Outline

Course Overview

Control System Examples

Control System Modeling
Outline

Course Overview

Control System Examples

Control System Modeling
Overview

▶ **ECE 171A: Linear Control System Theory** focuses on modeling, analysis, and design of single-input single-output linear time-invariant control systems with emphasis on frequency-domain techniques

▶ Topics:

▶ **Modeling**: ordinary differential equations, linear time-invariant systems, first-order and second-order systems, block diagrams and signal flow graphs

▶ **Analysis**: transient and steady-state behavior, Laplace transform, stability, root locus, frequency response, Bode plots, Nyquist plots, Nichols plots

▶ **Design**: PID control, loop shaping
Prerequisites

- **Introductory physics**: Newton’s law, Ohm’s law, Kirchhoff’s voltage and current laws
- **Calculus**: derivatives, integration, exponential function, Taylor series
- **Programming experience** with MATLAB, Python, or similar language
- Optional but helpful: ordinary differential equations, linear algebra

Courses that fulfill these prerequisites: **ECE 45 or MAE 40**
Teaching Team

▶ Instructor:
 ▶ Nikolay Atanasov
 ▶ Assistant Professor, ECE Department
 ▶ Email: natanasov@ucsd.edu

▶ Teaching Assistant:
 ▶ Alakh Desai
 ▶ PhD Student, ECE Department
 ▶ Email: ahdesai@ucsd.edu
Discussion Session and Office Hours

▶ Discussion Session
▶ Mondays, 3:00 pm - 3:50 pm, in PCYNH 121
▶ Optional material and examples supplementing the lectures
▶ Please ask questions and start a discussion!

▶ Office Hours
▶ Wednesdays, 1:00 pm - 2:00 pm on Zoom (see Canvas for information)
▶ No new material will be covered
▶ The focus will be on answering your questions and helping you with the material

▶ Additional office hours by appointment

Please try to attend the discussion and office hours. Even if you do not have questions, you can meet new people, help answer questions, and create a supportive community for this class.
Assignments and Grading

- Course website: https://natanaso.github.io/ece171a
- Includes links to:
 - **Canvas**: course password, lecture recordings
 - **Gradescope**: homework submission and grades
 - **Piazza**: discussion and class announcements *(please check regularly!)*

- Assignments:
 - Academic integrity quiz on Canvas *(due by Oct 12)*
 - 6 homework sets (35% of grade)
 - Project (10% of grade)
 - Midterm exam (25% of grade): calculator + single-sided cheat sheet
 - Final exam (30% of grade): calculator + double-sided cheat sheet

- Submission:
 - The assignment release dates are shown on the website
 - The assignment due dates are stated in each assignment
 - Homework sets typically due in 1 week
 - **No late submissions**: homework submitted past the deadline will not be accepted without serious justification

- Grading:
 - Rubric: 85+: A; 80-85: A-; 75-80: B+; 65-75: B; 60-65: B-; 55-60: C+; ...
 - The rubric may be adjusted at the instructor’s discretion
References

- **Primary Textbook:**
 Available at: https://fbswiki.org/

- **Additional References:** listed on the course website (not required)
Course Schedule (Tentative)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture</th>
<th>Material</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oct 02</td>
<td>Introduction</td>
<td>Ch. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 04</td>
<td>Feedback Principles</td>
<td>Ch. 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Oct 09</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 09</td>
<td>System Modeling</td>
<td>Ch. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 11</td>
<td>Solving ODEs</td>
<td>Ch. 5</td>
<td>HW1</td>
</tr>
<tr>
<td>3</td>
<td>Oct 16</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 16</td>
<td>Laplace Transform, Transfer Function</td>
<td>Ch. 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 18</td>
<td>Catch-up</td>
<td></td>
<td>HW2</td>
</tr>
<tr>
<td>4</td>
<td>Oct 23</td>
<td>Discussion[]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 23</td>
<td>Block Diagram, Signal Flow Graph</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 25</td>
<td>Stability, Routh-Hurwitz</td>
<td>Ch. 6</td>
<td>HW3</td>
</tr>
<tr>
<td>5</td>
<td>Oct 30</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct 30</td>
<td>Catch-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 01</td>
<td>Transient and Steady-state Response</td>
<td>Ch. 6</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Nov 06</td>
<td>Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nov 06</td>
<td>Midterm Exam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check the course website for reading material and schedule updates: https://natanaso.github.io/ece171a
Outline

Course Overview

Control System Examples

Control System Modeling
What is a dynamical system?

