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Stability Margins from a Nyquist Plot

▶ Consider an open-loop transfer function: G (s) = k

∏m
i=1(s − zi )∏n
i=1(s − pi )

▶ Increasing k increases the magnitude of all points on the Nyquist plot of
G (s), i.e, pushes the contour G (C ) further away from the origin
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Stability Margins from a Nyquist Plot: Example
▶ Nyquist plot of G (s) = k

s(s+1)(s+10)

(a) k = 75 (b) k = 150

▶ The closed-loop system is stable for small k and unstable for large k

▶ In practice, it is not enough that the system is stable. There must also be a
stability margin allowing robustness to disturbances.

▶ Stability margin: quantifies how far the Nyquist plot G (C ) is from the
critical point −1
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Gain Margin
▶ Gain Margin (GM):

▶ the factor by which the open-loop gain can be increased before a stable
closed-loop system becomes unstable

▶ the factor by which the open-loop gain should be decreased until an unstable
system becomes stable

▶ Nyquist plot: GM is the inverse of the distance from the origin to the first
point where G (C ) crosses the real axis
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Phase Margin
▶ Phase Margin (PM):

▶ the amount by which the open-loop phase can be decreased before a stable
closed-loop system becomes unstable

▶ the amount by which the open-loop phase should be increased before an
unstable system becomes stable

▶ Nyquist plot: PM is the smallest angle on the unit circle between −1 and
G (C )
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Algebraic Definitions of Gain Margin and Phase Margin

▶ Phase-Crossover Frequency: ωp at which G (jω) crosses the real axis:

G (jωp) = −180◦

▶ Gain Margin: the inverse of the open-loop gain at ωp:

GM = 20 log
1

|G (jωp)|
= −20 log |G (jωp)| dB

▶ Gain-Crossover Frequency: ωg at which G (jω) crosses the unit circle:

20 log |G (jωg )| = 0 dB

▶ Phase Margin: amount by which the open-loop phase at ωg exceeds −180◦:

PM = G (jωg ) + 180◦
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Gain Margin and Phase Margin

▶ For a stable minimum-phase system both GM and PM are positive. Larger
gains mean larger relative stability.

▶ When ωg = ωp = ω∗, there are closed-loop poles on the imaginary axis and
instability starts to occur:

|G (jω∗)| = 1, G (jω∗) = −180◦ ⇒ 1 + G (jω∗) = 0

▶ Bode plot and magnitude-phase plot provide |G (jω)| and G (jω) and
hence ωp, ωg , GM, and PM can all be seen

▶ Caution: the Bode plot or magnitude-phase plot interpretation of GM and
PM to determine stability can be incorrect if the system is non-minimum
phase or has delays. Only the Nyquist stability criterion should be used to
determine stability.
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Gain Margin and Phase Margin on a Magnitude-Phase Plot
▶ Magnitude-phase plot of G1(s) =

1
s(s+1)(s/5+1) and G2(s) =

1
s(s+1)2
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Gain Margin and Phase Margin on a Bode Plot

▶ Stability margin: shortest distance sm from Nyquist plot G (C ) to −1

▶ Gain margin: inverse gain gm at phase-crossover ωp

▶ Phase margin: phase distance φm from −180◦ at gain-crossover ωg
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Gain Margin and Phase Margin on a Bode Plot
▶ Bode plot of G (s) = k

s(s+1)(s/100+1) with k = 1
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Gain Margin and Phase Margin on a Bode Plot

▶ If k > 0, it has no effect on the phase and shifts the magnitude up or down
by 20 log k. This changes the gain-crossover frequency ωg but not the
phase-crossover frequency ωp.

▶ Some closed-loop poles lie on the imaginary axis when ωg = ωp

▶ Choose k ≈ 100 to shift the magnitude up by ∼ 40 dB, making ωg ≈ ωp

▶ The imaginary axis crossing can be determined from the Bode plot but we do
not know if we are going from stability to instability or vice versa

▶ Assuming that the system is stable initially (can only be verified by Nyquist
or Routh-Hurwitz stability criteria), we expect the region of stability to be
0 < K < 100

13



Gain Margin and Phase Margin on a Bode Plot

▶ Use Routh-Hurwitz to verify the region of stability for:

T (s) =
G (s)

