ECE171A: Linear Control System Theory Lecture 8: System Response

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

System Response

Consider an LTI ODE system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

The system output satisfies the convolution equation:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \int_{t_0}^t \mathbf{C}e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau + \mathbf{D}\mathbf{u}(t)$$

- The response y(t) is evaluated by separating out the short-term response from the long-term response
- Transient response: the response after an input is applied and before the output settles at its final value
- Steady-state response: the portion of the output response that reflects the long-term behavior of the system under the given input
 - For constant inputs, the steady-state response will often be constant (e.g., step response)
 - For periodic inputs, the steady-state response will often be periodic (e.g., frequency response)

System Response

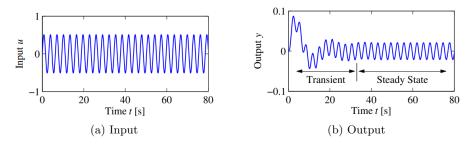


Figure 6.8: Transient versus steady-state response. The input to a linear system is shown in (a), and the corresponding output with x(0) = 0 is shown in (b). The output signal initially undergoes a transient before settling into its steady-state behavior.

Test Input Signals

The transient and steady-state response of a system are often studied for specific test input signals

Test Signal	<i>u</i> (<i>t</i>)	U(s)
Impulse	$egin{aligned} u(t) &= \delta(t) = egin{cases} \infty, & t = 0, \ 0, & t eq 0 \ u(t) &= H(t) = \int_{-\infty}^t \delta(au) d au = egin{cases} 1, & t \ge 0, \ 0, & t < 0 \ \end{bmatrix} \end{aligned}$	U(s) = 1
Step		$U(s) = \frac{1}{s}$
Ramp	$u(t)=tH(t)=egin{cases}t,&t\geq0,\0,&t<0\end{cases}$	$U(s) = rac{1}{s^2}$
Parabola	$u(t) = rac{t^2}{2} H(t) = egin{cases} rac{t^2}{2}, & t \geq 0, \ 0, & t < 0 \end{cases}$	$U(s) = \frac{1}{s^3}$
Sine	$u(t)=egin{cases} \sin(\omega t), & t\geq 0,\ 0, & t< 0 \end{cases}$	$U(s) = rac{\omega}{s^2 + \omega^2}$
Cosine	$u(t) = egin{cases} \sin(\omega t), & t \ge 0, \ 0, & t < 0 \ u(t) = egin{cases} \cos(\omega t), & t \ge 0, \ 0, & t < 0, \ 0, & t < 0 \ u(t) = egin{cases} e^{s_0 t}, & t \ge 0, \ 0, & t < 0, \ 0, & t < 0 \ \end{array}$	$U(s) = rac{s}{s^2 + \omega^2}$
Exponential	$u(t)=egin{cases} e^{s_0t}, & t\geq 0,\ 0, & t< 0 \end{cases}$	$U(s) = \frac{1}{s-s_0}$

MATLAB Test Input Functions

SYS = zpk(Z,P,K) creates a continuous-time zero-pole-gain (zpk) model SYS with zeros Z, poles P, and gains K:

fbksys = zpk([-4],[-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i],8);

Y = step(SYS,T): computes the step response Y of SYS at times T

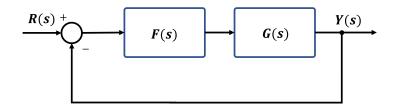
t = 0:0.01:5; step(fbksys,t);

2

Y = lsim(SYS,U,T): computes the output response Y of SYS with input U at times T

```
[u,t] = gensig('square',4,10,0.1);
lsim(fbksys,u,t);
```

Steady-State Error



- Consider a feedback system with controller F(s) and plant G(s)
- The forward-path gain F(s)G(s) is a rational function of the form:

$$F(s)G(s) = k \frac{(s-z_1)\cdots(s-z_m)}{s^q(s-p_{q+1})\cdots(s-p_n)}$$

where $0 \le q \le n$ explicitly denotes the number of poles equal to zero:

$$p_1=p_2=\cdots=p_q=0$$

Steady-State Error

- We will examine the steady-state error for test signals of the form r(t) = t^d/d! for t ≥ 0, such as step (d = 0), ramp (d = 1), parabola (d = 2), etc.
- Consider the error signal e(t) = r(t) y(t) with Laplace transform:

$$E(s) = R(s) - Y(s) = R(s) - F(s)G(s)E(s)$$

The reference-to-error transfer function is:

$$E(s) = \frac{1}{1 + F(s)G(s)}R(s)$$

• When $r(t) = t^d/d!$ and $R(s) = 1/s^{d+1}$, the steady-state error can be obtained by the final value theorem:

$$\lim_{t\to\infty} e(t) = \lim_{s\to0} sE(s) = \lim_{s\to0} \frac{1}{(1+F(s)G(s))s^d}$$

