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Block Diagram
▶ The Laplace transform converts an LTI ODE in the time domain into a

linear algebraic equation in the complex domain

▶ Transfer function: a description of the input-output relationship of a SISO
LTI ODE system as a ratio of the output-to-input Laplace transforms with
zero initial conditions:

G (s) =
Y (s)

U(s)

▶ The transfer functions of system elements can be represented as blocks in a
block diagram to obtain a powerful algebraic method to analyze complex
LTI ODE systems

Figure: A block diagram for a feedback control system
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Block Diagram

▶ Block: represents input-output relationship of a system component either in
the time domain (LTI ODE) or in the complex domain (transfer function)

▶ Block diagram: interconnects blocks to represent a multi-element system

▶ Summing point: adds or subtracts two or more signals
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Block Diagram Transformations

▶ A block diagram can be simplified using equivalent transformations

▶ Parallel connection: if two or more elements are connected in parallel, the
total transfer function is the sum of the individual transfer functions:

⇒

▶ Series connection: if two or more elements are connected in series, the total
transfer function is the product of the individual transfer functions:

⇒
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Block Diagram Transformations
▶ Feedback connection: two or more elements are connected in a loop

⇒

▶ Forward path:
Y (s) = G (s)E (s)

▶ Feedback path:
E (s) = R(s)− H(s)Y (s)

▶ Equivalent transfer function:

Y (s) = G (s) [R(s)− H(s)Y (s)] ⇒ [1 + G (s)H(s)]Y (s) = G (s)R(s)

⇒ Y (s) =

[
G (s)

1 + G (s)H(s)

]
R(s)
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MATLAB Block Diagram Functions

▶ SYS = tf(NUM,DEN): creates a continuous-time transfer function SYS with
numerator NUM and denominator DEN:

1 dcmotor = tf(200,[1 1]);

▶ SYS = series(SYS1,SYS2): series connection of SYS1 and SYS2:

1 fwdsys = series(tf(200,[1 1]), tf(1,[1 8]));

▶ SYS = parallel(SYS1,SYS2): parallel connection of SYS1 and SYS2

1 fwdsys = parallel(tf(200,[1 1]), tf(1,[1 8]));

▶ SYS = feedback(SYS1, SYS2, sign): feedback connection of SYS1 and SYS2:

1 fbksys = feedback(series(tf(200,[1 1]), tf(1,[1 8])),tf(1,[0.25 1]))
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Example: Block Diagram Reduction

▶ Consider a multi-loop feedback control system:

▶ Apply equivalent transformations to eliminate the feedback loops and obtain

the system transfer function Y (s)
R(s)
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Example: Block Diagram Reduction
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Signal Flow Graph

▶ Signal Flow Graph: a graphical representation of a control system
consisting of nodes connected by branches

▶ Node: a junction point representing a signal variable as the sum of all signals
entering it

▶ Branch: a directed line connecting two nodes with an associated transfer
function

▶ Path: continuous succession of branches traversed in the same direction

▶ Forward Path: starts at an input node, ends at an output node, and no
node is traversed more than once

▶ Path Gain: the product of all branch gains along the path

▶ Loop: a closed path that starts and ends at the same node and no node is
traversed more than once

▶ Non-touching Loops: loops that do not contain common nodes
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Block Diagram vs Signal Flow Graph

(a) Block Diagram

(b) Signal Flow Graph
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Mason’s Gain Formula

▶ A method for reducing a signal flow graph to a single transfer function

▶ The transfer function T ij(s) from input Xi (s) to any variable Xj(s) is:

T ij(s) =
Xj(s)

Xi (s)
=

∑
k P

ij
k (s)∆

ij
k (s)

∆(s)

where:
▶ ∆(s): graph determinant
▶ P ij

k (s): gain of the k-th forward path between Xi (s) and Xj(s)
▶ ∆ij

k (s): graph determinant with the loops touching the k-th forward path
between Xi (s) and Xj(s) removed

▶ The transfer function T nj(s) from non-input Xn(s) to variable Xj(s) is:

T nj(s) =
Xj(s)

Xn(s)
=

Xj(s)/Xi (s)

Xn(s)/Xi (s)
=

T ij(s)

T in(s)
=

∑
k P

ij
k (s)∆

ij
k (s)∑

k P
in
k (s)∆

in
k (s)
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Mason’s Gain Formula

