ECE171A: Linear Control System Theory Lecture 3: System Modeling

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

Outline

System Modeling
Solving First-Order LTI ODEs
State-Space Models
Examples
Solving ODEs in MATLAB

System Modeling

- A model is a mathematical representation of a dynamical system
- Models allow us to make predictions about how a system will behave
- There may be multiple models for a single dynamical system
- All models are approximations of the real system behavior
- Whether we choose a simple coarse model or a complex precise model depends on the questions we wish to answer

System Modeling

- Dynamic behavior can be described in several ways:
- ordinary differential equations (ODEs) in continuous time
- partial differential equations (PDEs) when the system behavior is determined by other variables in addition to time
- difference equations (DEs) in discrete time
- The relationships among the variables and their derivatives in these equations may be linear or nonlinear
- The coefficients of these equations may be invariant or varying
- We will focus on linear time-invariant (LTI) ordinary differential equations (ODEs)

Why LTI ODEs?

- Many practically relevant systems can be modeled as LTI ODEs:
- Electric circuits (e.g., RLC circuits).
- Mechanical systems (e.g., spring-mass systems)
- Many techniques have been developed for LTI ODE analysis and design:
- Classical control analysis tools: step, impulse, and frequency response
- Classical control design tools: Bode/Nyquist/Nichols plots, gain/phase margins, loop shaping
- Optimal estimation and control: Kalman filter and linear quadratic regulator (LQR)
- Robust control design: \mathcal{H}_{2} and \mathcal{H}_{∞} control design and μ analysis for structural uncertainty.
- LTI ODEs provide a foundation for nonlinear system analysis and control (e.g., via linearization)

Differential Equations

- A differential equation is any equation involving a function and its derivatives
- Example: $\frac{d}{d t} y(t)=-y(t)$
- A solution to a differential equation is any function that satisfies the equation
- Example: a solution to the differential equation above is:

$$
y(t)=e^{-t}
$$

- Another solution is

$$
y(t)=2 e^{-t}
$$

- A general solution is

$$
y(t)=e^{-t} y(0)
$$

where $y(0) \in \mathbb{R}$ is the initial value of $y(t)$ at $t=0$.

- When the variable is time t, we will use short-hand derivative notation:

$$
\frac{d}{d t} y(t) \equiv \dot{y}(t) \quad \frac{d^{2}}{d t^{2}} y(t) \equiv \ddot{y}(t) \quad \ldots \quad \frac{d^{n}}{d t^{n}} y(t) \equiv y^{(n)}(t)
$$

Ordinary Differential Equations

- An n th-order linear time-invariant ordinary differential equation is:

$$
\frac{d^{n}}{d t^{n}} y(t)+a_{n-1} \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1} \frac{d}{d t} y(t)+a_{0} y(t)=u(t)
$$

- If $u(t) \equiv 0$, then the n th-order LTI ODE is called homogeneous
- A particular solution is a solution $y(t)$ that contains no arbitrary constants
- A general solution is a solution $y(t)$ that contains n arbitrary constants
- An initial value problem is an LTI ODE with initial value constraints:

$$
y\left(t_{0}\right)=y_{0}, \quad \dot{y}\left(t_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1} .
$$

Theorem: Existence and Uniqueness of Solutions

Let $u(t)$ be continuous on an interval $\mathcal{I}=\left[t_{1}, t_{2}\right]$. Then, for any $t_{0} \in \mathcal{I}$, a solution $y(t)$ of the initial value problem exists on \mathcal{I} and is unique.

Example 1

- Consider the homogeneous linear ODE: $\frac{d^{2}}{d t^{2}} y(t)+y(t)=0$
- Two particular solutions are:

$$
\begin{array}{lll}
y_{1}(t)=\cos (t) & \Rightarrow & \frac{d^{2}}{d t^{2}} \cos (t)=-\cos (t) \\
y_{2}(t)=\sin (t) & \Rightarrow & \frac{d^{2}}{d t^{2}} \sin (t)=-\sin (t)
\end{array}
$$

- In fact, any linear combination $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ with $c_{1}, c_{2} \in \mathbb{R}$ is also a solution

Superposition Principle for Homogeneous Linear ODEs

Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions to a homogeneous n th-order linear ODE on an interval \mathcal{I}. Then, any linear combination:

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\ldots+c_{k} y_{k}(t)
$$

is also a solution, where $c_{1}, c_{2}, \ldots, c_{k}$ are constants.

