ECE171A: Linear Control System Theory Lecture 1: Introduction

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Course Overview

Control System Examples

Control System Modeling

Outline

Course Overview

Control System Examples

Control System Modeling

Overview

- ▶ ECE 171A: Linear Control System Theory focuses on modeling, analysis, and design of single-input single-output linear time-invariant control systems with emphasis on frequency-domain techniques
- ► Topics:
 - Modeling: ordinary differential equations, linear time-invariant systems, first-order and second-order systems, block diagrams and signal flow graphs
 - ► Analysis: transient and steady-state behavior, Laplace transform, stability, root locus, frequency response, Bode plots, Nyquist plots, Nichols plots
 - ▶ Design: PID control, loop shaping

Prerequisites

- Prerequisites
 - Introductory physics: Newton's law, Ohm's law, Kirchhoff's voltage and current laws
 - ▶ Calculus: derivatives, integration, exponential function, Taylor series
 - ▶ Programming experience: MATLAB, Python, or similar language
 - Optional but helpful: ordinary differential equations, linear algebra
- Courses that fulfill these prerequisites: ECE 45 or MAE 40

Teaching Team

- Instructor:
 - Nikolay Atanasov
 - Associate Professor, ECE Department
 - ► Email: natanasov@ucsd.edu

- ► Teaching Assistant:
 - ► Hesam Mojtahedi
 - ▶ PhD Student, ECE Department
 - Email: hmojtahedi@ucsd.edu

Discussion Session and Office Hours

Discussion Session

- Mondays, 3:00 pm 3:50 pm, in CENTR 222
- Optional material and examples supplementing the lectures
- Please ask questions and start a discussion!

Office Hours

- ▶ Mondays and Wednesdays, 6:30 pm 7:00 pm (after class), in PCYNH 121
- Additional office hours by appointment

Please try to attend the discussion session. Even if you do not have questions, you can meet new people, help answer questions, and create a supportive community for this class.

Assignments and Grading

- ► Course website: https://natanaso.github.io/ece171a
- Includes links to:
 - ► Canvas: course password, lecture recordings
 - Gradescope: homework submission and grades
 - ▶ Piazza: discussion and class announcements (please check regularly!)
- Assignments:
 - Academic integrity quiz on Canvas (due by Oct 11)
 - ▶ 6 homework sets (35% of grade)
 - ► Project (10% of grade)
 - ▶ Midterm exam (25% of grade): calculator + single-sided cheat sheet
 - ► Final exam (30% of grade): calculator + double-sided cheat sheet
- Submission:
 - ► The assignment release dates are shown on the website
 - ► The assignment due dates are stated in each assignment
 - ► Homework sets are typically due in 1 week
 - No late submissions: work submitted past the deadline will not be accepted; exceptions may be granted only in exceptional cases for unavoidable reasons
- ► Grading:
 - ► Rubric: 85+: A; 80-85: A-; 75-80: B+; 65-75: B; 60-65: B-; 55-60: C+; ...
 - ► The rubric may be adjusted at the instructor's discretion

References

▶ Textbook:

Karl J. Åström and Richard M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, 2008

Available at: https://fbswiki.org/

▶ Additional References: listed on the course website (optional)

Course Schedule (Tentative)

Week	Date	Lecture	Material	Assignment
1	Sep 30	Introduction	Ch. 1	
	Oct 02	Feedback Principles	Ch. 2	
2	Oct 07	Discussion		
	Oct 07	System Modeling	Ch. 3	
	Oct 09	Solving ODEs	Ch. 5	HW1
3	Oct 14	Discussion		
	Oct 14	Laplace Transform, Transfer Function	Ch. 9	
	Oct 16	Catch-up		HW2
4	Oct 21	Discussion		
	Oct 21	Catch-up		
	Oct 23	Block Diagram, Signal Flow Graph		HW3
5	Oct 28	Discussion		
	Oct 28	Stability, Routh-Hurwitz	Ch. 6	
	Oct 30	Catch-up	Ch. 6	
6	Nov 04	Discussion		
	Nov 04	Midterm Exam		

Check the course website for reading material and schedule updates: https://natanaso.github.io/ece171a

Outline

Course Overview

Control System Examples

Control System Modeling

What is a dynamical system?

