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Stability Margins from a Nyquist Plot
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» Increasing k increases the magnitude of all points on the Nyquist plot of
G(s), i.e, pushes the contour G(C) further away from the origin

> Consider an open-loop transfer function: G(s) =



Stability Margins from a Nyquist Plot: Example

» Nyquist plot of G(s) = Wk(s-l—lo)
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» The closed-loop system is stable for small k and unstable for large k

» In practice, it is not enough that the system is stable. There must also be a
stability margin allowing robustness to disturbances.

> Stability margin: quantifies how far the Nyquist plot G(C) is from the
critical point —1



Gain Margin
> Gain Margin (GM)

closed-loop system becomes unstable

» the factor by which the open-loop gain can be increased before a stable

system becomes stable

> the factor by which the open-loop gain should be decreased until an unstable

point where G(C) crosses the real axis

» Nyquist plot: GM is the inverse of the distance from the origin to the first
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Phase Margin
> Phase Margin (PM):

» the amount by which the open-loop phase can be decreased before a stable
closed-loop system becomes unstable

» the amount by which the open-loop phase should be increased before an

unstable system becomes stable

» Nyquist plot: PM is the smallest a
G(C)
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Algebraic Definitions of Gain Margin and Phase Margin

> Phase-Crossover Frequency: w, at which G(jw) crosses the real axis:

fG(jwp) = —180°
> Gain Margin: the inverse of the open-loop gain at wp:

1
p

> Gain-Crossover Frequency: w, at which G(jw) crosses the unit circle:
20log |G(jwg)| = 0 dB

> Phase Margin: amount by which the open-loop phase at w, exceeds —180°:

PM = /G (jwg) + 180°



Gain Margin and Phase Margin

» For a stable minimum-phase system both GM and PM are positive. Larger
gains mean larger relative stability.

» When wg; = w, = wy, there are closed-loop poles on the imaginary axis and
instability starts to occur:

|G(jw,)| = 1, G(jw,) =—180° = 1+ G(jw.)=0

> Bode plot and magnitude-phase plot provide |G(jw)| and /G(jw) and
hence wp, wg, GM, and PM can all be seen

» Caution: the Bode plot or magnitude-phase plot interpretation of GM and
PM to determine stability can be incorrect if the system is non-minimum
phase or has delays. Only the Nyquist stability criterion should be used to
determine stability.



Gain Margin and Phase Margin on a Magnitude—Phase Plot

> Magnitude-phase plot of Gi(s) = m and Gy(s) = ¢ S+1)2
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Gain Margin and Phase Margin on a Bode Plot
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> Stability margin: shortest distance s, from Nyquist plot G(C) to —1
> Gain margin: inverse gain g, at phase-crossover wp

» Phase margin: phase distance o, from —180° at gain-crossover w
gin: p P g g
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Gain Margin and Phase Margin on a Bode Plot
> Bode plOt of G(S) = Wk/lotﬂ-l) with k=1
Bode Diagram
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Gain Margin and Phase Margin on a Bode Plot

» If k > 0, it has no effect on the phase and shifts the magnitude up or down
by 20log k. This changes the gain-crossover frequency wg but not the
phase-crossover frequency wp,.

> Some closed-loop poles lie on the imaginary axis when w, = wp
» Choose k ~ 100 to shift the magnitude up by ~ 40 dB, making w, ~ w,

» The imaginary axis crossing can be determined from the Bode plot but we do
not know if we are going from stability to instability or vice versa

» Assuming that the system is stable initially (can only be verified by Nyquist
or Routh-Hurwitz stability criteria), we expect the region of stability to be
0 < K <100

13



Gain Margin and Phase Margin on a Bode Plot
» Use Routh-Hurwitz to verify the region of stability for:

T(s) = G(s) k - 100k
T 1+G(s) s(s+1)(s/100+ 1)+ k  s3+101s2 + 100s + 100k

» Characteristic polynomial a(s) = s® + 101s® + 100s + 100k

» The Routh table is:

s3 1 100

52 101 100k
100k

51 100 — T01 0

s0 100k 0

> Stability region: 0 < k < 101
» Auxiliary polynomial roots for k = 101:

A(s) = 101(s” + 100) = s =410
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Stability Margins: Example 1

» What are the gain margin and phase margin of G(s) = m?