▶ Ln(s): gain of the n-th loop

▶ ∆(s): graph determinant

∆(s) = 1−
∑

(individual loop gains)

+
∑∏

(gains of all 2 non-touching loop combinations)

−
∑∏

(gains of all 3 non-touching loop combinations)

+ · · ·

= 1−
∑
n

Ln(s) +
∑
n,m

nontouching

Ln(s)Lm(s)−
∑
n,m,p

nontouching

Ln(s)Lm(s)Lp(s) + · · ·

▶ ∆ij
k (s): graph determinant with the loops touching the k-th forward path

between Xi (s) and Xj(s) removed
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Mason’s Gain Formula Example 1

▶ Determine the transfer function Y (s)
R(s) using Mason’s gain formula

▶ Forward paths from R(s) to Y (s):

P1(s) = G1(s)G2(s)G3(s)G4(s)

P2(s) = G5(s)G6(s)G7(s)G8(s)

▶ Loop gains:

L1(s) = G2(s)H2(s), L2(s) = H3(s)G3(s),

L3(s) = G6(s)H6(s), L4(s) = G7(s)H7(s)
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Mason’s Gain Formula Example 1

▶ Determinant:

∆(s) = 1− (L1(s) + L2(s) + L3(s) + L4(s))

+ (L1(s)L3(s) + L1(s)L4(s) + L2(s)L3(s) + L2(s)L4(s))

▶ Cofactor of path 1:
∆1(s) = 1− (L3(s) + L4(s))

▶ Cofactor of path 2:
∆2(s) = 1− (L1(s) + L2(s))

▶ Transfer function:

T (s) =
P1(s)∆1(s) + P2(s)∆2(s)

∆(s)
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Mason’s Gain Formula Example 1

▶ The transfer function can also be obtained using block diagram
transformations:

T (s) = G1(s)

(
G2(s)

1− G2(s)H2(s)

)(
G3(s)

1− G3(s)H3(s)

)
G4(s)

+ G5(s)

(
G6(s)

1− G6(s)H6(s)

)(
G7(s)

1− G7(s)H7(s)

)
G8(s)

= G1(s)G2(s)G3(s)G4(s)
∆1(s)

∆(s)
+ G5(s)G6(s)G7(s)G8(s)

∆2(s)

∆(s)

19



Mason’s Gain Formula Example 2

▶ Determine the transfer function Y (s)
R(s) using Mason’s gain formula

▶ Forward paths from R(s) to Y (s):

P1(s) = G1(s)G2(s)G3(s)G4(s)G5(s)G6(s)

P2(s) = G1(s)G2(s)G7(s)G6(s)

P3(s) = G1(s)G2(s)G3(s)G4(s)G8(s)
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Mason’s Gain Formula Example 2

▶ Loop gains:

L1(s) = −G2(s)G3(s)G4(s)G5(s)H2(s), L2(s) = −G5(s)G6(s)H1(s),

L3(s) = −G8(s)H1(s), L4(s) = −G7(s)H2(s)G2(s)

L5(s) = −G4(s)H4(s), L6(s) = −G1(s)G2(s)G3(s)G4(s)G5(s)G6(s)H3(s)

L7(s) = −G1(s)G2(s)G7(s)G6(s)H3(s), L8(s) = −G1(s)G2(s)G3(s)G4(s)G8(s)H3(s)
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Mason’s Gain Formula Example 2

▶ Cofactors: ∆1(s) = ∆3(s) = 1 and ∆2(s) = 1− L5(s)

▶ Determinant: L5 does not touch L4 or L7 and L3 does not touch L4:

∆(s) = 1− (L1(s) + L2(s) + L3(s) + L4(s) + L5(s) + L6(s) + L7(s) + L8(s))

+ (L5(s)L4(s) + L5(s)L7(s) + L3(s)L4(s))

▶ Transfer function:

T (s) =
P1(s) + P2(s)∆2(s) + P3(s)

∆(s)
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Mason’s Gain Formula Example 3

▶ Consider a ladder circuit with one energy storage element

▶ Determine the transfer function from V1(s) to V3(s)

▶ The current and voltage equations are:

I1(s) =
1

R
(V1(s)− V2(s)) I2(s) =

1

R
(V2(s)− V3(s))