Superposition Principle for Nonhomogeneous Linear ODEs

For $i=1, \ldots, k$, let $y_{p_{i}}(t)$ denote particular solutions to the linear ODEs:

$$
\frac{d^{n}}{d t^{n}} y(t)+a_{n-1} \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1} \frac{d}{d t} y(t)+a_{0} y(t)=u_{i}(t)
$$

Then, $y_{p}(t)=c_{1} y_{p_{1}}(t)+c_{2} y_{p_{2}}(t)+\ldots+c_{k} y_{p_{k}}(t)$ is a particular solution of:

$$
\begin{aligned}
\frac{d^{n}}{d t^{n}} y(t) & +a_{n-1} \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1} \frac{d}{d t} y(t)+a_{0} y(t) \\
& =c_{1} u_{1}(t)+c_{2} u_{2}(t)+\ldots+c_{k} u_{k}(t)
\end{aligned}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are constants.

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

First-Order Homogeneous LTI ODE

- First-order homogeneous LTI ODE:

$$
\dot{y}(t)=a y(t), \quad y(0)=b
$$

- Ansatz ("attempt" in German): an educated guess or an additional assumption made to help solve a problem, which may later be verified
- Guess the solution to the LTI ODE above:

$$
y(t)=e^{a t} b
$$

- Proof:

1. Initial condition: $y(0)=e^{a^{0}} b=b$
2. Differential equation:

$$
\frac{d}{d t} y(t)=\frac{d}{d t} e^{a t} b=a e^{a t} b=a y(t)
$$

First-Order Homogeneous LTI ODE

- First-order homogeneous LTI ODE:

$$
\dot{y}(t)=a y(t), \quad y(0)=b
$$

- Can we obtain a solution without an Ansatz?
- Suppose $y(t) \neq 0$:

$$
\frac{1}{y(t)} \frac{d y(t)}{d t}=a
$$

- Recall that by the chain rule:

$$
\frac{d}{d t} \log y(t)=\frac{1}{y(t)} \frac{d y(t)}{d t}
$$

- Now, we can integrate both sides:

$$
\frac{d}{d t} \log y(t)=a \quad \Rightarrow \quad \int_{0}^{t} \frac{d}{d \tau} \log y(\tau) d \tau=\int_{0}^{t} a d \tau
$$

- By the fundamental theorem of Calculus:

$$
\log y(t)-\log y(0)=a t \quad \Rightarrow \quad y(t)=e^{a t} b
$$

First-Order Nonhomogeneous LTI ODE

- First-order nonhomogeneous LTI ODE:

$$
\dot{y}(t)+a y(t)=u(t)
$$

where $a \in \mathbb{R}$ is a given constant and $u(t)$ is a given function

- Integrating factor: multiply both sides by $\mu(t)=e^{a t}$
- Since $\dot{\mu}(t)=a \mu(t)$, we have:

$$
\frac{d}{d t}(\mu(t) y(t))=\dot{\mu}(t) y(t)+\mu(t) \dot{y}(t)=\mu(t)(a y(t)+\dot{y}(t))=\mu(t) u(t)
$$

- Let $\mu(t) y(t)=g(t)$ and $\mu(t) u(t)=h(t)$ and integrate both sides:

$$
\dot{g}(t)=h(t) \quad \Rightarrow \quad \int \dot{g}(\tau) d \tau=\int h(\tau) d \tau \quad \Rightarrow \quad g(t)=\int h(\tau) d \tau+b
$$

- Thus, the general solution is:

$$
y(t)=\frac{1}{\mu(t)}\left(\int \mu(\tau) u(\tau) d \tau+b\right)=e^{-a t}\left(\int e^{a \tau} u(\tau) d \tau+b\right)
$$

Example 2: First-Order Nonhomogeneous LTI ODE

- Consider a first-order nonhomogeneous LTI ODE with positive input:

$$
\dot{y}(t)+2 y(t)=5, \quad y(0)=1
$$

- Integrating factor: $\mu(t)=e^{2 t}$
- The general solution is

$$
y(t)=e^{-2 t}\left(\int 5 e^{2 \tau} d \tau+b\right)=e^{-2 t}\left(\frac{5}{2} e^{2 t}+b\right)=\frac{5}{2}+b e^{-2 t}
$$