Bode Diagram
Gm =6.02 dB (at 1 rad/s), Pm = 21.4 deg (at 0.682 rad/s)
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Stability Margins: Example 2

» What are the gain margin and phase margin of G(s) =
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Stability Margins: Example 2
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Stability Margins: Example 2

k(s+1)

> What are the gain margin and phase margin of G(s) = (s/104T)

» The gain margin is oo since the phase hits —180° at w, = oo

> As k — 00, the gain-crossover frequency wg, moves to the right and the
phase margin decreases

» As k — o0, a pair of closed-loop poles moves vertically on the root locus and
the damping ratio ( decreases

» There is a relationship between phase margin PM and damping ratio (

» We will analyze a second-order system to determine this and establish a
relationship between frequency response and transient step response
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Frequency Domain Performance Specifications
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Frequency Domain Performance Specifications

+ w?
R(s) > e 2o > Y(s)

» Consider a second-order system:

G(s) w? 1

T(s)= = =
() 14+ G(s) 5%+ 2Cwps + w? Z%+2§win+1

» How does the closed-loop frequency response T (jw) relate to the transient
step response (rise time, overshoot, settling time)?
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Frequency Response of a Second-order System

> B lot of T(s) = —+——
ode plot of T(s) Y
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> The damping ratio ( is related to the resonant peak max,, | T (jw)|

» The natural frequency w, and rise time ¢, are related to the bandwidth w,
(frequency range (0,wp) over which the system tracks an input signal well)
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Frequency Domain Performance Specifications

> Low-frequency (DC) gain: the magnitude of the transfer function | T (jw)|
for low frequencies w — 0 is equal to the steady-state step response

» Bandwidth: the frequency w;, at which the transfer function magnitude
drops 3 dB below the DC gain:

ITw)] = | T(0)

» Resonant frequency: w, where the transfer function magnitude is
maximized:
w, = argmax | T (jw)|
w

» Resonant peak: the maximum value of the transfer function magnitude:

M, = |T ()|

22



Frequency Domain Performance Specifications
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Frequency Response of a Second-order System

» Consider a second-order system:

(s) w? 1
S) = =
2+ 2wps Wl S5 4205 +1

2
Wh

» Transfer function magnitude at s = jw:

IT(jw)| = !

1
,%g+2§§nj+1\ - \/<1_ <;>2>2+4<2<

» Transfer function phase at s = jw:
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Resonant Frequency of a Second-order System
» Transfer function magnitude at s = jw:

1

[ T(w)l =

1
gt () e ()

» Resonant frequency:

M:O = w,=0 or w,=w,/1-2¢
w

» Resonant peak:

> Case 1: §§%:
1
wr = wny/1 — 2¢2 M=——-
¢ 2¢y/1—¢?
> Case 2: §>%:

wr=0 M, =1



Resonant Frequency of a Second-order System
> Plot of M, = —}— and %= = /1 — 22 as a function of ¢

204/1-¢2

» The resonant peak M, is related to

the percent overshoot via ¢

» Example:

» The resonant peak of the
closed-loop system should be less
than 1.75 (= 5 dB)

» Equivalent to ¢ should be greater
than 0.3

> Equivalent to p.o. should be less
than 37%
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Bandwidth of a Second-order System

> Bandwidth: the low frequency range (0, wp) over which the closed-loop
system tracks an input signal well

| T (jews)| (0)]

1
- T
N

> Relationship between wy, w,, and (: with u = wp/wy:

V20PN +1=2 = = (1-20) /4P -4 +2

wp :w,,\/(l —2¢?) +/4CH — 4%+ 2

2.16¢+0.6
Wn

» Bandwidth wy and rise time t, ~ are inversely proportional:

> If w, T, then wp T and t, |
> If (1, then wp | and t, 1

> Adding a zero to G(s) increases wy, of the closed-loop transfer function T(s)

> Adding a pole to G(s) decreases wy, of the closed-loop transfer function T(s)
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Stability Margins of a Second-order System

» Bode plot of G

2
(S) = s(s—:;(w,,)

Bode Diagram
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Stability Margins of a Second-order System
» The phase plot of G(s) shows that the phase-crossover frequency is:
wp = 00
» The gain margin is:
GM = 0
> Set |G(jw)| to 1 to obtain the gain-crossover frequency wg:

2 2
Wh Wh

a |.ng||ng +2Cwn‘ B Wg 4 /4<2w,27 +w§

» The gain-crossover frequency is:

1 =[G (juwg)l

Wg = Wh 14 4¢4 —2¢2

» The phase margin is:

2¢
V1440 —2¢2

PM = /G(jwg) + 7 =tan*
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Phase Margin of a Second-order System
» The phase margin of a second-order system is a function of ¢ but not w,

» The relationship between PM and ( can be approximated well by a straight
line for small values of ¢
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Phase Margin of a Second-order System

» For 0 < ¢ < 0.7, the phase margin PM (in degrees) and the damping ratio ¢
of a second-order system are related by:

PM = 100¢

» The relationship between ¢ and PM can be used to design control systems in
the frequency domain meeting time-domain specifications

» Poles that are ignored in a dominant-pole-pair approximation contribute
phase lag so it is important to keep a large phase margin

> For 0.2 < ¢ < 0.8, the gain-crossover frequency w, of G(s) is related to the
closed-loop system bandwidth wy:

wp ~ 1.8wg
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Frequency Domain Control Design

» Consider proportional control design with gain k
» To obtain low steady-state error, we want large gain k
> To obtain fast transient response we want large w, since wp T, t- |

> Increasing k, increases w, but decreases the phase margin and the system
becomes less stable and might exhibit oscillatory behavior

» More complicated control design may be needed to simultaneously provide
good phase margin, good gain-crossover frequency, and good steady state
tracking

32
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Closed-Loop Control from Open-Loop Frequency Response
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Frequency Domain Performance Specifications

R(s) “'h Y(s) X

A 4

G(s)

» Feedback control system with control gain k and open-loop transfer function:

[I7.(s — 2)
n
[Ii=:(s = pi)
» How can the closed-loop frequency-domain performance specifications

(resonant peak M,, resonant frequency w,, bandwidth wj) be related to the
open-loop frequency response (G(jw))?