▶ A **dynamical system** is a system whose behavior changes over **time**, often in response to internal or external stimulation

What is a control system?

- ► A **control system** is an interconnection of components (dynamical systems) that provides a desired response
- ► A **controller** is a component of a control system that modifies the overall system behavior

Control System

- Modern control systems include physical and cyber components
- ▶ A **physical component** is a mechanical, electrical, fluid, or thermal device acting as a sensor, actuator, or embedded system component:
 - A sensor is a device that provides measurements of a signal of interest (system output)
 - An actuator is a device that alters the configuration of the system or its environment (system input)
- ▶ A **cyber component** is a software element that executes a specific function
- **Control system engineering** focuses on:
 - modeling cyber-physical systems,
 - analyzing system behavior,
 - designing control techniques to achieve desired behavior
- ▶ **Performance characteristics**: stability, transient and steady-state tracking, rejection of external disturbances, robustness to modeling uncertainties, etc.

Open-Loop vs Closed-Loop Control Systems

► An **open-loop (feedforward) control system** utilizes a controller without measurement feedback of the system output

▶ A closed-loop (feedback) control system utilizes a controller with measurement feedback of the system output

Noise and Modeling Errors

- ► A closed-loop control system uses measurement feedback to compute and reduce the **error** between the desired and measured output
- ► Closed-loop control attenuates the effects of **process noise** (disturbance), **measurement noise**, and **modeling errors**

Flyball Governor (1788)

- regulate speed of a steam engine
- reduces the effect of load variations
- major advance of industrial revolution

https://www.youtube.com/shorts/pH3u3jWSNB0

(a) Drones

(c) Rockets

(b) Autonomous vehicles

(d) Aircraft

(h) Finance market

(a) Robot parkour

(b) Traffic wave control

(c) Autonomous flight

Outline

Course Overview

Control System Examples

Control System Modeling

Control System Modeling

- ▶ A mathematical model is a key element in the design and analysis of control systems
- Dynamic behavior is described by ordinary differential equations (ODEs)

$$\frac{d}{dt}y(t) + a(t)y(t) = u(t)$$

- ► The relationship between the variables and their derivatives in an ODE may be **linear** or **nonlinear**
- Nonlinear ODEs are often approximated using linearization because linear ODEs are much easier to analyze
- ▶ The coefficients of an ODE may be time-invariant or time-varying
- ► This class will focus on linear time-invariant (LTI) ODE systems

Differential Equations of Physical Systems

Physical systems from different domains (electrical, mechanical, fluid, thermal) contain elements that share similar roles

Variable	Electrical	Mechanical	Fluid	Thermal
Through	Current Force, Torque F		Flow rate	Flow rate
Across	Voltage	Velocity	Pressure	Temperature
Inductive	Inductance	Inverse Stiffness	Inertia	Inductance
Capacitive	Capacitance	Mass, Moment of Inertia	Capacitance	Capacitance
Resistive	Resistance	Friction	Resistance	Resistance

► The dynamic behavior of these elements is described by physical laws, such as Kirchhoff's laws or Newton's laws, enabling an ODE description of the system

Through and Across Element Variables

Table 2.1 Summary of Through- and Across-Variables for Physical Systems Variable Integrated Variable Integrated Through Through-Across Across-**Element** Variable Variable System Element Electrical Current, i Charge, q Voltage Flux linkage, λ_{21} difference, v21 Mechanical Force, F Translational Velocity Displacement translational difference, v21 momentum, P difference, y_{21} Mechanical Torque, T Angular Angular velocity Angular rotational difference, ω_{21} displacement momentum, h difference, θ_{21} Fluid Fluid Volume, V Pressure Pressure volumetric rate difference, P_{21} momentum, γ_{21} of flow, O Heat flow Thermal Temperature Heat energy, Hdifference, \mathcal{T}_{21} rate, q