- Initial condition: $y(0)=\frac{5}{2}+b=1$ and thus $b=-\frac{3}{2}$
- Verify the LTI ODE:

$$
\dot{y}(t)+2 y(t)=-\frac{3}{2}(-2) e^{-2 t}+5-3 e^{-2 t}=5
$$

Example 3: First-Order Nonhomogeneous LTI ODE

- Consider a first-order nonhomogeneous LTI ODE with negative input:

$$
\dot{y}(t)+2 y(t)=-5, \quad y(0)=1
$$

- Integrating factor $\mu(t)=e^{2 t}$ and solution:

$$
y(t)=e^{-2 t}\left(\int_{0}^{t}-5 e^{2 \tau} d \tau+b\right)=e^{-2 t}\left(-\frac{5}{2} e^{2 t}+b\right)
$$

- Initial condition: $y(0)=-\frac{5}{2}+b=1$ and thus $b=\frac{7}{2}$
- Check that $y(t)=\frac{7}{2} e^{-2 t}-\frac{5}{2}$ is a solution:

$$
\dot{y}(t)+2 y(t)=-\frac{7}{2}(-2) e^{-2 t}-7 e^{-2 t}-5=-5
$$

Integration by Parts

- Indefinite integral form:

$$
\int u(t) \dot{v}(t) d t=u(t) v(t)-\int \dot{u}(t) v(t) d t
$$

- Definite integral form:

$$
\int_{a}^{b} u(t) \dot{v}(t) d t=u(b) v(b)-u(a) v(a)-\int_{a}^{b} \dot{u}(t) v(t) d t
$$

- Integration by parts is useful to find the antiderivative of terms such as $t e^{2 t}$ and $e^{2 t} \sin t$

Example 4: First-Order LTI ODE with Polynomial Input

- Consider a first-order nonhomogeneous LTI ODE with polynomial input:

$$
\dot{y}(t)+2 y(t)=t, \quad y(0)=1
$$

- Integration by parts with $u(t)=t$ and $v(t)=\frac{1}{2} e^{2 t}$:

$$
y(t)=e^{-2 t}\left(\int e^{2 \tau} \tau d \tau+b\right)=e^{-2 t}\left(\frac{t e^{2 t}}{2}-\frac{e^{2 t}}{4}+b\right)=\frac{1}{2} t-\frac{1}{4}+b e^{-2 t}
$$

where $b=\frac{5}{4}$ satisfies $y(0)=1$

- Verify the LTI ODE:

$$
\dot{y}(t)+2 y(t)=\frac{1}{2}+\frac{5}{4}(-2) e^{-2 t}+t-\frac{1}{2}+\frac{5}{2} e^{-2 t}=t
$$

Example 5: First-Order LTI ODE with Trigonometric Input

- Consider a first-order nonhomogeneous LTI ODE with trigonometric input:

$$
\dot{y}(t)+2 y(t)=\sin (t), \quad y(0)=1
$$

- Integration by parts with $u(t)=\sin (t)$ and $v(t)=\frac{1}{2} e^{2 t}$:

$$
\begin{aligned}
I & =\int e^{2 t} \sin t d t \xlongequal[v(t)=e^{2 t} / 2]{u(t)=\sin (t)} \frac{1}{2} e^{2 t} \sin (t)-\int \frac{1}{2} e^{2 t} \cos (t) d t \\
& =\xlongequal[v(t)=\cos (t)=e^{2 t} / 4]{u} \frac{1}{2} e^{2 t} \sin (t)-\frac{1}{4} e^{2 t} \cos (t)-\int \frac{1}{4} e^{2 t} \sin (t) d t \\
& =\frac{1}{2} e^{2 t} \sin (t)-\frac{1}{4} e^{2 t} \cos (t)-\frac{1}{4} I \\
& \Rightarrow I=\frac{1}{5} e^{2 t}(2 \sin t-\cos t)
\end{aligned}
$$

- Solution: $y(t)=e^{-2 t}(I+b)=\frac{1}{5}(2 \sin t-\cos t)+b e^{-2 t}$, where $b=\frac{6}{5}$ satisfies $y(0)=1$
- Verify the LTI ODE:

$$
\begin{aligned}
\dot{y}(t)+2 y(t) & =\frac{1}{5}(2 \cos t+\sin t)+\frac{6}{5}(-2) e^{-2 t}+\frac{1}{5}(4 \sin t-2 \cos t)+\frac{12}{5} e^{-2 t} \\
& =\sin t
\end{aligned}
$$

