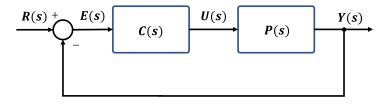
ECE171A: Linear Control System Theory Lecture 14: Lead-Lag Compensation

Nikolay Atanasov

natanasov@ucsd.edu

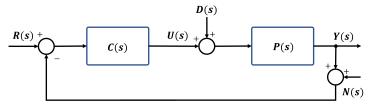
JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Loop Shaping



- **Loop shaping**: a trial and error procedure to choose a controller C(s) that gives a loop transfer function L(s) = C(s)P(s) with a desired shape
- Backward method:
 - ▶ Determine a desired loop transfer function L(s)
 - ► Compute the controller as C(s) = L(s)/P(s)
- Forward method:
 - Adjust proportional gain $C(s) = k_p$ to obtain desired closed-loop bandwidth
 - Add stable poles and zeros to C(s) until a desired shape of L(s) is obtained

Design Considerations



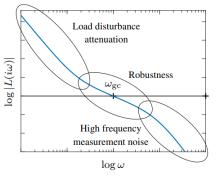
► Tracking error with input disturbance and measurement noise:

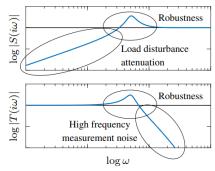
$$E(s) = \underbrace{\frac{1}{1 + L(s)}}_{\text{Sensitivity } S(s)} R(s) - \underbrace{\frac{P(s)}{1 + L(s)}}_{\text{Complementary Sensitivity } T(s)} N(s)$$

- We need a loop transfer function L(s) = C(s)P(s) that leads to good **closed-loop performance** and good **stability margins**
 - ▶ |L(s)| should be large at low frequencies $s = j\omega$ to ensure good reference tracking and low sensitivity to input disturbances (associated with low ω)
 - ▶ |L(s)| should be small at high frequencies $s = j\omega$ to ensure low sensitivity to measurement noise (associated with high ω)

Design Considerations

- ▶ An ideal loop transfer function $L(j\omega)$ should have the shape below:
 - Unit gain at gain crossover: $|L(j\omega_g)| = 1$
 - ▶ Large gain at $\omega < \omega_g$
 - ▶ Small gain at $\omega > \omega_g$





(a) Gain plot of loop transfer function

(b) Gain plot of sensitivity functions

▶ The phase margin is inversely proportional to the slope of $L(j\omega)$ around gain crossover frequency ω_g (transition from high gain at low ω to low gain at high ω cannot be too fast)

Loop Shaping via Lead and Lag Compensation

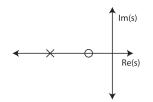
- ► Loop shaping is a trial-and-error procedure
- Start with a Bode plot of the plant transfer function P(s)
- Adjust the **proportional gain** to choose the gain crossover frequency ω_g (compromise between disturbance attenuation and measurement noise)
- Add left-half-plane poles and zeros to C(s) to shape L(s)
- ightharpoonup The behavior around ω_g can be changed by **lead compensation**
- ► The loop gain at low frequencies can be increased by lag compensation

Lead and Lag Compensation

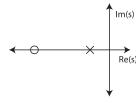
Consider a controller with transfer function:

$$C(s) = k \frac{s+z}{s+p} \qquad z > 0, \ p > 0$$

- **Lead compensator**: z < p
 - ▶ Adds **phase lead** in the frequency range $\omega \in [z, p]$
 - lacktriangle Provides additional phase margin at ω_{g}
 - Equivalent to PD control with filtering
 - Root locus branches move left
- ▶ Lag compensator: z > p
 - Increases the gain at low frequencies leading to improved tracking and disturbance attenuation
 - PI control is a special case with p=0
 - Root locus branches move right

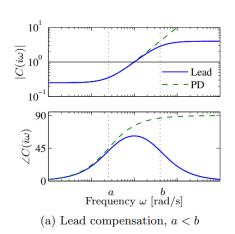


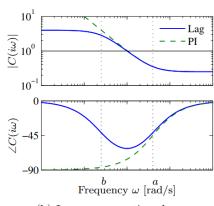
(when we want a zero)



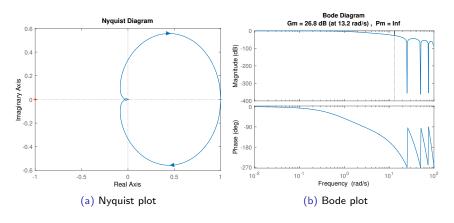
(when we want a pole)

Lead and Lag Compensation





Plant:
$$P(s) = \frac{4(1 - e^{-s/4})}{s(s+1)}$$



Example 1: Tracking Performance

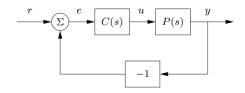
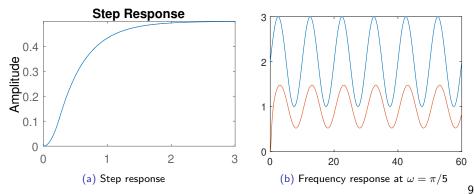
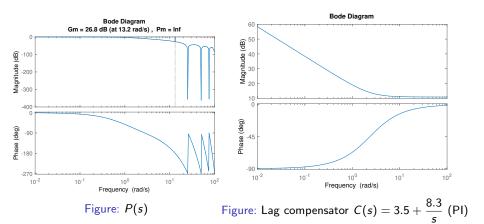