1 + G (s)
=

k

s(s + 1)(s/100 + 1) + k
=

100k

s3 + 101s2 + 100s + 100k

▶ Characteristic polynomial a(s) = s3 + 101s2 + 100s + 100k

▶ The Routh table is:

s3 1 100

s2 101 100k

s1 100− 100k
101 0

s0 100k 0

▶ Stability region: 0 < k < 101

▶ Auxiliary polynomial roots for k = 101:

A(s) = 101(s2 + 100) ⇒ s = ±j10
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Stability Margins: Example 1
▶ What are the gain margin and phase margin of G (s) = 1

s(s+1)2 ?
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Stability Margins: Example 2
▶ What are the gain margin and phase margin of G (s) = (s+1)

s2(s/10+1)?
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Stability Margins: Example 2
▶ Root locus of G (s) = (s+1)

s2(s/10+1)
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Stability Margins: Example 2

▶ What are the gain margin and phase margin of G (s) = k(s+1)
s2(s/10+1)?

▶ The gain margin is ∞ since the phase hits −180◦ at ωp = ∞

▶ As k → ∞, the gain-crossover frequency ωg moves to the right and the
phase margin decreases

▶ As k → ∞, a pair of closed-loop poles moves vertically on the root locus and
the damping ratio ζ decreases

▶ There is a relationship between phase margin PM and damping ratio ζ

▶ We will analyze a second-order system to determine this and establish a
relationship between frequency response and transient step response
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Frequency Domain Performance Specifications

▶ Consider a second-order system:

T (s) =
G (s)

1 + G (s)
=

ω2
n

s2 + 2ζωns + ω2
n

=
1

s2

ω2
n
+ 2ζ s

ωn
+ 1

▶ How does the closed-loop frequency response T (jω) relate to the transient
step response (rise time, overshoot, settling time)?
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Frequency Response of a Second-order System

▶ Bode plot of T (s) = 1
s2

ω2
n
+2ζ s

ωn
+1

▶ The damping ratio ζ is related to the resonant peak maxω |T (jω)|

▶ The natural frequency ωn and rise time tr are related to the bandwidth ωb

(frequency range (0, ωb) over which the system tracks an input signal well)
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Frequency Domain Performance Specifications

▶ Low-frequency (DC) gain: the magnitude of the transfer function |T (jω)|
for low frequencies ω → 0 is equal to the steady-state step response

▶ Bandwidth: the frequency ωb at which the transfer function magnitude
drops 3 dB below the DC gain:

|T (jωb)| =
1√
2
|T (0)|

▶ Resonant frequency: ωr where the transfer function magnitude is
maximized:

ωr = argmax
ω

|T (jω)|

▶ Resonant peak: the maximum value of the transfer function magnitude:

Mr = |T (jωr )|
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Frequency Response of a Second-order System

▶ Consider a second-order system:

T (s) =
ω2
n

s2 + 2ζωns + ω2
n

=
1

s2

ω2
n
+ 2ζ s

ωn
+ 1

▶ Transfer function magnitude at s = jω:

|T (jω)| = 1

| − ω2

ω2
n
+ 2ζ ω

ωn
j + 1|

=
1√(

1−
(

ω
ωn

)2
)2

+ 4ζ2
(

ω
ωn

)2

▶ Transfer function phase at s = jω:

T (jω) = 1

−( ω
ωn
)2+2ζ( ω

ωn
)j+1

= − arctan

 2ζ
(

ω
ωn

)
1−

(
ω
ωn

)2
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Resonant Frequency of a Second-order System
▶ Transfer function magnitude at s = jω:

|T (jω)| = 1

| − ω2

ω2
n
+ 2ζ ω

ωn
j + 1|

=
1√(

1−
(

ω
ωn

)2
)2

+ 4ζ2
(

ω
ωn

)2

▶ Resonant frequency:

d |T (jω)|
dω

= 0 ⇒ ωr = 0 or ωr = ωn

√
1− 2ζ2

▶ Resonant peak:

▶ Case 1: ζ ≤ 1√
2
:

ωr = ωn

√
1− 2ζ2 Mr =

1

2ζ
√

1− ζ2

▶ Case 2: ζ >
1√
2
:

ωr = 0 Mr = 1
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Resonant Frequency of a Second-order System
▶ Plot of Mr =