Steady-State Error

• When $r(t) = t^d/d!$ and $R(s) = 1/s^{d+1}$, the steady-state error is:

$$\lim_{t\to\infty} e(t) = \lim_{s\to0} sE(s) = \lim_{s\to0} \frac{1}{(1+F(s)G(s))s^d}$$

▶ The error is determined by the error coefficient:

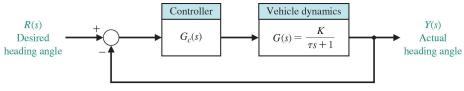
$$s^d F(s)G(s) = k \frac{s^d(s-z_1)\cdots(s-z_m)}{s^q(s-p_{q+1})\cdots(s-p_n)}$$

- Three cases are possible, assuming that the system is stable (all poles of sE(s) are in the left-half plane):
 - If d < q, then s^dF(s)G(s) will contain a term s^{q-d} in the denominator and sE(s) will contain q − d zeros at the origin. Hence, lim_{s→0} sE(s) = 0 and zero steady-state error will be achieved.
 - If d = q, then sE(s) will contain no zeros at the origin and a constant finite steady-state error will be achieved.
 - If d > q, then sE(s) will have d − q poles at the origin. Hence, lim_{s→0} sE(s) = ∞ and an infinite steady-state error will be achieved. In other words, the system output will not track the reference input at all.

Control System Type

- The results on the previous slide indicate that the number q of poles at the origin in F(s)G(s) determines the type of reference inputs that the closed-loop system is able to track
- The number q of poles at the origin in F(s)G(s) is called **system type**
- A system of type q can track polynomial reference signals of degree q or less to within a constant finite steady-state error
- During control design, the controller gain F(s) can be chosen to achieve a certain number of poles at the origin if the process G(s) does not have the required number of poles to track a desired reference signal
- It appears that having more integrators (1/s) in F(s)G(s) is better since it allow tracking higher-order reference signals. However, the larger q is, the harder it is to stabilize the system since integrators slow the response down

Example: Mobile Robot Heading Angle Control



Copyright @2017 Pearson Education, All Rights Reserved

Consider a heading-angle steering control system for a mobile robot:

Heading dynamics:
$$G(s) = rac{K}{ au s + 1}$$
 Control gain: $G_c(s) = K_1 + rac{K_2}{s}$

What is the steady-state error of the closed-loop system for a step input and a ramp input?

Example: Mobile Robot Heading Angle Control

► If *K*₂ = 0:

• the forward path gain is: $G_c(s)G(s) = \frac{\kappa \kappa_1}{\tau(s+1/\tau)}$

the system is type 0 with error coefficient:

$$K_p = \lim_{s \to 0} G_c(s)G(s) = KK_1$$

the steady-state error for a step input is:

$$\lim_{t o\infty} e(t) = rac{1}{1+K_p} = rac{1}{1+KK_1}$$

► If *K*₂ > 0:

• the forward path gain is: $G_c(s)G(s) = \frac{KK_1(s+K_2/K_1)}{\tau s(s+1/\tau)}$

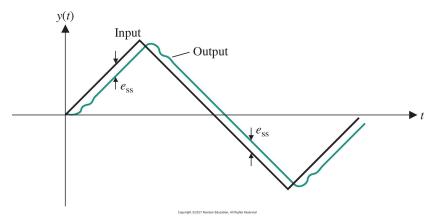
the system is type 1 with error coefficient:

$$K_{v} = \lim_{s \to 0} sG_{c}(s)G(s) = KK_{2}$$

the steady-state error for a ramp input is:

$$\lim_{t\to\infty} e(t) = \frac{1}{K_v} = \frac{1}{KK_2}$$

Example: Mobile Robot Heading Angle Control



- Transient response of the heading-angle steering control system to a triangular wave reference input
- The response shows the effect of the non-zero steady-state error $e_{ss} = 1/(KK_2)$

