ECE171A: Linear Control System Theory Lecture 13: Performance Measures

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

[Stability Margins](#page-2-0)

[Frequency Domain Performance Specifications](#page-18-0)

[Closed-Loop Control from Open-Loop Frequency Response](#page-32-0)

Outline

[Stability Margins](#page-2-0)

[Frequency Domain Performance Specifications](#page-18-0)

[Closed-Loop Control from Open-Loop Frequency Response](#page-32-0)

Stability Margins from a Nyquist Plot

- ▶ Consider an open-loop transfer function: $G(s) = k \frac{\prod_{i=1}^{m} (s z_i)}{\prod_{i=1}^{m} (z z_i)}$ $\overline{\prod_{i=1}^n (s-p_i)}$
- \blacktriangleright Increasing k increases the magnitude of all points on the Nyquist plot of $G(s)$, i.e, pushes the contour $G(C)$ further away from the origin

Stability Margins from a Nyquist Plot: Example ▶ Nyquist plot of $G(s) = \frac{k}{s(s+1)(s+10)}$

 \triangleright The closed-loop system is stable for small k and unstable for large k

- ▶ In practice, it is not enough that the system is stable. There must also be a stability margin allowing robustness to disturbances.
- **Stability margin:** quantifies how far the Nyquist plot $G(C)$ is from the critical point -1

Gain Margin

- \blacktriangleright Gain Margin (GM):
	- \triangleright the factor by which the open-loop gain can be increased before a stable closed-loop system becomes unstable
	- \triangleright the factor by which the open-loop gain should be decreased until an unstable system becomes stable
- ▶ Nyquist plot: GM is the inverse of the distance from the origin to the first point where $G(C)$ crosses the real axis

Phase Margin

- ▶ Phase Margin (PM):
	- \triangleright the amount by which the open-loop phase can be decreased before a stable closed-loop system becomes unstable
	- \triangleright the amount by which the open-loop phase should be increased before an unstable system becomes stable
- Nyquist plot: PM is the smallest angle on the unit circle between -1 and $G(C)$

Algebraic Definitions of Gain Margin and Phase Margin

• Phase-Crossover Frequency: ω_p at which $G(i\omega)$ crosses the real axis:

$$
\angle G(j\omega_p)=-180^\circ
$$

• Gain Margin: the inverse of the open-loop gain at ω_p :

$$
GM = 20 \log \frac{1}{|G(j\omega_p)|} = -20 \log |G(j\omega_p)| \, \text{dB}
$$

• Gain-Crossover Frequency: ω_{g} at which $G(j\omega)$ crosses the unit circle:

$$
20 \log |G(j\omega_g)| = 0 \text{ dB}
$$

▶ Phase Margin: amount by which the open-loop phase at ω_{g} exceeds -180° :

$$
PM = \underline{\big/G(j\omega_g)} + 180^\circ
$$

Gain Margin and Phase Margin

- \triangleright For a stable minimum-phase system both GM and PM are positive. Larger gains mean larger relative stability.
- ▶ When $\omega_g = \omega_p = \omega_*$, there are closed-loop poles on the imaginary axis and instability starts to occur:

$$
|G(j\omega_*)|=1,\qquad \underline{/G(j\omega_*)}=-180^\circ\qquad\Rightarrow\qquad 1+G(j\omega_*)=0
$$

- ▶ Bode plot and magnitude-phase plot provide $|G(j\omega)|$ and $/G(j\omega)$ and hence ω_p , ω_g , GM, and PM can all be seen
- ▶ Caution: the Bode plot or magnitude-phase plot interpretation of GM and PM to determine stability can be incorrect if the system is non-minimum phase or has delays. Only the Nyquist stability criterion should be used to determine stability.