Simulation of First-Order LTI ODE Solutions

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

State-Space Model

- An nth-order LTI ODE:

$$
\frac{d^{n}}{d t^{n}} y(t)+a_{n-1} \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1} \frac{d}{d t} y(t)+a_{0} y(t)=u(t)
$$

can be reformulated into a first-order vector LTI ODE of the form:

$$
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} u(t)
$$

- Define variables:

$$
x_{1}(t)=y(t), \quad x_{2}(t)=\frac{d}{d t} y(t), \quad \ldots, \quad x_{n}(t)=\frac{d^{n-1}}{d t^{n-1}} y(t)
$$

- The n th-order linear ODE specifies the following relationships:

$$
\begin{aligned}
& \dot{x}_{1}(t)=x_{2}(t) \\
& \dot{x}_{2}(t)=x_{3}(t) \\
& \vdots \\
& \dot{x}_{n-1}(t)=x_{n}(t) \\
& \dot{x}_{n}(t)=-a_{0} x_{1}(t)-a_{1} x_{2}(t)-\cdots-a_{n-1} x_{n}(t)+u(t)
\end{aligned}
$$

State-Space Model

- Let $\mathbf{x}(t):=\left[\begin{array}{llll}x_{1}(t) & x_{2}(t) & \cdots & x_{n}(t)\end{array}\right]^{\top}$ be a vector called system state
- The forcing function $u(t)$ is called system control input
- A state-space model of the n th-order linear ODE is obtained by rewriting the equations in vector-matrix form:

$$
\dot{\mathbf{x}}(t)=\underbrace{\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & \cdots & -a_{n-1}
\end{array}\right]}_{\mathbf{A}} \mathbf{x}(t)+\underbrace{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]}_{\mathbf{B}} u(t)
$$

- The system output $y(t)$ can be obtained from the state $\mathbf{x}(t)$ as:

$$
y(t)=\underbrace{\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]}_{\mathbf{C}} \mathbf{x}(t)
$$

State-Space Model

- An LTI ODE state-space model of a dynamical system is:

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t) & =\mathbf{C} \mathbf{x}(t)+\mathbf{D u}(t)
\end{aligned}
$$

with:

- state: $\mathrm{x} \in \mathbb{R}^{n}$
- input: $\mathbf{u} \in \mathbb{R}^{m}$
\rightarrow output: $\mathbf{y} \in \mathbb{R}^{p}$
- parameters: $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{B} \in \mathbb{R}^{n \times m}, \mathbf{C} \in \mathbb{R}^{p \times n}, \mathbf{D} \in \mathbb{R}^{p \times m}$
- Single-input single-output (SISO) system: $m=p=1$
- Multi-input multi-output (MIMO) system: $m, p>1$

State-Space Model Variables

- State-space model variables:
- State: consists of variables that capture information from the past motion of the system sufficient to predict the future motion
- Input: consists of external effects acting on the system
- Output: consists of measured variables
- Parameters: describe the state evolution in the form of an update rule
- The choice of state is not unique:
- There may be many choices of variables that are sufficient to describe the system evolution
- The choice of input and output depends on the point of view
- Inputs in one model might be outputs of another model (e.g., the output of a cruise controller provides the input to the vehicle model)
- Outputs are variables (often states) that can be measured and depend on what components of the system interact with external system components

Historical Perspectives

- In the 1940s, when control theory emerged as a discipline, the modeling approach was strongly influenced by input-output models used in electrical engineering
- An algebraic relationship, called transfer function, between the input and the output of an LTI ODE system can be obtained by transforming it from the time domain to the complex domain via a Laplace transform
- In the 1950s, a second wave of control developments, inspired by mechanics, focused on state-space models
- Both perspectives provide useful and often distinct information about the system behavior and offer different tools for control analysis and design
- State-space techniques generalize more directly and are easier to use for MIMO systems

Nonlinear ODEs

- In general, we may have a nonlinear ODE initial value problem:

$$
\dot{\mathbf{x}}(t)=\mathbf{F}(\mathbf{x}(t)), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

- A function $\mathbf{s}(t)$ is a solution to the initial value problem on interval $\left[t_{0}, t_{\mathrm{f}}\right]$ if:

$$
\mathbf{s}\left(t_{0}\right)=\mathbf{x}_{0} \quad \text { and } \quad \frac{d}{d t} \mathbf{s}(t)=\mathbf{F}(\mathbf{s}(t)), \quad \forall t_{0}<t<t_{\mathrm{f}}
$$