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

Impulse Response

LTI ODE System:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$$

 $y = \mathbf{C}\mathbf{x} + \mathbf{D}u$
 $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Impulse response: response to an impulse input $u(t) = \delta(t)$:

$$y(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t \mathbf{C}e^{\mathbf{A}(t-\tau)}\mathbf{B}\delta(\tau)d\tau + \mathbf{D}\delta(t)$$
$$= \mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0) + \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}\delta(t)$$

▶ The impulse response with zero initial conditions reveals the transfer function:

$$Y(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{x}(0) + G(s)U(s)$$
$$\mathbf{x}(0) = \mathbf{0}, \quad U(s) = 1 \qquad \Rightarrow \qquad Y(s) = G(s)$$
$$\Rightarrow \quad y(t) = \mathcal{L}^{-1} \{G(s)\} = g(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}\delta(t)$$

LTI ODE System:

$$\dot{y} + 10y = 9u$$

Transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{9}{s+10}$$

The impulse response with zero initial conditions is obtained with U(s) = 1:

$$Y(s) = G(s) \qquad \Rightarrow \qquad y(t) = \mathcal{L}^{-1} \{G(s)\} = 9e^{-10t}$$

Steady-state impulse response:

$$\lim_{t\to\infty}y(t)=\lim_{s\to0}sG(s)=0$$

Impulse Response

Let the impulse response with zero initial conditions of an LTI ODE be:

$$g(t) = \mathcal{L}^{-1} \left\{ G(s) \right\} = \mathbf{C} e^{\mathbf{A} t} \mathbf{B} + \mathbf{D} \delta(t)$$

Any input u(t) can be decomposed into an infinite set of shifted impulses:

$$u(t) = \int_0^t \delta(t- au) u(au) d au$$

By the principle of superposition, the forced response to any input u(t) is the convolution of the input with the impulse response:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{x}(0)}_{\text{natural response}} + \underbrace{\int_{0}^{t}g(t-\tau)u(\tau)d\tau}_{\text{forced response}}$$

forced response

System:

$$\mathbf{A} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D} = 0$$

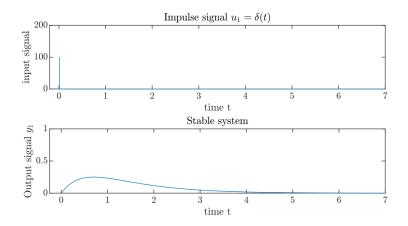
Input:

$$u(t) = egin{cases} 1/\epsilon & ext{if } 0 \leq t < \epsilon \ 0 & ext{else} \end{cases}$$

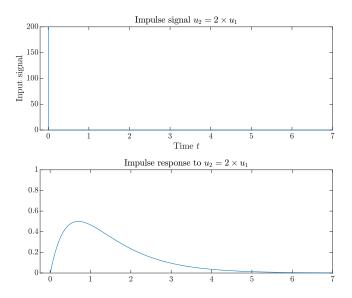
Simulate with $\epsilon = 0.01$:

sys = ss(A, B, C, D); % create an LTI system
y = lsim(sys,u,t,x0); % simulate response to input u

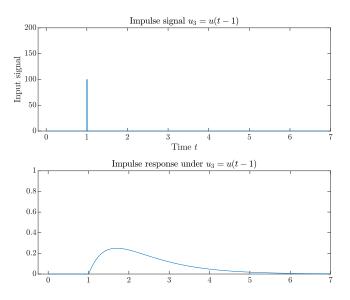
• Case 1: $u_1(t) = \delta(t)$



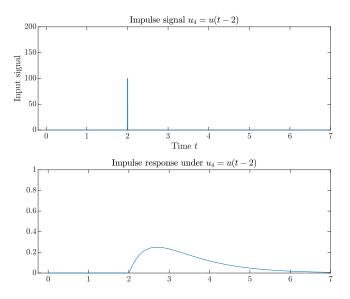
• Case 2: scale the input: $u_2(t) = 2u_1(t) = 2\delta(t)$