A dynamical system is a system whose behavior changes over time, often in response to internal or external stimulation.

(a) Pendulum (b) Car suspension (c) Water flow

(d) Atmospheric convection (Lorenz system) (e) Fluid dynamics (f) Sync of fish
What is a control system?

- A **control system** is an interconnection of components (dynamical systems) that provides a desired response.

- A **controller** is a component of a control system that modifies the overall system behavior.

(a) Inverted pendulum (b) Cruise control (c) Wind farm
Control System

- Modern control systems include physical and cyber components

- A **physical component** is a mechanical, electrical, fluid, or thermal device acting as a sensor, actuator, or embedded system component:
 - A **sensor** is a device that provides measurements of a signal of interest *(system output)*
 - An **actuator** is a device that alters the configuration of the system or its environment *(system input)*

- A **cyber component** is a software element that executes a specific function

- **Control system engineering** focuses on:
 - modeling cyber-physical systems,
 - analyzing system behavior,
 - designing control techniques to achieve desired behavior

- **Performance characteristics**: stability, transient and steady-state tracking, rejection of external disturbances, robustness to modeling uncertainties, etc.
Open-Loop vs Closed-Loop Control Systems

- **An open-loop (feedforward) control system** utilizes a controller without measurement feedback of the system output.

- **A closed-loop (feedback) control system** utilizes a controller with measurement feedback of the system output.
Noise and Modeling Errors

- A closed-loop control system uses measurement feedback to compute and reduce the error between the desired and measured output.

- Closed-loop control attenuates the effects of process noise (disturbance), measurement noise, and modeling errors.
Feedback Control Examples

Flyball Governor (1788)
► regulate speed of a steam engine
► reduces the effect of load variations
► major advance of industrial revolution
Feedback Control Examples

(a) Drones

(b) Autonomous vehicles

(c) Rockets

(d) Aircraft
Feedback Control Examples

(e) Biological systems

(f) Environmental systems

(g) Social networks

(h) Finance market
Feedback Control Examples

(a) Robot parkour

(b) Traffic wave control

(c) Autonomous flight
Outline

Course Overview

Control System Examples

Control System Modeling
Control System Modeling

- A mathematical model is a key element in the design and analysis of control systems

- Dynamic behavior is described by **ordinary differential equations** (ODEs)

\[
\frac{d}{dt} y(t) + a(t)y(t) = u(t)
\]

- The relationship between the variables and their derivatives in an ODE may be **linear** or **nonlinear**

- Nonlinear ODEs are often approximated using **linearization** because linear ODEs are much easier to analyze

- The coefficients of an ODE may be **time-invariant** or **time-varying**

- This class will focus on **linear time-invariant** (LTI) ODE systems
Physical systems from different domains (electrical, mechanical, fluid, thermal) contain elements that share similar roles.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Electrical</th>
<th>Mechanical</th>
<th>Fluid</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through</td>
<td>Current</td>
<td>Force, Torque</td>
<td>Flow rate</td>
<td>Flow rate</td>
</tr>
<tr>
<td>Across</td>
<td>Voltage</td>
<td>Velocity</td>
<td>Pressure</td>
<td>Temperature</td>
</tr>
<tr>
<td>Inductive</td>
<td>Inductance</td>
<td>Inverse Stiffness</td>
<td>Inertia</td>
<td>–</td>
</tr>
<tr>
<td>Capacitive</td>
<td>Capacitance</td>
<td>Mass, Moment of Inertia</td>
<td>Capacitance</td>
<td>Capacitance</td>
</tr>
<tr>
<td>Resistive</td>
<td>Resistance</td>
<td>Friction</td>
<td>Resistance</td>
<td>Resistance</td>
</tr>
</tbody>
</table>

The dynamic behavior of these elements is described by physical laws, such as Kirchhoff’s laws or Newton’s laws, enabling an ODE description of the system.
Through and Across Element Variables

<table>
<thead>
<tr>
<th>System</th>
<th>Variable Through Element</th>
<th>Integrated Through-Variable</th>
<th>Variable Across Element</th>
<th>Integrated Across-Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Current, i</td>
<td>Charge, q</td>
<td>Voltage difference, v_{21}</td>
<td>Flux linkage, λ_{21}</td>
</tr>
<tr>
<td>Mechanical translational</td>
<td>Force, F</td>
<td>Translational momentum, P</td>
<td>Velocity difference, v_{21}</td>
<td>Displacement difference, y_{21}</td>
</tr>
<tr>
<td>Mechanical rotational</td>
<td>Torque, T</td>
<td>Angular momentum, h</td>
<td>Angular velocity difference, ω_{21}</td>
<td>Angular displacement difference, θ_{21}</td>
</tr>
<tr>
<td>Fluid</td>
<td>Fluid volumetric rate of flow, Q</td>
<td>Volume, V</td>
<td>Pressure difference, P_{21}</td>
<td>Pressure momentum, γ_{21}</td>
</tr>
<tr>
<td>Thermal</td>
<td>Heat flow rate, q</td>
<td>Heat energy, H</td>
<td>Temperature difference, \mathcal{T}_{21}</td>
<td>---</td>
</tr>
</tbody>
</table>