- If the function $\mathbf{F}(\mathbf{x})$ is well-behaved (Lipschitz continuous), then the initial value problem has a unique solution
- A nonlinear ODE initial value problem:
- may not have a solution (see Example 5.2: $\dot{x}=x^{2}$)
- may not have a unique solution (see Example 5.3: $\dot{x}=2 \sqrt{\bar{x}}$)

Nonlinear Systems

- Nonlinear State-space Model:

$$
\left\{\begin{array} { l }
{ \dot { \mathbf { x } } (t) = \mathbf { f } (\mathbf { x } (t) , \mathbf { u } (t)) } \\
{ \mathbf { y } (t) = \mathbf { h } (\mathbf { x } (t) , \mathbf { u } (t)) }
\end{array} \quad \text { v.s. } \quad \left\{\begin{array}{l}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \\
\mathbf{y}(t)=\mathbf{C x}(t)+\mathbf{D u}(t)
\end{array}\right.\right.
$$

- Control problem: design a function $\mathbf{u}=\mathbf{k}(\mathbf{x})$, called feedback control law, such that:
- Regulation problem: the state converges to zero: $\mathbf{x}(t) \rightarrow \mathbf{0}$
- Servo problem: the state tracks a reference signal: $\mathbf{x}(t) \rightarrow \mathbf{r}(t)$
- Closed-loop system:

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x}))=\mathbf{F}(\mathbf{x})
$$

Discrete-time Systems

- It some situations, it is natural to describe the evolution of a system at discrete instants of time rather than continuously in time
- Time step: $k=0,1,2, \ldots$
- Discrete-time nonlinear system: modeled by nonlinear difference equation:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \\
\mathbf{y}_{k} & =\mathbf{h}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)
\end{aligned}
$$

- Discrete-time linear system: modeled by linear difference equation:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{A} \mathbf{x}_{k}+\mathbf{B} \mathbf{u}_{k} \\
\mathbf{y}_{k} & =\mathbf{C} \mathbf{x}_{k}+\mathbf{D} \mathbf{u}_{k}
\end{aligned}
$$

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

RL Circuit

R : Resistance
L: Inductance

$$
\begin{array}{cc}
V_{R}=R i: & \text { Resistor } \\
V_{L}=L \frac{d i}{d t}: & \text { Inductor }
\end{array}
$$

- Kirchhoff's voltage law:

$$
V_{S}-V_{R}-V_{L}=0
$$

- System model:

$$
L \frac{d i}{d t}=V_{S}-R i
$$

- State-space model:
- Variables: $x=i, u=V_{S}, y=V_{R}$
- Model:

$$
\begin{aligned}
& \dot{x}=-\frac{R}{L} x+\frac{1}{L} u \\
& y=R x
\end{aligned}
$$

Spring-Mass System

$$
\begin{aligned}
m & =\text { mass } \\
F & =\text { external force } \\
c & =\text { friction (damper) } \\
k & =\text { spring stiffness } \\
q & =\text { deviation from rest position }
\end{aligned}
$$

- System model: from Newton's second law:

$$
m \ddot{q}+c \dot{q}+k q=F
$$

- State-space model:
- Variables: $x_{1}=q, x_{2}=\dot{q}, y=x_{1}=q, u=F$
- Model:

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{1}{m}\left(-c x_{2}-k x_{1}+u\right)
\end{array}\right] \Leftrightarrow\left\{\begin{array}{l}
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{c}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+0 u
\end{array}, \$\right. \text { (}}
\end{array}\right.
$$

Speed Control

- Variables: position p, velocity v, engine force $F_{\text {engine }}$, mass m, gravity acceleration g, road slope θ
- System model: from Newton's second law:

$$
\begin{aligned}
\dot{p} & =v \\
m \dot{v} & =F_{\text {engine }}-m g \sin \theta
\end{aligned}
$$

- State-space model:
- Variables: $x_{1}=p, x_{2}=\dot{p}, y=x_{2}=v, u_{1}=F_{\text {engine },} u_{2}=g \sin (\theta)$
- Model:

$$
\left\{\begin{array} { l }
{ [\begin{array} { l }
{ \dot { x } _ { 1 } } \\
{ \dot { x } _ { 2 } }
\end{array}] = [\begin{array} { c }
{ x _ { 2 } } \\
{ \frac { 1 } { m } u _ { 1 } - u _ { 2 } }
\end{array}] } \\
{ y = x _ { 2 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{m} & -1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
y=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
\end{array}\right.\right.
$$