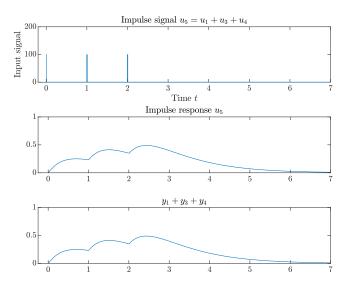
• Case 3: shift the input: $u_3(t) = u_1(t-1) = \delta(t-1)$



• Case 4: shift the input: $u_4(t) = u_1(t-2) = \delta(t-2)$

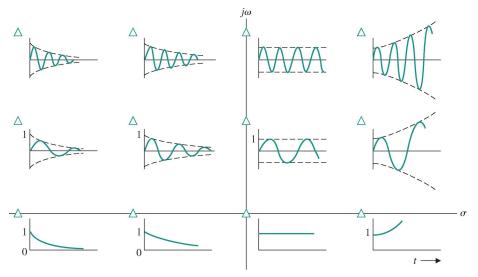


• **Case 5**: sum three inputs: $u_5(t) = u_1(t) + u_3(t) + u_4(t)$



Impulse Response vs s-Plane Pole Locations

Impulse response of an abstract control system for various transfer function pole locations in the s-plane



Copyright @2017 Pearson Education, All Rights Reserved

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

Step Response

LTI ODE system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$ $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Exponential response: SISO LTI system response to $u(t) = e^{s_0 t}$ for t > 0such that $s_0 \in \mathbb{C}$ is not an eigenvalue of **A**:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\left(\mathbf{x}(0) - (s_0\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\right)}_{\text{transient response}} + \underbrace{\left(\mathbf{C}(s_0\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right)e^{s_0t}}_{\text{steady-state response}}$$

Step response: the response to a step input $u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t > 0 \end{cases}$ is a special case of $u(t) = e^{s_0 t}$ with $s_0 = 0$:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}(\mathbf{x}(0) + \mathbf{A}^{-1}\mathbf{B})}_{\text{transient response}} + \underbrace{G(0)}_{\text{steady-state response}}$$

steady-state response

Example: Step Response

LTI ODE System:

$$\dot{y} + 10y = 9u$$

Transfer function:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{9}{s+10}$$

• The step response with zero initial conditions is obtained with $U(s) = \frac{1}{s}$:

$$Y(s) = \frac{G(s)}{s} = \frac{9}{s(s+10)} = \frac{9}{10s} - \frac{9}{10(s+10)}$$

Time-domain step response:

$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = \underbrace{0.9}_{\text{steady-state}} - \underbrace{0.9e^{-10t}}_{\text{transient}}$$

Example: Stable System Step Response

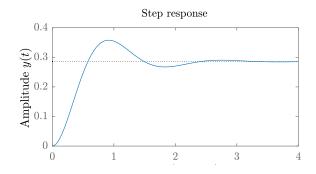
LTI system:

$$\mathbf{A} = \begin{bmatrix} -1 & 4 \\ -3 & -2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D} = 0.$$

Transfer function:

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} = \frac{4}{s^2 + 3s + 14}$$

Step response:



Example: Unstable System Step Response

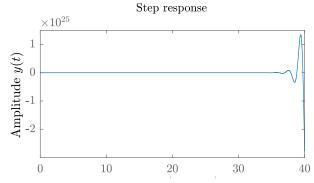
LTI system:

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ -3 & 2 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D} = 0.$$

Transfer function:

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} = \frac{4}{s^2 - 3s + 14}$$

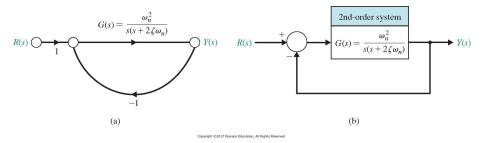
Step response:



Step Response Performance Measures

- The step response of a feedback control system is evaluated using several performance criteria:
 - Rise time
 - Percent overshoot
 - Settling time
 - Steady-state error