Copyright © 2017 Pearson Education, All Rights Reserved
Inductive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

<table>
<thead>
<tr>
<th>Type of Element</th>
<th>Physical Element</th>
<th>Governing Equation</th>
<th>Energy E or Power P</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive storage</td>
<td>Electrical inductance</td>
<td>$v_{21} = L \frac{di}{dt}$</td>
<td>$E = \frac{1}{2} Li^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Translational spring</td>
<td>$v_{21} = \frac{1}{k} \frac{dF}{dt}$</td>
<td>$E = \frac{1}{2} \frac{F^2}{k}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotational spring</td>
<td>$\omega_{21} = \frac{1}{k} \frac{dT}{dt}$</td>
<td>$E = \frac{1}{2} \frac{T^2}{k}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluid inertia</td>
<td>$P_{21} = I \frac{dQ}{dt}$</td>
<td>$E = \frac{1}{2} IQ^2$</td>
<td></td>
</tr>
</tbody>
</table>

Copyright ©2017 Pearson Education, All Rights Reserved
Capacitive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

<table>
<thead>
<tr>
<th>Type of Element</th>
<th>Physical Element</th>
<th>Governing Equation</th>
<th>Energy E or Power \mathcal{P}</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitive storage</td>
<td>Electrical capacitance</td>
<td>$i = C \frac{dv_{21}}{dt}$</td>
<td>$E = \frac{1}{2} C v_{21}^2$</td>
<td>$v_2 \rightarrow i \leftarrow C \rightarrow v_1$</td>
</tr>
<tr>
<td></td>
<td>Translational mass</td>
<td>$F = M \frac{dv_2}{dt}$</td>
<td>$E = \frac{1}{2} M v_2^2$</td>
<td>$F \rightarrow v_2$</td>
</tr>
<tr>
<td></td>
<td>Rotational mass</td>
<td>$T = J \frac{d\omega_2}{dt}$</td>
<td>$E = \frac{1}{2} J \omega_2^2$</td>
<td>$T \rightarrow \omega_2$</td>
</tr>
<tr>
<td></td>
<td>Fluid capacitance</td>
<td>$Q = C_f \frac{dP_{21}}{dt}$</td>
<td>$E = \frac{1}{2} C_f P_{21}^2$</td>
<td>$Q \rightarrow P_2$</td>
</tr>
<tr>
<td></td>
<td>Thermal capacitance</td>
<td>$q = C_t \frac{dT_2}{dt}$</td>
<td>$E = C_t T_2$</td>
<td>$q \rightarrow C_t \rightarrow T_2$</td>
</tr>
</tbody>
</table>

Copyright ©2017 Pearson Education, All Rights Reserved
Resistive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

<table>
<thead>
<tr>
<th>Type of Element</th>
<th>Physical Element</th>
<th>Governing Equation</th>
<th>Energy E or Power \mathcal{P}</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy dissipators</td>
<td>Electrical resistance</td>
<td>$i = \frac{1}{R} v_{21}$</td>
<td>$\mathcal{P} = \frac{1}{R} v_{21}^2$</td>
<td>![Electrical resistance symbol]</td>
</tr>
<tr>
<td></td>
<td>Translational damper</td>
<td>$F = b v_{21}$</td>
<td>$\mathcal{P} = b v_{21}^2$</td>
<td>![Translational damper symbol]</td>
</tr>
<tr>
<td></td>
<td>Rotational damper</td>
<td>$T = b \omega_{21}$</td>
<td>$\mathcal{P} = b \omega_{21}^2$</td>
<td>![Rotational damper symbol]</td>
</tr>
<tr>
<td></td>
<td>Fluid resistance</td>
<td>$Q = \frac{1}{R_f} P_{21}$</td>
<td>$\mathcal{P} = \frac{1}{R_f} P_{21}^2$</td>
<td>![Fluid resistance symbol]</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance</td>
<td>$q = \frac{1}{R_t} \mathcal{T}_{21}$</td>
<td>$\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$</td>
<td>![Thermal resistance symbol]</td>
</tr>
</tbody>
</table>
The behavior of a spring-mass-damper system is described by Newton’s second law:

$$M \frac{d^2y(t)}{dt^2} + b \frac{dy(t)}{dt} + ky(t) = r(t)$$

The mass displacement $y(t)$ satisfies a second-order linear time-invariant (LTI) ordinary differential equation (ODE)
Parallel RLC Circuit Example