Inductive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements				
Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
	Electrical inductance	$v_{21} = L \frac{di}{dt}$	$E = \frac{1}{2}Li^2$	$v_2 \circ \overbrace{\qquad \qquad }^L \stackrel{i}{\longrightarrow} v_1$
Inductive storage	Translational spring			$v_2 \circ \overbrace{\hspace{1cm}}^k \overset{v_1}{\circ} F$
	Rotational spring	$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$	$E = \frac{1}{2} \frac{T^2}{k}$	$\omega_2 \circ \overbrace{\qquad \qquad }^k \overset{\omega_1}{\sim} T$
	Fluid inertia	$P_{21} = I \frac{dQ}{dt}$	$E = \frac{1}{2}IQ^2$	$P_2 \circ \bigcap^I Q \circ P_1$

Capacitive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements					
Type of Element		Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
	ſ	Electrical capacitance	$i = C \frac{dv_{21}}{dt}$	$E = \frac{1}{2}Cv_{21}^2$	$v_2 \circ - i C v_1$
Capacitive storage		Translational mass	$F = M \frac{dv_2}{dt}$	$E = \frac{1}{2}Mv_2^2$	$F \xrightarrow{v_2} \overline{M} \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		Electrical capacitance Translational mass Rotational mass Fluid capacitance Thermal capacitance	$T = J \frac{d\omega_2}{dt}$	$E = \frac{1}{2}J\omega_2^2$	$T \longrightarrow \omega_1 = 0$ constant
		Fluid capacitance	$Q = C_f \frac{dP_{21}}{dt}$	$E = \frac{1}{2} C_f P_{21}^2$	$Q \xrightarrow{P_2} C_f \longrightarrow P_1$
	Į	Thermal capacitance	$q = C_t \frac{d\mathcal{T}_2}{dt}$	$E = C_t \mathcal{T}_2$	$q \xrightarrow{\mathcal{T}_2} C_t \xrightarrow{\mathcal{T}_1} =$ $constant$

Resistive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements				
Type of Element	Physical Element	Governing Equation	Energy <i>E</i> or Power <i></i>	Symbol
	Electrical resis	stance $i = \frac{1}{R}v_{21}$ damper $F = bv_{21}$	$\mathcal{P} = \frac{1}{R} v_{21}^2$	$v_2 \circ \!$
	Translational	damper $F = bv_{21}$	$\mathcal{P}=bv_{21}^{2}$	$F \xrightarrow{v_2} \overline{\bigsqcup_b} \circ v_1$
Energy dissipator	s Rotational dan	mper $T = b\omega_{21}$	$\mathcal{P}=b\omega_{21}^{2}$	$T \longrightarrow 0$ ω_2 ω_1
	Fluid resistance	$Q = \frac{1}{R_f} P_{21}$	$\mathcal{P} = \frac{1}{R_f} P_{21}^2$	$P_2 \circ \stackrel{R_f}{\longrightarrow} Q \circ P_1$
	Thermal resist	ance $q = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$	$\mathcal{I}_2 \circ \!$

Spring-Mass-Damper Example

► The behavior of a spring-mass-damper system is described by Newton's second law:

$$M\frac{d^2y(t)}{dt^2} + \underbrace{b\frac{dy(t)}{dt}}_{\text{viscous damper}} + \underbrace{ky(t)}_{\text{spring force}} = \underbrace{r(t)}_{\text{input force}}$$

► The mass displacement y(t) satisfies a second-order linear time-invariant (LTI) ordinary differential equation (ODE)