Second-Order Feedback Control System



Consider a second-order feedback control system

Closed-loop transfer function:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

with natural frequency ω_n and damping ratio ζ

Second-Order System Poles

► Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

► Transfer function poles:

$$p = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

Response	Damping ratio	Poles
Underdamped	$\zeta < 1$	$-\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2}$
Critically damped	$\zeta = 1$	$-\omega_n, -\omega_n$
Overdamped	$\zeta > 1$	$-\zeta\omega_n\pm\omega_n\sqrt{\zeta^2-1}$

• The natural frequency ω_n and damping ratio ζ of a pole p can be obtained as:

$$\omega_n = |p| \qquad \qquad \zeta = -\cos(\underline{p})$$

Underdamped Second-Order System Impulse Response

• Consider the underdamped and critically damped cases ($0 \le \zeta \le 1$)

• Impulse input:
$$r(t) = \delta(t)$$
, $R(s) = 1$

Impulse response (s domain): reveals the transfer function:

$$Y(s) = \frac{G(s)}{1+G(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\alpha)^2 + \omega_d^2}$$

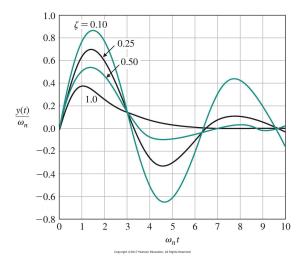
where we introduced the terms:

- damping constant: $\alpha = \zeta \omega_n$
- damped frequency: $\omega_d = \omega_n \sqrt{1-\zeta^2}$

Impulse response (t domain):

$$y(t) = \mathcal{L}^{-1} \{ Y(s) \} = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t)$$
$$= \left(\frac{\alpha^2}{\omega_d} + \omega_d \right) e^{-\alpha t} \sin(\omega_d t)$$

Underdamped Second-Order System Impulse Response



As the damping ζ decreases, the poles approach the imaginary axis and the response becomes increasingly oscillatory

Underdamped Second-order System Step Response

• Step response (s domain): obtained with $R(s) = \frac{1}{s}$:

$$Y(s) = \frac{G(s)}{s(1+G(s))} = \frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)} = \frac{1}{s} - \frac{(s+\zeta\omega_n)+\zeta\omega_n}{(s+\zeta\omega_n)^2+\omega_n^2(1-\zeta^2)}$$

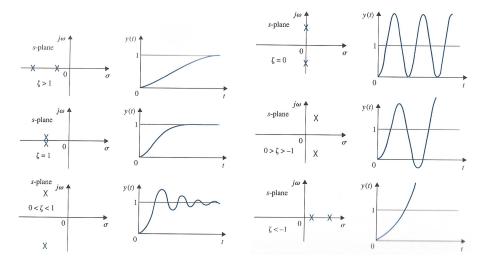
Step response (t domain):

$$y(t) = \mathcal{L}^{-1} \{Y(s)\} = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \cos^{-1}(\zeta))$$
$$= 1 - e^{-\alpha t} \left(\cos(\omega_d t) + \frac{\alpha}{\omega_d} \sin(\omega_d t)\right)$$

The derivative of the step response is equal to the impulse response:

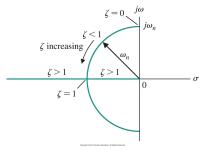
$$\frac{d}{dt}y(t) = \left(\frac{\alpha^2}{\omega_d} + \omega_d\right)e^{-\alpha t}\sin(\omega_d t)$$

Second-Order System Step Response



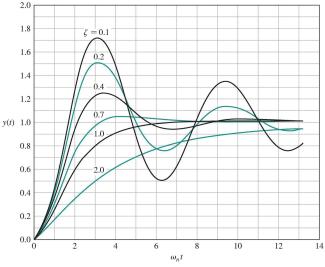
Second-Order System Step Response

- If the poles are complex, the step response has oscillations and overshoot
- As the poles move toward the real axis, maintaining a fixed distance from the origin (ζ increasing for fixed ω_n), the oscillations and overshoot decrease
- If ω_n increases, the poles move further left in the left half plane and the oscillations reduce faster
- If all poles are on the negative real axis, there are no oscillations or overshoot
- ► If there is a pole in the open right half plane, then the step response contains a term that goes to ∞



For constant ω_n, as ζ varies, the complex conjugate roots follow a circular locus

Underdamped Second-Order System Step Response



As the damping ζ decreases, the poles approach the imaginary axis and the response becomes increasingly oscillatory