G(s) =k

» How can the gain k be adjusted to meet frequency-domain performance
specifications?
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Closed-Loop Transfer Function Magnitude

» Closed-loop transfer function:

_Y(s) _ G(s)
Te) = %) “ 1560

» Closed-loop transfer function magnitude:

M(s) = |T(6)| = 1y sy

» Obtain M(s) as a function of the real and imaginary parts of
G(s) = x(s) +4y(s):
VX2 + y?
(1+x)?+y?

» This equation turns out to be a circle on a Nyquist plot
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Constant Magnitude Circles

» Relationship between the magnitude of the closed-loop transfer function M
and the real part x and imaginary part y of the open-loop transfer function:

M2(1 +X)2 + M2y2 — X2 +y2
M? = (1 — M?)x*> = 2M?x + (1 — M?)y?
> Assume M # 1 and divide both sides by (1 — M?):
2 M2

2 2 _
S v LR A B V5

» Add M*/(1 — M?)? to both sides to complete the square for x:

2 2 2
X — +y2:L
1— M2 (1 - M?)?
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Constant Magnitude Circles

» M circle: a circle of constant closed-loop transfer function magnitude on a

polar/Nyquist plot:
MZ 2 N 2 M2
T1owm2) TV T a-wmee

» An M circle is centered at (1 W 0) with radius |(177N/(/’2)\

> As M — oo, the M circle is centered at (—1,0) with radius 0

» For 1 < M < oo, the M circle center moves to the left of (—1,0), while the
radius increases

> As M — 0, the M circle is centered at (0,0) with radius 0

> For 0 < M < 1, the M circle center moves to the right of (0,0), while the
radius increases

> At M =1, we get a degenerate circle at (+00,0) with radius co
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Constant Magnitude Circles on a Nyquist Plot

4(s/2+1)
25+ 1)(1+0.4(5/8) +(s/8)7)

> Nyquist plot of G(s) = S
> If the frequencies w along the polar plot of G(s) are available, we can

construct a closed-loop Bode plot using the M circles

Nyquist Diagram
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Constant Phase Circles
» N circle: a circle of constant N = tan fT(s) on a polar/Nyquist plot:

FEA RS D Y
T2 Y7oN) Ta N2
» An N circle is centered at (—0.5,0.5/N) with radius 0.5,/1 + 1/N?

» N circles are orthogonal to M circles, i.e., intersect at 90°
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Frequency Domain Performance Specifications

> Given the frequency response of an open-loop transfer function G(s), we can
verify stability and frequency domain performance metrics

> Stability:

» Determine using the Nyquist criterion

» What if k < 0?7 Rotate the Nyquist plot clockwise by 180°.

» Gain margin GM and phase margin PM:
» Can be obtained from a Nyquist plot, Bode plot, or magnitude-phase plot

> Resonant peak M,, resonant frequency w,, and bandwidth wy:
» Use the M circles on a Nyquist plot
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Open-Loop Bode Plot

> Open-loop Bode plot for G(s) = 3

4(s/241)

Bode Diagram
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Nyquist Plot

> Nyquist plot for G(s) = &
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Closed-Loop Bode Plot
» Closed-loop Bode plot for G(s) = s(2s+1)(1‘53_/42(?/1%)4_(5/8)2)

Bode Diagram
Gm =5.7dB (at 7.7 rad/s) , Pm = 104 deg (at 1.84 rad/s)
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Frequency Domain Control Design

» How should k be adjusted to meet desired closed-loop frequency domain

specifications?

> It is difficult to determine how much to change k to meet a resonant peak

specification on a Nyquist plot

> It is difficult to tell where the Nyquist plot would become tangent to the

desired M circle

» Nathaniel Nichols proposed to transform the M and N
circles from a Nyquist plot to a magnitude-phase plot

» On a magnitude-phase plot, the M and N contours are
no longer circles

» If k changes, a magnitude-phase plot only moves up or
down, which is much easier to interpret that the change
of the shape on a Nyquist plot

N. Nichols
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Nichols Plot

» Nichols plot: a magnitude-phase
plot with overlaid M and N
contours of constant closed-loop
transfer-function magnitude and
phase

» The gain margin and phase
margin can be obtained

» The resonant peak M, and
bandwidth wy can be obtained

» A change in the gain k moves the
response up or down and can be
used to meet closed-loop
frequency domain specifications
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Nichols Plot

. _ 4(s/2+1)
> Nichols plot of G(s) = sarnyTroa( 876/
Nichols Chart
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