Gain Margin and Phase Margin on a Magnitude-Phase Plot

A Magnitude-phase plot of $G_1(s) = \frac{1}{s(s+1)(s/5+1)}$ and $G_2(s) = \frac{1}{s(s+1)^2}$

- ▶ Stability margin: shortest distance s_m from Nyquist plot $G(C)$ to -1
- **Gain margin**: inverse gain g_m at phase-crossover ω_p
- ▶ Phase margin: phase distance $\varphi_{\rm m}$ from -180° at gain-crossover $\omega_{\rm g}$

▶ Bode plot of $G(s) = \frac{k}{s(s+1)(s/100+1)}$ with $k = 1$

- If $k > 0$, it has no effect on the phase and shifts the magnitude up or down by 20 log k. This changes the gain-crossover frequency ω_{σ} but not the phase-crossover frequency ω_p .
- ▶ Some closed-loop poles lie on the imaginary axis when $\omega_g = \omega_p$
- ► Choose $k \approx 100$ to shift the magnitude up by ~ 40 dB, making $\omega_{g} \approx \omega_{p}$
- ▶ The imaginary axis crossing can be determined from the Bode plot but we do not know if we are going from stability to instability or vice versa
- \triangleright Assuming that the system is stable initially (can only be verified by Nyquist or Routh-Hurwitz stability criteria), we expect the region of stability to be $0 < K < 100$

 \triangleright Use Routh-Hurwitz to verify the region of stability for:

$$
T(s) = \frac{G(s)}{1 + G(s)} = \frac{k}{s(s+1)(s/100+1) + k} = \frac{100k}{s^3 + 101s^2 + 100s + 100k}
$$

▶ Characteristic polynomial $a(s) = s^3 + 101s^2 + 100s + 100k$

 \blacktriangleright The Routh table is:

- ▶ Stability region: $0 < k < 101$
- Auxiliary polynomial roots for $k = 101$:

$$
A(s) = 101(s^2 + 100) \qquad \Rightarrow \qquad s = \pm j10
$$

Stability Margins: Example 1

▶ What are the gain margin and phase margin of $G(s) = \frac{1}{s(s+1)^2}$?

Stability Margins: Example 2

▶ What are the gain margin and phase margin of $G(s) = \frac{(s+1)}{s^2(s/10+1)}$?

Stability Margins: Example 2

▶ Root locus of $G(s) = \frac{(s+1)}{s^2(s/10+1)}$

Stability Margins: Example 2

- ▶ What are the gain margin and phase margin of $G(s) = \frac{k(s+1)}{s^2(s/10+1)}$?
- ▶ The gain margin is ∞ since the phase hits -180° at $\omega_p = \infty$
- ▶ As $k \to \infty$, the gain-crossover frequency ω_{φ} moves to the right and the phase margin decreases
- ▶ As $k \to \infty$, a pair of closed-loop poles moves vertically on the root locus and the damping ratio ζ decreases
- **EX** There is a relationship between **phase margin** PM and **damping ratio** ζ
- ▶ We will analyze a second-order system to determine this and establish a relationship between frequency response and transient step response

Outline

[Stability Margins](#page-2-0)

[Frequency Domain Performance Specifications](#page-18-0)

[Closed-Loop Control from Open-Loop Frequency Response](#page-32-0)

Frequency Domain Performance Specifications

Copyright (02017 Pearson Education, All Rights Reserve

▶ Consider a second-order system:

$$
T(s) = \frac{G(s)}{1 + G(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{\frac{s^2}{\omega_n^2} + 2\zeta\frac{s}{\omega_n} + 1}
$$

 \blacktriangleright How does the closed-loop frequency response $T(i\omega)$ relate to the transient step response (rise time, overshoot, settling time)?

Frequency Response of a Second-order System

- \blacktriangleright The damping ratio ζ is related to the resonant peak max_u, $|T(j\omega)|$
- \blacktriangleright The natural frequency ω_n and rise time t_r are related to the bandwidth ω_b (frequency range $(0, \omega_b)$ over which the system tracks an input signal well)

Frequency Domain Performance Specifications

- **Low-frequency (DC) gain**: the magnitude of the transfer function $|T(j\omega)|$ for low frequencies $\omega \rightarrow 0$ is equal to the steady-state step response
- **Bandwidth**: the frequency ω_b at which the transfer function magnitude drops 3 dB below the DC gain:

$$
|\mathcal{T}(j\omega_b)|=\frac{1}{\sqrt{2}}|\mathcal{T}(0)|
$$

• Resonant frequency: ω_r where the transfer function magnitude is maximized:

$$
\omega_r = \argmax_{\omega} |T(j\omega)|
$$

▶ Resonant peak: the maximum value of the transfer function magnitude:

$$
M_r=|T(j\omega_r)|
$$

Frequency Domain Performance Specifications

Frequency Response of a Second-order System

▶ Consider a second-order system:

$$
\mathcal{T}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{\frac{s^2}{\omega_n^2} + 2\zeta\frac{s}{\omega_n} + 1}
$$