V2(s) = R(I1(s)− I2(s)) V3(s) =
1

Cs
I2(s)
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Mason’s Gain Formula Example 3

▶ Admittance: G = 1
R

▶ Impedence: Z (s) = 1
Cs
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Mason’s Gain Formula Example 3

▶ Forward path: P1(s) = GRGZ (s) = GZ (s) = 1
RCs

▶ Loops: L1(s) = −GR = −1, L2(s) = −GR = −1, L3(s) = −GZ (s)

▶ Cofactor: all loops touch the forward path: ∆1(s) = 1

▶ Determinant: loops L1(s) and L3(s) are non-touching:

∆(s) = 1− (L1(s) + L2(s) + L3(s)) + L1(s)L3(s) = 3 + 2GZ (s)

▶ Transfer function:

T (s) =
V3(s)

V1(s)
=

P1(s)

∆(s)
=

GZ (s)

3 + 2GZ (s)
=

1/(3RC )

s + 2/(3RC )
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Mason’s Gain Formula Example 3

▶ Determine the transfer function from I1(s) to I2(s)

▶ Instead of re-drawing the signal flow graph, we can use:

I2(s)

I1(s)
=

I2(s)/V1(s)

I1(s)/V1(s)
=

G

G (2 + GZ (s))
=

1

2 + GZ (s)
=

s

2s + 1/(RC )

▶ One forward path from V1(s) to I2(s) with gain GRG = G and cofactor 1

▶ One forward path from V1(s) to I1(s) with gain G and cofactor
1− (L2(s) + L3(s)) = 2 + GZ (s)
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Mason’s Gain Formula Example 4

▶ Determine the transfer function from R(s) to C (s)

▶ Forward paths:

P1(s) = G1(s)G2(s)G3(s) P2(s) = G4(s)

▶ Loops:

L1(s) = −G1(s)G2(s)H1(s) L2(s) = −G2(s)G3(s)H2(s)

L3(s) = −G1(s)G2(s)G3(s)H3(s) L4(s) = −G4(s)H3(s)

L5(s) = G2(s)H1(s)G4(s)H2(s)

27



Mason’s Gain Formula Example 4

▶ Cofactors: both forward paths touch all loops: ∆1(s) = ∆2(s) = 1

▶ Determinant: all loop pairs are touching:

∆(s) = 1− (L1(s) + L2(s) + L3(s) + L4(s) + L5(s))

▶ Transfer function:

T (s) =
C (s)

R(s)
=

P1(s) + P2(s)

∆(s)
=

G1(s)G2(s)G3(s) + G4(s)

∆(s)
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Parameter Sensitivity

▶ Feedback control is useful for reducing sensitivity to parameter variations in
the plant G (s)

▶ Transfer function:

T (s) =
Y (s)

R(s)
=

G (s)F (s)

1 + G (s)F (s)H(s)

▶ Suppose that G (s) undergoes a change ∆G (s) so that the true plant model
is G (s) + ∆G (s)

▶ What is the change ∆T (s) in the overall transfer function T (s)?
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Parameter Sensitivity

▶ Since T (s) and G (s) might have different units, parameter sensitivity is
defined as a percentage change in T (s) over percentage change in G (s)

▶ Parameter sensitivity: ratio of the incremental change in the overall system
transfer function to the incremental change in the transfer function of one
component:

ST
G (s) =

dT (s)

dG (s)

G (s)

T (s)
≈ ∆T (s)/T (s)

∆G (s)/G (s)

▶ Parameter sensitivity should be small to allow robustness to changes in G (s)

▶ Conversely, the transfer function of elements with high sensitivity should be
estimated well because minor mismatch might have a significant effect on the
overall system transfer function. These are the system elements we should
really be careful about.
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Return Difference

▶ Hendrik Bode was interested in measuring the effect of
feedback on a specific element in a closed-loop control
system

▶ Bode defined return difference as an impulse input
U(s) = 1 at a system element minus the loop transfer
function L(s) back to the element:

ρ(s) = 1− L(s)

▶ Return difference computation:
▶ open the feedback loop immediately prior to the element of interest

▶ compute the transfer function L(s) = A2(s)
A1(s)

from the element input (A1(s))

back to the cut connection (A2(s))

▶ the return difference is ρ(s) = 1− L(s)
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Return Difference Example 1

▶ Return difference with respect to G (s)