- The behavior of an electrical RLC circuit is described by Kirchhoff’s current law:

\[r(t) = i_R(t) + i_L(t) + i_C(t) \]

- Parallel devices have the same voltage \(v(t) \):
 - Resistor: \(v(t) = R i_R(t) \)
 - Inductor: \(v(t) = L \frac{d i_L(t)}{dt} \)
 - Capacitor: \(i_C(t) = C \frac{dv(t)}{dt} \)

- The inductor current \(i_L(t) \) satisfies a second-order LTI ODE:

\[C L \frac{d^2 i_L(t)}{dt^2} + \frac{L}{R} \frac{d i_L(t)}{dt} + i_L(t) = r(t) \]
The behavior of an LTI ODE system may be studied in the \textbf{time domain} \((t \in \mathbb{R})\) or in the \textbf{complex (frequency) domain} \((s = \sigma + j\omega \in \mathbb{C})\).

The \textbf{Laplace transform} converts an \textbf{LTI ODE} in the time domain into a \textbf{linear algebraic equation} in the complex domain.

\textbf{Example:}

- Time domain LTI ODE:
 \[
 \frac{d}{dt} y(t) + 8y(t) = u(t)
 \]

 \textbf{Laplace domain linear algebraic eq.:}
 \[
 sY(s) - y(0) + 8Y(s) = U(s)
 \]
The system components may be visualized as a block diagram. A block represents the input-output relationship of a system component. To represent multi-component systems, the blocks are interconnected. Signals may be added or subtracted using summing points. A block diagram may represent a system in the time domain or in the complex domain.

Time domain:

Laplace domain:
Example: Rotating Disk Speed Control

- Line-cell imaging in biomedical applications uses spinning disk conformal microscope

- Objective: design a controller for a rotating disk system to ensure the speed of rotation is within a specified percentage of a desired speed

- System components:
 - DC motor: provides speed proportional to the applied voltage
 - Battery source: provides voltage proportional to the desired speed
 - DC amplifier: amplifies the battery voltage to meet the motor voltage requirements
 - Tachometer: provides output voltage proportional to the speed of its shaft
Open-Loop Rotating Disk System

(a)

Desired speed (voltage) → Controller (Amplifier) → Actuator (DC motor) → Process (Rotating disk) → Actual speed

(b)
Control System Analysis

- The system components are described using LTI ODEs

Time domain:
- Desired speed: \(r(t) \)
- Amplifier: \(z(t) = Kr(t) \)
- DC motor: \(\dot{u}(t) + u(t) = 200z(t) \)
- Rotating disk: \(\dot{y}(t) + 8y(t) = u(t) \)
- Tachometer: \(\dot{b}(t) + 4b(t) = 4y(t) \)

Laplace domain:
- Desired speed: \(R(s) \)
- Amplifier: \(Z(s) = KR(s) \)
- DC motor: \(U(s) = \frac{200}{s+1}Z(s) \)
- Rotating disk: \(Y(s) = \frac{1}{s+8}U(s) \)
- Tachometer: \(B(s) = \frac{4}{s+4}Y(s) \)

- We will study how to choose the amplifier gain \(K \) to ensure that system output \(y(t) \) tracks a desired reference signal \(r(t) \)
Nominal Rotating Disk System

- A nominal model aims to capture the system behavior accurately but parameter errors or disturbances might be present.

- Closed-loop control becomes important when there are parameter errors and disturbances.
The DC motor gain might be different in the real system (e.g., 160) compared to the nominal model (e.g., 200).
The disk might rotate slower in the real system (e.g., $\dot{y}(t) + 2y(t) = u(t)$) compared to the nominal model (e.g., $\dot{y}(t) + 8y(t) = u(t)$)
Open-Loop Step Response

- Without feedback, the real system response might be different than what was planned.
Closed-Loop Step Response

- Feedback improves the sensitivity to parameter errors and disturbances

- Despite the advantages, feedback architectures need to be designed carefully to avoid oscillations and steady-state error