• Transfer function magnitude at $s = j\omega$:

$$
|\mathcal{T}(j\omega)| = \frac{1}{|-\frac{\omega^2}{\omega_n^2}+2\zeta\frac{\omega}{\omega_n}j+1|} = \frac{1}{\sqrt{\left(1-\left(\frac{\omega}{\omega_n}\right)^2\right)^2+4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}}
$$

Transfer function phase at $s = j\omega$:

$$
\underline{\angle T(j\omega)} = \underline{\angle \frac{1}{-\left(\frac{\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{\omega}{\omega_n}\right)j+1}} = -\arctan\left(\frac{2\zeta\left(\frac{\omega}{\omega_n}\right)}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right)
$$

Resonant Frequency of a Second-order System

• Transfer function magnitude at $s = j\omega$:

$$
|\mathcal{T}(j\omega)| = \frac{1}{|-\frac{\omega^2}{\omega_n^2} + 2\zeta\frac{\omega}{\omega_n}j + 1|} = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}}
$$

▶ Resonant frequency:

$$
\frac{d|T(j\omega)|}{d\omega}=0 \qquad \Rightarrow \qquad \omega_r=0 \quad \text{or} \quad \omega_r=\omega_n\sqrt{1-2\zeta^2}
$$

▶ Resonant peak: ▶ Case 1: $\zeta \leq \frac{1}{\sqrt{2}}$:

$$
\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \qquad \qquad M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}
$$

\n- Case 2:
$$
\zeta > \frac{1}{\sqrt{2}}
$$
: $\omega_r = 0$ $M_r = 1$
\n

Resonant Frequency of a Second-order System

► Plot of
$$
M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}
$$
 and $\frac{\omega_r}{\omega_n} = \sqrt{1-2\zeta^2}$ as a function of ζ

The resonant peak M_r is related to the percent overshoot via ζ

▶ Example:

- ▶ The resonant peak of the closed-loop system should be less than 1.75 (\approx 5 dB)
- \blacktriangleright Equivalent to ζ should be greater than 0.3
- ▶ Equivalent to p.o. should be less than 37%

Bandwidth of a Second-order System

• Bandwidth: the low frequency range $(0, \omega_b)$ over which the closed-loop system tracks an input signal well

$$
|\mathcal{T}(j\omega_b)|=\frac{1}{\sqrt{2}}|\mathcal{T}(0)|
$$

Relationship between ω_b , ω_n , and ζ : with $u = \omega_b/\omega_n$:

$$
u^{4} + 2(\zeta^{2} - 1)u^{2} + 1 = 2 \implies u^{2} = (1 - 2\zeta^{2}) \pm \sqrt{4\zeta^{4} - 4\zeta^{2} + 2}
$$

$$
\omega_{b} = \omega_{n}\sqrt{(1 - 2\zeta^{2}) + \sqrt{4\zeta^{4} - 4\zeta^{2} + 2}}
$$

▶ Bandwidth ω_b and rise time $t_r \approx \frac{2.16\zeta + 0.6}{\omega_n}$ are inversely proportional: ▶ If $\omega_n \uparrow$, then $\omega_b \uparrow$ and $t_r \downarrow$ If $\zeta \uparrow$, then ω_b \downarrow and $t_f \uparrow$

Adding a zero to $G(s)$ increases ω_b of the closed-loop transfer function $T(s)$

Adding a pole to $G(s)$ decreases ω_b of the closed-loop transfer function $T(s)$

Stability Margins of a Second-order System

► Bode plot of
$$
G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}
$$

Stability Margins of a Second-order System

 \blacktriangleright The phase plot of $G(s)$ shows that the **phase-crossover frequency** is:

$$
\omega_{\text{p}}=\infty
$$

 \blacktriangleright The gain margin is:

$$
\textit{GM}=\infty
$$

Set $|G(j\omega)|$ to 1 to obtain the gain-crossover frequency ω_{ε} .