▶ Cut the loop immediately prior to G (s)

▶ Compute the loop gain: L(s) = A2(s)
A1(s)

= −G (s)H(s)F (s)

▶ Return difference: ρG (s) = 1− L(s) = 1 + G (s)H(s)F (s)
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Return Difference Example 2

▶ Return difference with respect to Gb(s)

▶ Cut the loop immediately prior to Gb(s)

▶ Compute the loop gain via Mason’s formula:

L(s) =
G1(s)∆1(s)

∆(s)
=

−H(s)Ga(s)Gb(s)

1− H(s)Ga(s)Gc(s)

▶ Return difference:

ρGb
(s) = 1− L(s) = 1 +

H(s)Ga(s)Gb(s)

1− H(s)Ga(s)Gc(s)
=

1 + H(s)Ga(s)(Gb(s)− Gc(s))

1− H(s)Ga(s)Gc(s)
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Return Difference Example 3

▶ Return difference with respect to G2(s)

▶ Cut the loop immediately prior to G2(s)

▶ Compute the loop gain via Mason’s formula:

L(s) =
−G2(s)H1(s)G1(s)− G2(s)G3(s)H2(s)− G2(s)G3(s)H3(s)G1(s) + G2(s)H1(s)G4(s)H2(s)

1 + G4(s)H3(s)

▶ Return difference: ρG2(s) = 1− L(s)
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Parameter Sensitivity is Inverse Return Difference
▶ How is parameter sensitivity related to return difference?

For a control system with a single feedback loop, parameter sensitivity SG (s) is
equal to the inverse of the return difference ρG (s).

SG (s) =
dT (s)

dG (s)

G (s)

T (s)
=

d

dG (s)

(
G (s)F (s)

1 + G (s)F (s)H(s)

)
G (s)

T (s)

=
F (s)

(1 + G (s)F (s)H(s))2
G (s)

T (s)
=

1

1 + G (s)F (s)H(s)

=
1

1− L(s)
=

1

ρG (s) 36



Canonical Feedback Control Architecture

▶ Transfer function:

T (s) =
Y (s)

R(s)
= T4(s) +

T1(s)G (s)T3(s)

1− G (s)T2(s)

▶ Sensitivity of T (s) with respect to G (s):

dT

dG
= T1T3

(
1

1− GT2
+

GT2

(1− GT2)2

)
=

T1T3

(1− GT2)2

ST
G =

G

T

dT

dG
=

G (1− GT2)

T4(1− GT2) + T1T3G

T1T3

(1− GT2)2

=
GT1T3

T4(1− GT2)2 + T1T3G (1− GT2)

=

(
1

1− GT2

)(
1

1 + T4(1− GT2)/(GT1T3)

)
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Canonical Feedback Control Architecture

▶ Transfer function:

T (s) =
Y (s)

R(s)
= T4(s) +

T1(s)G (s)T3(s)

1− G (s)T2(s)

▶ Sensitivity of T (s) with respect to G (s):

ST
G (s) =

(
1

1− G (s)T2(s)

)(
1

1 + T4(s)(1− G (s)T2(s))/(G (s)T1(s)T3(s))

)
▶ Note that G (s) does not affect T4(s) in the transfer function. Consider only

the portion that G (s) affects:

T ′(s) =
T1(s)G (s)T3(s)

1− G (s)T2(s)

▶ Letting T4(s) = 0 in ST
G (s) shows that ST ′

G (s) is the inverse of the return
difference:

ST ′

G (s) =
1

1− G (s)T2(s)
=

1

ρT
′

G (s)
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Example: Feedback OpAmp Sensitivity

▶ Feedback amplifier with input voltage R(s),
feedforward gain k , feedback gain β, and output
voltage Y (s)

▶ Transfer function: T (s) = Y (s)
R(s) = k

1−kβ

▶ Return difference: ρk = 1− kβ

▶ Sensitivity wrt k: ST
k = 1

1−kβ

▶ Sensitivity wrt β: ST
β = β

T
dT
dβ = β(1−kβ)

k
k2

(1−βk)2 = kβ
1−kβ

▶ When k ≈ 103 and β ≈ −0.1, then ST
k ≈ 0 and ST

β ≈ −1.

▶ When designing an OpAmp, the forward gain k can be arbitrary but we need
to be careful with the design of β because it affects the response almost
one-to-one
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