1

2ζ
√

1−ζ2
and ωr

ωn
=

√
1− 2ζ2 as a function of ζ

▶ The resonant peak Mr is related to
the percent overshoot via ζ

▶ Example:
▶ The resonant peak of the

closed-loop system should be less
than 1.75 (≈ 5 dB)

▶ Equivalent to ζ should be greater
than 0.3

▶ Equivalent to p.o. should be less
than 37%
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Bandwidth of a Second-order System

▶ Bandwidth: the low frequency range (0, ωb) over which the closed-loop
system tracks an input signal well

|T (jωb)| =
1√
2
|T (0)|

▶ Relationship between ωb, ωn, and ζ: with u = ωb/ωn:

u4 + 2(ζ2 − 1)u2 + 1 = 2 ⇒ u2 = (1− 2ζ2)±
√
4ζ4 − 4ζ2 + 2

ωb = ωn

√
(1− 2ζ2) +

√
4ζ4 − 4ζ2 + 2

▶ Bandwidth ωb and rise time tr ≈ 2.16ζ+0.6
ωn

are inversely proportional:
▶ If ωn ↑, then ωb ↑ and tr ↓
▶ If ζ ↑, then ωb ↓ and tr ↑

▶ Adding a zero to G (s) increases ωb of the closed-loop transfer function T (s)

▶ Adding a pole to G (s) decreases ωb of the closed-loop transfer function T (s)
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Stability Margins of a Second-order System
▶ Bode plot of G (s) =

ω2
n

s(s+2ζωn)
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Stability Margins of a Second-order System
▶ The phase plot of G (s) shows that the phase-crossover frequency is:

ωp = ∞

▶ The gain margin is:
GM = ∞

▶ Set |G (jω)| to 1 to obtain the gain-crossover frequency ωg :

1 = |G (jωg )| =
ω2
n

|jωg ||jωg + 2ζωn|
=

ω2
n

ωg

√
4ζ2ω2

n + ω2
g

▶ The gain-crossover frequency is:

ωg = ωn

√√
1 + 4ζ4 − 2ζ2

▶ The phase margin is:

PM = G (jωg ) + π = tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2
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Phase Margin of a Second-order System
▶ The phase margin of a second-order system is a function of ζ but not ωn

▶ The relationship between PM and ζ can be approximated well by a straight
line for small values of ζ
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Phase Margin of a Second-order System

▶ For 0 ≤ ζ ≤ 0.7, the phase margin PM (in degrees) and the damping ratio ζ
of a second-order system are related by:

PM ≈ 100ζ

▶ The relationship between ζ and PM can be used to design control systems in
the frequency domain meeting time-domain specifications

▶ Poles that are ignored in a dominant-pole-pair approximation contribute
phase lag so it is important to keep a large phase margin

▶ For 0.2 ≤ ζ ≤ 0.8, the gain-crossover frequency ωg of G (s) is related to the
closed-loop system bandwidth ωb:

ωb ≈ 1.8ωg
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Frequency Domain Control Design

▶ Consider proportional control design with gain k

▶ To obtain low steady-state error, we want large gain k

▶ To obtain fast transient response we want large ωg since ωb ↑, tr ↓

▶ Increasing k, increases ωg but decreases the phase margin and the system
becomes less stable and might exhibit oscillatory behavior

▶ More complicated control design may be needed to simultaneously provide
good phase margin, good gain-crossover frequency, and good steady state
tracking
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Frequency Domain Performance Specifications

▶ Feedback control system with control gain k and open-loop transfer function:

G (s) = k

∏m
i=1(s − zi )∏n
i=1(s − pi )

▶ How can the closed-loop frequency-domain performance specifications
(resonant peak Mr , resonant frequency ωr , bandwidth ωb) be related to the
open-loop frequency response (G (jω))?

