p_j-z_i) \rangle}{\sum_{i=1}^n \frac{\langle (p_j-p_i) \rangle}$$

Angle of Departure

- Angle of departure at a pole *p*: $\angle_{dep} = /G(p)H(p) + 180^{\circ}$
- Angle of departure at a pole p with multiplicity μ :

$$\mu_{\text{_dep}} = \underline{/G(p)H(p)} + 180^{\circ}$$

Angle of Departure: Example

Angle of departure at p₁:

$$\angle_{dep} = \underline{/G(p_1)H(p_1)} + 180^{\circ}$$

$$= \underline{/(p_1 - z_1)} + \underline{/(p_1 - z_2)} - \underline{/(p_1 - p_2)} - \underline{/(p_1 - p_3)} - \underline{/(p_1 - p_4)} + 180^{\circ}$$

$$\approx 141.5^{\circ} + 102.3^{\circ} - 90^{\circ} - 147.2^{\circ} - 116.0^{\circ} + 180^{\circ}$$

$$= 70.6^{\circ}$$

Angle of Arrival

- The root locus ends at the zeros of G(s)H(s). At what angles does the root locus arrive at the zeros?
- ▶ To determine the arrival angle, look at a small region around a zero

Angle of Arrival

Phase condition:

$$\frac{\langle G(s)H(s) \rangle}{\langle G(s)H(s) \rangle} = \frac{\sum_{i=1}^{m} \frac{\langle (s-z_i) \rangle}{(s-z_i)}}{\sum_{i=1}^{n} \frac{\langle (s-p_i) \rangle}{(s-p_i)}} = (1+2l)180^{\circ}$$

$$E \text{ Consider } s \text{ very close to a zero } z_j:$$

$$E \text{ Larr} = \frac{\langle (s-z_i) \rangle}{\sum_{i=1}^{l} \frac{\langle (z_i-z_i) \rangle}{(s-z_i)}} \text{ for } i \neq j$$

$$E \text{ Larr} = \frac{\langle (s-z_i) \rangle}{\sum_{i=1}^{l} \frac{\langle (z_i-z_i) \rangle}{(s-p_i)}} \text{ for all } i$$

$$E \text{ Larr} = \frac{\langle (z_i-z_i) \rangle}{(z_i-z_i)} \text{ for all } i$$

► Angle of arrival at *z_j*:

$$\frac{/G(s)H(s)}{/(s)} = \frac{\frac{b_m}{a_n}}{1 + \sum_{i=1}^m \frac{/(s-z_i)}{1 - \sum_{i=1}^n \frac{/(s-p_i)}{1 - \sum_{i=1}^n \frac{/(z_j-p_i)}{1 - \sum_{i=1}^n \frac{/(z_j-p_$$

Angle of Arrival

• Angle of arrival at a zero z: $\angle_{arr} = 180^{\circ} - /G(z)H(z)$

Angle of arrival at a zero z with multiplicity µ:

Positive Root Locus Summary

Positive root locus of

$$G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \frac{b_m}{a_n} \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

- Step 1: determine the departure and arrival points
 - The departure points are at the *n* poles of G(s)H(s) (where k = 0)
 - The arrival points are at the *m* zeros of G(s)H(s) (where $k = \infty$)

Step 2: determine the real-axis root locus

- The positive root locus contains all points on the real axis that are to the left of an odd number of zeros or poles
- Step 3: The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of G(s)H(s)

Positive Root Locus Summary

► Step 4: determine the |n - m| asymptotes as $|s| \to \infty$ ► Centroid: $\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$ ► Angles: $\theta_l = \frac{(1+2l)}{|n-m|} 180^\circ - \underline{/\frac{b_m}{a_n}}, \quad l \in \{0, \dots, |n-m|-1\}$

- Step 5: determine the breakaway points where the root locus leaves the real axis
 - The breakaway points s_b are roots of Δ(s) = a(s) + kb(s) with non-unity multiplicity such that:

•
$$-\frac{a(s_b)}{b(s_b)} = k$$
 is a positive real number

$$b(s_b)\frac{da}{ds}(s_b) - a(s_b)\frac{db}{ds}(s_b) = 0$$

Arrival/departure angle at breakaway point of q root locus branches: $\theta = \frac{\pi}{q}$

Positive Root Locus Summary

Step 6: determine the complex pole/zero angle of departure/arrival
 Departure angle: if s is close to a pole p with multiplicity µ:

 $\underline{/G(s)H(s)} \approx \underline{/G(p)H(p)} - \mu_{\underline{/}dep} = (1+2l)180^{\circ} \quad \Rightarrow \quad \mu_{\underline{/}dep} = \underline{/G(p)H(p)} + 180^{\circ}$

Arrival angle: if s is close to a zero z with multiplicity μ :

 $/G(s)H(s) \approx /G(z)H(z) + \mu_{Larr} = (1+2l)180^{\circ} \Rightarrow \mu_{Larr} = 180^{\circ} - /G(z)H(z)$

Step 7: determine **crossover points** where the root locus crosses the $j\omega$ axis

- A Routh table is used to obtain the auxiliary polynomial A(s) and gain k
- The crossover points are the roots of A(s) = 0

• Determine the positive root locus of $G(s)H(s) = \frac{s+1}{s^2(s+12)}$

• Determine the positive root locus for $G(s)H(s) = \frac{s+1}{s^2(s+4)}$

• Determine the positive root locus for $G(s)H(s) = \frac{s+1}{s^2(s+9)}$

Let G(s)H(s) = ¹/_{s²+2s}. Find the gain k that results in the closed-loop system having a peak time of at most 2π seconds.

$$\frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \le 2\pi \quad \Rightarrow \quad \omega_n \sqrt{1-\zeta^2} \ge 0.5 \quad \Rightarrow \quad k \ge \left|1+j\frac{1}{2}\right| \left|-1+j\frac{1}{2}\right| = 1.25$$

Consider a feedback control system with:

$$G(s) = \frac{1}{s\left(\frac{s^2}{2600} + \frac{s}{26} + 1\right)} \qquad H(s) = \frac{1}{1 + 0.04s}$$

Choose k to obtain a stable closed-loop system with percent overshoot of at most 20% and steady-state error to a step reference of at most 5%

$$G(s)H(s) = \frac{65000}{s(s^2 + 100s + 2600)(s + 25)} = \frac{65000}{s^4 + 125s^3 + 5100s^2 + 65000s}$$

▶ **Poles** of G(s)H(s): $p_1 = 0$, $p_2 = -25$, $p_{3,4} = -50 \pm j10$

The positive root locus contains 4 asymptotes with:

• angles:
$$\frac{\pi}{4}$$
, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$

• centroid:
$$\alpha = -\frac{1}{4}(125) = -31.25$$

▶ Breakaway point: should be to the right of (p₁ + p₂)/2 = −12.5 since the poles p_{3,4} = −50 ± j10 repel the root locus branches

$$65000(4s^3 + 375s^2 + 10200s + 65000) = 0$$

Departure angle at p₃:

• Positive root locus of $G(s)H(s) = \frac{65000}{s(s^2+100s+2600)(s+25)}$

Closed-loop transfer function characteristic polynomial:

$$\Delta(s) = a(s) + kb(s) = s^4 + 125s^3 + 5100s^2 + 65000s + 65000k$$

Routh-Hurwitz table:

<i>s</i> ⁴	1	5100	65000 <i>k</i>
<i>s</i> ³	1	520	0
<i>s</i> ²	4580	65000 <i>k</i>	0
s^1	$520 - \frac{3250}{229}k$	0	0
<i>s</i> ⁰	65000 <i>k</i>	0	0

Necessary and sufficient condition for **BIBO stability**: $520 - \frac{3250}{229}k > 0$ and 65000k > 0:

$$0 < k < rac{916}{25} pprox 36.64$$

Auxiliary polynomial at k = 916/25 and crossover points:

$$A(s) = s^2 + 520$$
 $s_{1,2} = \pm j22.8$

- ▶ Determine **dominant pole damping** to ensure percent overshoot ≤ 20%
- ▶ Pick a larger damping ratio, e.g., $\zeta \ge 0.5$, to ensure that the true fourth-order system satisfies the percent overshoot requirement

• Determine the dominant pole locations for $\zeta = 0.5$: $s_{1,2} = -6.6 \pm j11.3$

Use the magnitude condition to obtain k:

$$\frac{1}{k} = \frac{65000}{|s_1||s_1 + 25||s_1 + 50 - j10||s_1 + 50 + j10|} \quad \Rightarrow \quad k \approx 9.3$$