$$
1 = |G(j\omega_{g})| = \frac{\omega_{n}^{2}}{|j\omega_{g}||j\omega_{g} + 2\zeta\omega_{n}|} = \frac{\omega_{n}^{2}}{\omega_{g}\sqrt{4\zeta^{2}\omega_{n}^{2} + \omega_{g}^{2}}}
$$

$$
\blacktriangleright
$$
 The gain-crossover frequency is:

$$
\omega_{g}=\omega_{n}\sqrt{\sqrt{1+4\zeta^{4}}-2\zeta^{2}}
$$

 \blacktriangleright The phase margin is:

$$
\mathsf{PM} = \underline{\hspace{0.5cm}/ \hspace{0.5cm}} G(j\omega_{\mathcal{B}}) + \pi = \tan^{-1}\left(\frac{2\zeta}{\sqrt{\sqrt{1+4\zeta^{4}}-2\zeta^{2}}}\right)
$$

Phase Margin of a Second-order System

- **•** The phase margin of a second-order system is a function of ζ but not ω_n
- \triangleright The relationship between PM and ζ can be approximated well by a straight line for small values of ζ

Copyright @2017 Pearson Education, All Rights Reserved

Phase Margin of a Second-order System

► For $0 \lt C \lt 0.7$, the phase margin PM (in degrees) and the damping ratio ζ of a second-order system are related by:

 $PM \approx 100\zeta$

- \triangleright The relationship between ζ and PM can be used to design control systems in the frequency domain meeting time-domain specifications
- ▶ Poles that are ignored in a dominant-pole-pair approximation contribute phase lag so it is important to keep a large phase margin
- ▶ For $0.2 \le \zeta \le 0.8$, the gain-crossover frequency ω_g of $G(s)$ is related to the closed-loop system bandwidth ω_b :

$$
\omega_b \approx 1.8 \omega_g
$$

Frequency Domain Control Design

- \triangleright Consider proportional control design with gain k
- \blacktriangleright To obtain low steady-state error, we want large gain k
- **►** To obtain fast transient response we want large ω_g since $\omega_b \uparrow$, $t_r \downarrow$
- **E** Increasing k, increases ω_{σ} but decreases the phase margin and the system becomes less stable and might exhibit oscillatory behavior
- ▶ More complicated control design may be needed to simultaneously provide good phase margin, good gain-crossover frequency, and good steady state tracking

Outline

[Stability Margins](#page-2-0)

[Frequency Domain Performance Specifications](#page-18-0)

[Closed-Loop Control from Open-Loop Frequency Response](#page-32-0)

Frequency Domain Performance Specifications

 \triangleright Feedback control system with control gain k and open-loop transfer function:

$$
G(s) = k \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}
$$

- ▶ How can the closed-loop frequency-domain performance specifications (resonant peak M_r , resonant frequency ω_r , bandwidth ω_b) be related to the open-loop frequency response $(G(i\omega))$?
- \blacktriangleright How can the gain k be adjusted to meet frequency-domain performance specifications?

Closed-Loop Transfer Function Magnitude

▶ Closed-loop transfer function:

$$
T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}
$$

▶ Closed-loop transfer function magnitude:

$$
M(s) = |T(s)| = \frac{|G(s)|}{|1 + G(s)|}
$$

 \triangleright Obtain $M(s)$ as a function of the real and imaginary parts of $G(s) = x(s) + iy(s)$:

$$
M = \frac{\sqrt{x^2 + y^2}}{\sqrt{(1 + x)^2 + y^2}}
$$

▶ This equation turns out to be a circle on a Nyquist plot

Constant Magnitude Circles

 \blacktriangleright Relationship between the magnitude of the closed-loop transfer function M and the real part x and imaginary part y of the open-loop transfer function:

$$
M^{2}(1+x)^{2} + M^{2}y^{2} = x^{2} + y^{2}
$$

$$
M^{2} = (1 - M^{2})x^{2} - 2M^{2}x + (1 - M^{2})y^{2}
$$

▶ Assume $M \neq 1$ and divide both sides by $(1 - M^2)$:

$$
x^2 - 2\frac{M^2}{1 - M^2}x + y^2 = \frac{M^2}{1 - M^2}
$$

Add $M^4/(1 - M^2)^2$ to both sides to complete the square for x:

$$
\left(x - \frac{M^2}{1 - M^2}\right)^2 + y^2 = \frac{M^2}{(1 - M^2)^2}
$$

Constant Magnitude Circles

 \blacktriangleright M circle: a circle of constant closed-loop transfer function magnitude on a polar/Nyquist plot:

$$
\left(x - \frac{M^2}{1 - M^2}\right)^2 + y^2 = \frac{M^2}{(1 - M^2)^2}
$$

- ▶ An *M* circle is centered at $\left(\frac{M^2}{1-M^2},0\right)$ with radius $\frac{M}{|(1-M^2)|}$
- ▶ As $M \to \infty$, the M circle is centered at $(-1, 0)$ with radius 0
- ▶ For $1 < M < \infty$, the M circle center moves to the left of $(-1,0)$, while the radius increases
- ▶ As $M \rightarrow 0$, the M circle is centered at $(0, 0)$ with radius 0
- ▶ For $0 < M < 1$, the M circle center moves to the right of $(0,0)$, while the radius increases
- ▶ At $M = 1$, we get a degenerate circle at $(\pm \infty, 0)$ with radius ∞

Constant Magnitude Circles on a Nyquist Plot

▶ Nyquist plot of $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

If the frequencies ω along the polar plot of $G(s)$ are available, we can construct a closed-loop Bode plot using the M circles

Constant Phase Circles

▶ *N* circle: a circle of constant $N = \tan / T(s)$ on a polar/Nyquist plot:

$$
\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{2N}\right)^2 = \frac{1}{4}\left(1 + \frac{1}{N^2}\right)
$$

- ▶ An N circle is centered at $(-0.5, 0.5/N)$ with radius $0.5\sqrt{1+1/N^2}$
- ▶ N circles are orthogonal to M circles, i.e., intersect at 90°

Frequency Domain Performance Specifications

- \triangleright Given the frequency response of an open-loop transfer function $G(s)$, we can verify stability and frequency domain performance metrics
- ▶ Stability:
	- ▶ Determine using the Nyquist criterion
	- ▶ What if $k < 0$? Rotate the Nyquist plot clockwise by 180 $^{\circ}$.
- \triangleright Gain margin GM and phase margin PM:
	- ▶ Can be obtained from a Nyquist plot, Bode plot, or magnitude-phase plot
- Resonant peak M_r , resonant frequency ω_r , and bandwidth ω_b :
	- \triangleright Use the *M* circles on a Nyquist plot

Open-Loop Bode Plot

▶ Open-loop Bode plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

Nyquist Plot

▶ Nyquist plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

Closed-Loop Bode Plot

▶ Closed-loop Bode plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

Frequency Domain Control Design

- \blacktriangleright How should k be adjusted to meet desired closed-loop frequency domain specifications?
	- \blacktriangleright It is difficult to determine how much to change k to meet a resonant peak specification on a Nyquist plot
	- ▶ It is difficult to tell where the Nyquist plot would become tangent to the desired M circle
- \blacktriangleright **Nathaniel Nichols** proposed to transform the M and N circles from a Nyquist plot to a magnitude-phase plot
- \triangleright On a magnitude-phase plot, the M and N contours are no longer circles
- \blacktriangleright If k changes, a magnitude-phase plot only moves up or down, which is much easier to interpret that the change of the shape on a Nyquist plot N. Nichols

Nichols Plot

- \blacktriangleright Nichols plot: a magnitude-phase plot with overlaid M and N contours of constant closed-loop transfer-function magnitude and phase
- ▶ The gain margin and phase margin can be obtained
- \blacktriangleright The resonant peak M_r and bandwidth ω_b can be obtained
- A change in the gain k moves the response up or down and can be used to meet closed-loop frequency domain specifications

Nichols Plot

▶ Nichols plot of $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