Inverted Pendulum

$$
\begin{aligned}
m & =\text { mass } \\
I & =\text { length } \\
u & =\text { external force } \\
\theta & =\text { angle }
\end{aligned}
$$

- Torque: $T=m g / \sin \theta-u l \cos \theta$
- Moment of inertia: $J=m l^{2}$
- System model: from Newton's second law:

$$
m l^{2} \ddot{\theta}=m g l \sin \theta-u l \cos \theta
$$

- State-space model:
- Variables: $x_{1}=\theta, x_{2}=\dot{\theta}, y=\theta$
- Model (nonlinear):

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right] } & =\left[\frac{m g / \sin \left(x_{1}\right)-u / \cos \left(x_{1}\right)}{m l^{2}}\right] \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+0 u
\end{aligned}
$$

Population Dynamics

- Population growth is a complex dynamic process that involves the interaction of one or more species with their environment and the larger ecosystem
- Variables: $x(t)$: species population at time t, b : birth rate, d : death rate, $r=(b-d)$: differential birth rate, k : carying capacity of the environment
- Logistic growth model:

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{k}\right), \quad x \geq 0
$$

- Logistic growth model simulation with $r=1.2$ and $k=10$:

Outline

System Modeling
Solving First-Order LTI ODEs
State-Space Models
Examples

Solving ODEs in MATLAB

Numerical ODE Solutions: Matlab ode45

- Matlab ode45 function:

$$
[t, x]=\text { ode } 45(\text { odefun,tspan }, x 0)
$$

- odefun: function f defining the ode $\dot{x}=f(t, x)$
- tspan: time interval $\left[t_{0}, t_{f}\right]$
- x0: initial condition x_{0}
- detailed description: https://www.mathworks.com/help/matlab/ref/ode45.html

Example 1

- Consider the initial value problem:

$$
\dot{x}=x, \quad x(0)=10
$$

- Determine the solution for $t \in[0,5]$

```
%----- Example 1 -------
% \dot x = x,
% with x(0) = 10
%-----------------------
f1 = @(t,x)(x); % vector field
[ts,xs] = ode45(f1,[0,5],10);
plot(ts,xs);
```


Example 2

- Consider the initial value problem:

$$
\dot{x}=-x, \quad x(0)=10
$$

- Determine the solution for $t \in[0,5]$

```
%----- Example 2 -------
% \dot x = -x,
% with x(0) = 10
%----------------------
f2 = @(t,x)(-x); % vector field
[ts,xs] = ode45(f2,[0,5],10);
plot(ts,xs);
```


Example 3

- Consider the initial value problem:

$$
\ddot{z}-3 \dot{z}-18 z=0, \quad z(0)=3, \dot{z}(0)=9
$$

- Determine the solution for $t \in[0,5]$
- State-space model:
- Variables: $x_{1}(t)=z(t)$ and $x_{2}(t)=\dot{z}(t)$
- Model:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
18 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
3 \\
9
\end{array}\right]
$$

\%------ Example 3

$\% \quad \backslash$ ddot $z-3 \backslash \operatorname{dot} z-18 z=0$
$\% \quad$ with $z(0)=3$, $\backslash \operatorname{dot} z(0)=9$
\%--------------------------
[ts,xs] = ode45(@f3,[0,5],[3;9]); plot(ts,xs);
function $d x=f 3(t, x)$ $\mathrm{dx}=[01 ; 183] * \mathrm{x}$; end

Example 4 \& 5

```
%------ Example 4 -------------
% \ddot z + 6 \dot z + 9z = 0
% with z(0) = 2, \dot z(0) = -4
%-----------------------------
[ts,ys] = ode45(@f4,[0,5],10);
function dx = f4(t,x)
    dotx = [0 1; -9 -6]*x;
end
```

```
%------ Example 5 --------
% \ddot z - 6 \dot z + 13 z = 0
% with z(0) = 3, \dot z(0) = 17
%------------------------
[ts,ys] = ode45(@f5,[0,20],[3;17]);
function dx = f5(t,x)
    dx = [0 1; -13 6]*x;
end
```