Figure: Proportional control: C(s) = 1



Example 1: Lag Compensation



Example 1: Lag Compensation

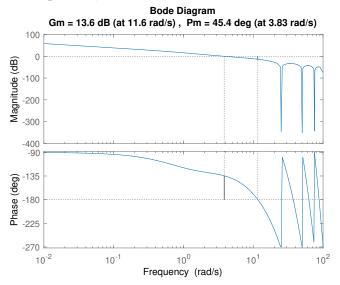


Figure: Margins for L(s) = C(s)P(s)

Example 1: Lag Compensation

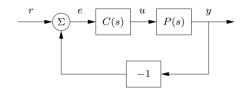
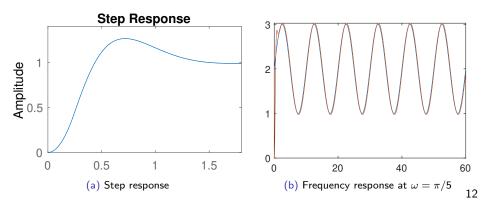


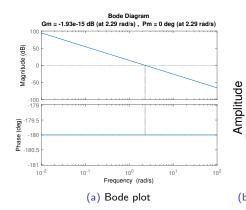
Figure: Lag compensator $C(s) = k_p + \frac{k_i}{s}$



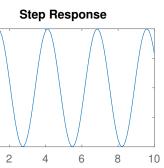
► Plant:

$$P(s) = \frac{r}{Js^2}$$
, $r = 0.25$, $J = 0.0475$

- Objectives:
 - ► Steady-state step error at most 1%
 - ▶ Tracking error with $\omega \leq 10 \text{ rad/s}$ at most 10%



(b) Step response for unit negative feedback



Example 2: Lead Compensation

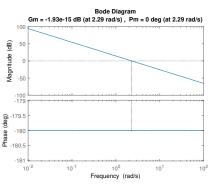


Figure: P(s)

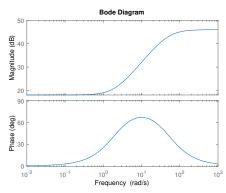


Figure: Lead compensator $C(s) = 200 \frac{s+2}{s+50}$

Example 2: Lead Compensation

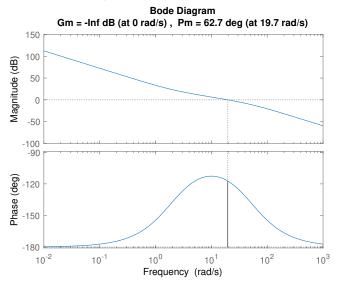
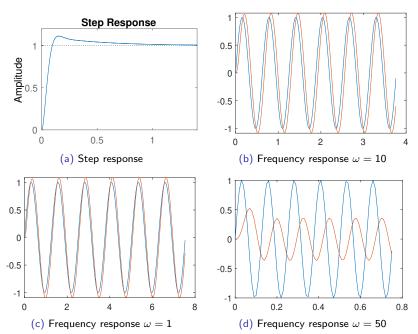


Figure: Margins for L(s) = C(s)P(s)

Example 2: Lead Compensation



Plant:

$$P(s) = \frac{1}{s(s+1)}$$

- Objectives:
 - lacktriangle Percent overshoot of at most 20% \Rightarrow $\zeta \geq$ 0.5
 - ► Settling time of at most 4 sec $\Rightarrow \zeta \omega_n \geq 1$
- ▶ Desired closed-loop poles: $s_{1,2} = -1 \pm j\sqrt{3}$
- ▶ Can we place $s_{1,2}$ on the root locus using lead-lag compensation?

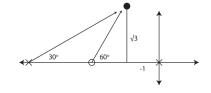
- ▶ Is $s_1 = -1 + j\sqrt{3}$ already on the Root Locus?
- Check via the phase condition:

$$/G(s_1) = -/s_1 - /s_1 + 1 = -120^{\circ} - 90^{\circ} = -210^{\circ}$$

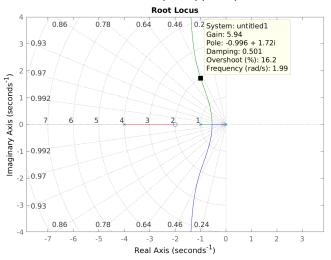
- $ightharpoonup s_1$ is not on the Root Locus and lacks 30° of phase
- ▶ Need to add 30 $^{\circ}$ at s_1
- ► Add a zero at 60° and a pole at 30°:

$$\tan 60^\circ = \frac{\sqrt{3}}{z-1} \qquad \tan 30^\circ = \frac{\sqrt{3}}{p-1}$$

Lead compensator:



Noot locus of $L(s) = C(s)P(s) = \frac{s+2}{s(s+1)(s+4)}$



Final control design: $C(s) = 6 \frac{s+2}{s+4}$