▶ How can the gain k be adjusted to meet frequency-domain performance
specifications?
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Closed-Loop Transfer Function Magnitude

▶ Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

G (s)

1 + G (s)

▶ Closed-loop transfer function magnitude:

M(s) = |T (s)| = |G (s)|
|1 + G (s)|

▶ Obtain M(s) as a function of the real and imaginary parts of
G (s) = x(s) + jy(s):

M =

√
x2 + y2√

(1 + x)2 + y2

▶ This equation turns out to be a circle on a Nyquist plot
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Constant Magnitude Circles

▶ Relationship between the magnitude of the closed-loop transfer function M
and the real part x and imaginary part y of the open-loop transfer function:

M2(1 + x)2 +M2y2 = x2 + y2

M2 = (1−M2)x2 − 2M2x + (1−M2)y2

▶ Assume M ̸= 1 and divide both sides by (1−M2):

x2 − 2
M2

1−M2
x + y2 =

M2

1−M2

▶ Add M4/(1−M2)2 to both sides to complete the square for x :(
x − M2

1−M2

)2

+ y2 =
M2

(1−M2)2
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Constant Magnitude Circles

▶ M circle: a circle of constant closed-loop transfer function magnitude on a
polar/Nyquist plot: (

x − M2

1−M2

)2

+ y2 =
M2

(1−M2)2

▶ An M circle is centered at
(

M2

1−M2 , 0
)
with radius M

|(1−M2)|

▶ As M → ∞, the M circle is centered at (−1, 0) with radius 0

▶ For 1 < M < ∞, the M circle center moves to the left of (−1, 0), while the
radius increases

▶ As M → 0, the M circle is centered at (0, 0) with radius 0

▶ For 0 < M < 1, the M circle center moves to the right of (0, 0), while the
radius increases

▶ At M = 1, we get a degenerate circle at (±∞, 0) with radius ∞
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Constant Magnitude Circles on a Nyquist Plot
▶ Nyquist plot of G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

▶ If the frequencies ω along the polar plot of G (s) are available, we can
construct a closed-loop Bode plot using the M circles
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Constant Phase Circles
▶ N circle: a circle of constant N = tan T (s) on a polar/Nyquist plot:(

x +
1

2

)2

+

(
y − 1

2N

)2

=
1

4

(
1 +

1

N2

)
▶ An N circle is centered at (−0.5, 0.5/N) with radius 0.5

√
1 + 1/N2

▶ N circles are orthogonal to M circles, i.e., intersect at 90◦
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Frequency Domain Performance Specifications

▶ Given the frequency response of an open-loop transfer function G (s), we can
verify stability and frequency domain performance metrics

▶ Stability:
▶ Determine using the Nyquist criterion

▶ What if k < 0? Rotate the Nyquist plot clockwise by 180◦.

▶ Gain margin GM and phase margin PM:
▶ Can be obtained from a Nyquist plot, Bode plot, or magnitude-phase plot

▶ Resonant peak Mr , resonant frequency ωr , and bandwidth ωb:
▶ Use the M circles on a Nyquist plot
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Open-Loop Bode Plot

▶ Open-loop Bode plot for G (s) = 4(s/2+1)
s(2s+1)(1+0.4(s/8)+(s/8)2)
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Nyquist Plot

▶ Nyquist plot for G (s) = 4(s/2+1)
s(2s+1)(1+0.4(s/8)+(s/8)2)
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Closed-Loop Bode Plot

▶ Closed-loop Bode plot for G (s) = 4(s/2+1)
s(2s+1)(1+0.4(s/8)+(s/8)2)
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Frequency Domain Control Design

▶ How should k be adjusted to meet desired closed-loop frequency domain
specifications?
▶ It is difficult to determine how much to change k to meet a resonant peak

specification on a Nyquist plot

▶ It is difficult to tell where the Nyquist plot would become tangent to the
desired M circle

▶ Nathaniel Nichols proposed to transform the M and N
circles from a Nyquist plot to a magnitude-phase plot

▶ On a magnitude-phase plot, the M and N contours are
no longer circles

▶ If k changes, a magnitude-phase plot only moves up or
down, which is much easier to interpret that the change
of the shape on a Nyquist plot N. Nichols
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Nichols Plot

▶ Nichols plot: a magnitude-phase
plot with overlaid M and N
contours of constant closed-loop
transfer-function magnitude and
phase

▶ The gain margin and phase
margin can be obtained

▶ The resonant peak Mr and
bandwidth ωb can be obtained

▶ A change in the gain k moves the
response up or down and can be
used to meet closed-loop
frequency domain specifications
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Nichols Plot

▶ Nichols plot of G (s) = 4(s/2+1)
s(2s+1)(1+0.4(s/8)+(s/8)2)
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