To determine the other two closed-loop poles s_{3,4} = -σ ± jω at k = 9.1, use Vieta's formulas:

$$\sum_{i=1}^{4} s_i = -2\sigma - 2(6.6) = -125 \qquad \Rightarrow \qquad \sigma \approx 55.9$$

- ▶ The imaginary part of $s_{3,4} = -55.9 \pm j\omega$ can be obtained from the root locus plot: $\omega \approx 18$
- Closed-loop poles for $k \approx 9.1$:

$$s_{1,2} \approx -6.6 \pm j11.3$$
 $s_{3,4} \approx -56 \pm j18$

• The steady-state error to a step R(s) = 1/s is:

$$\lim_{s \to 0} sE(s) = \lim_{s \to 0} s(R(s) - T(s)R(s)) = \lim_{s \to 0} (1 - T(s)) = \lim_{s \to 0} \frac{\Delta(s) - 65000k}{\Delta(s)}$$
$$= \lim_{s \to 0} \frac{s^4 + 125s^3 + 5100s^2 + 65000s}{s^4 + 125s^3 + 5100s^2 + 65000s} = 0$$

- Final design with $k \approx 9.1$
- The closed-loop system is stable
- The percent overshoot is less than 20%
- The steady-state error to a step input is less than 5%

Outline

Root Locus Definition

Positive Root Locus

Negative Root Locus

Negative Root Locus Summary

Negative root locus: set of points s in the complex plane such that:

- Magnitude condition: $|G(s)H(s)| = -\frac{1}{k}$ for $k \leq 0$
- Phase condition: $/G(s)H(s) = (2l)180^{\circ}$, where l is any integer

Negative root locus construction procedure for

$$G(s)H(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \kappa \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

Step 1: determine the **departure and arrival points**

- The departure points are at the *n* poles of G(s)H(s) (where k = 0)
- The arrival points are at the *m* zeros of G(s)H(s) (where $k = -\infty$)

Negative Root Locus Summary

- Step 2: determine the real-axis root locus
 - The negative root locus contains all points on the real axis that are to the left of an even number of zeros or poles
- Step 3: The root locus is symmetric about the real axis and the axes of symmetry of the pole-zero configuration of G(s)H(s)
- ▶ Step 4: determine the |n m| asymptotes as $|s| \rightarrow \infty$

• Centroid:
$$\alpha = \frac{1}{n-m} \left(\frac{b_{m-1}}{b_m} - \frac{a_{n-1}}{a_n} \right) = \frac{\sum_{i=1}^n p_i - \sum_{i=1}^m z_i}{n-m}$$

Angles:
$$\theta_I = \frac{2l}{|n-m|} 180^\circ - \underline{/\frac{b_m}{a_n}}, \qquad l \in \{0, \dots, |n-m|-1\}$$

Step 5: determine the breakaway points

- The breakaway points s_b are roots of Δ(s) = a(s) + kb(s) with non-unity multiplicity such that:
 - $\frac{a(s_b)}{b(s_b)} = -k$ is a positive real number
 - $b(s_b)\frac{da}{ds}(s_b) a(s_b)\frac{db}{ds}(s_b) = 0$

Arrival/departure angle at breakaway point of q root locus branches: $\theta = \frac{\pi}{q}$

Negative Root Locus Summary

Step 6: determine the complex pole/zero angle of departure/arrival

• Departure angle: if s is close to a pole p with multiplicity μ :

$$/G(s)H(s) \approx /G(p)H(p) - \mu_{\perp dep} = (2I)180^{\circ} \Rightarrow \mu_{\perp dep} = /G(p)H(p)$$

Arrival angle: if s is close to a zero z with multiplicity μ :

$$/G(s)H(s) \approx /G(z)H(z) + \mu_{\perp arr} = (2I)180^{\circ} \quad \Rightarrow \quad \mu_{\perp arr} = -/G(z)H(z)$$

Step 7: determine **crossover points** where the root locus crosses the $j\omega$ axis

- A Routh table is used to obtain the auxiliary polynomial A(s) and gain k
- The crossover points are the roots of A(s) = 0

Negative Root Locus: Example

• Determine the negative root locus of $G(s)H(s) = \frac{1}{s((s+1)^2+1)}$

Negative Root Locus: Example

• Determine the complete (positive and negative) root locus of $G(s)H(s) = \frac{1}{s((s+1)^2+1)}$