Parallel RLC Circuit Example

► The behavior of an electrical RLC circuit is described by Kirchhoff's current law:

$$\begin{array}{c|c} r(t) \\ \text{Current} \\ \text{source} \end{array} \qquad R \begin{array}{c|c} + \\ C \end{array} \qquad \begin{array}{c|c} + \\ \hline \end{array} \qquad v(t)$$

$$i_C(t) + i_R(t) + i_L(t) = r(t)$$

- ▶ Parallel devices have the same voltage v(t):
 - Resistor: $v(t) = Ri_R(t)$
 - Inductor: $v(t) = L \frac{di_L(t)}{dt}$
 - Capacitor: $i_C(t) = C \frac{dv(t)}{dt}$
- ▶ The inductor current $i_L(t)$ satisfies a second-order LTI ODE:

$$CL\frac{d^2i_L(t)}{dt^2} + \frac{L}{R}\frac{di_L(t)}{dt} + i_L(t) = r(t)$$

Laplace Transform

- ► The behavior of an LTI ODE system may be studied in the **time domain** $(t \in \mathbb{R})$ or in the **complex (frequency) domain** $(s = \sigma + j\omega \in \mathbb{C})$
- ► The Laplace transform converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain
- Example:
 - ► Time domain LTI ODE:

$$\frac{d}{dt}y(t) + 8y(t) = u(t)$$

Complex domain linear algebraic eq.:

$$sY(s)-y(0)+8Y(s)=U(s)$$

Block Diagram

- The system components may be visualized as a block diagram
- A block represents the input-output relationship of a system component
- ▶ To represent multi-component systems, the blocks are interconnected
- Signals may be added or subtracted using summing points
- A block diagram may represent a system in the time domain or in the complex domain
- ► Time domain:

Laplace domain:

Example: Rotating Disk Speed Control

- Line-cell imaging in biomedical applications uses spinning disk conformal microscope
- ▶ Objective: design a controller for a rotating disk system to ensure the speed of rotation is within a specified percentage of a desired speed
- System components:
 - DC motor: provides speed proportional to the applied voltage
 - ▶ Battery: provides voltage proportional to the desired speed
 - ▶ DC amplifier: amplifies voltage to meet the motor voltage requirements
 - ► Tachometer: measures voltage proportional to the speed of its shaft

Open-Loop Rotating Disk System

Closed-Loop Rotating Disk System

Control System Analysis

- ► The system components are described using LTI ODEs
- ► Time domain:
 - ightharpoonup Desired speed: r(t)

 - ▶ DC motor: $\frac{d}{dt}u(t) + u(t) = 200z(t)$
 - ► Rotating disk: $\frac{d}{dt}y(t) + 8y(t) = u(t)$
 - ► Tachometer: $\frac{d}{dt}b(t) + 4b(t) = 4y(t)$

- Laplace domain:
 - Desired speed: R(s)
 - Amplifier: Z(s) = KR(s)
 - $DC motor: U(s) = \frac{200}{s+1}Z(s)$
 - Rotating disk: $Y(s) = \frac{1}{s+8}U(s)$
 - ► Tachometer: $B(s) = \frac{4}{s+4}Y(s)$

We will study how to choose the amplifier gain K to ensure that system output y(t) tracks a desired reference signal r(t)

Nominal Rotating Disk System

- ▶ A nominal model aims to capture the system behavior accurately but parameter errors or disturbances might be present
- Closed-loop control becomes important when there are parameter errors and disturbances

Low Gain Rotating Disk System

► The DC motor gain might be different in the real system (e.g., 160) compared to the nominal model (e.g., 200)

Slow Rotating Disk System

▶ The disk might rotate slower in the real system (e.g., $\frac{d}{dt}y(t) + 2y(t) = u(t)$) compared to the nominal model (e.g., $\frac{d}{dt}y(t) + 8y(t) = u(t)$)

Open-Loop Step Response

▶ Without feedback, the real system response might be different than what was planned

Closed-Loop Step Response

- ► Feedback improves the sensitivity to parameter errors and disturbances
- Despite the advantages, feedback controllers need to be designed carefully to avoid oscillations and steady-state error