Step Response Performance Measures

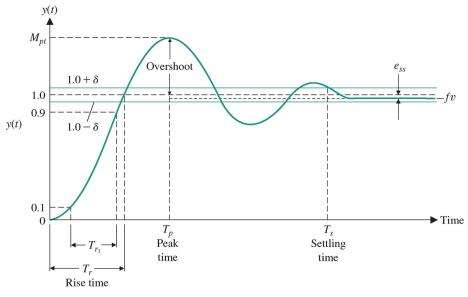
- **Rise time** t_r : time for the system step response y(t) to go from δ % to 1δ % of the steady-state value
- Peak time t_p: time at which the system step response y(t) achieves its maximum value (defined only for underdamped systems)
- ▶ **Percent overshoot**: the max value of the system step response, $y(t_p)$, expressed as a percentage of the steady-state value, $y(\infty) = \lim_{t\to\infty} y(t)$:

percent overshoot =
$$\frac{y(t_p) - y(\infty)}{y(\infty)} \times 100\%$$

Settling time t_s: the time required for the step response to settle within δ% of the steady-state value, i.e., for all t ≥ t_s:

$$|y(t)-y(\infty)|\leq \frac{\delta}{100}$$

Step Response Performance Measures



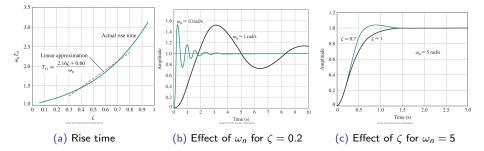
Copyright @2017 Pearson Education, All Rights Reserved

Rise Time

• Rise time: an exact expression for t_r is challenging to obtain

The best linear fit to the 10%-to-90% rise time is accurate for $0.3 < \zeta < 0.8$:

$$t_r \approx \frac{2.16\zeta + 0.6}{\omega_n}$$



Peak Time

Peak time: obtained by setting the derivative of the step response to zero and solving for t:

$$0 = \left(\frac{\alpha^2}{\omega_d} + \omega_d\right) e^{-\alpha t} \sin(\omega_d t) \quad \Rightarrow \quad t = \frac{k\pi}{\omega_d}, \ k = 0, 1, 2, \dots$$

The maximum overshoot occurs at the first peak:

$$t_{p} = \frac{\pi}{\omega_{d}} = \frac{\pi}{\omega_{n}\sqrt{1-\zeta^{2}}}$$

The maximum value of the system step response is:

$$y(t_p) = 1 + e^{-\alpha \frac{\pi}{\omega_d}} = 1 + e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}}$$

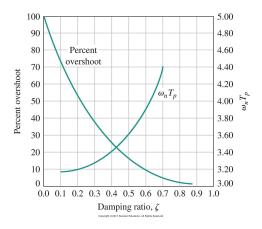
Percent Overshoot

• **Percent overshoot**: since $y(\infty) = \lim_{t\to\infty} y(t) = 1$:

percent overshoot =
$$\frac{y(t_p) - y(\infty)}{y(\infty)} \times 100\% = e^{-\alpha \frac{\pi}{\omega_d}} \times 100\%$$

= $e^{-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}} \times 100\%$

There is a trade-off between swiftness of response and percent overshoot



Settling Time

Underdamped second-order system step response:

$$y(t) = 1 - e^{-lpha t} \left(\cos(\omega_d t) + rac{lpha}{\omega_d} \sin(\omega_d t)
ight)$$

Settling time: since the cosine and sine terms oscillate, approximate the time required for the step response to settle within δ% of the steady-state value by calculating the time at which the exponential term e^{-αt} becomes equal to δ/100:

$$e^{-lpha t_s} \approx rac{\delta}{100} \quad \Rightarrow \quad t_s \approx -rac{1}{lpha} \ln rac{\delta}{100}$$

For $\delta = 2\%$, the settling time is: $t_s \approx rac{4}{lpha} = rac{4}{\zeta \omega_n}$

Step Response Performance Measures

- \blacktriangleright It is desirable to achieve small t_r , small percent overshoot, and small t_s
- As ω_n increases with fixed ζ , t_r decreases, t_p decreases, the percent overshoot stays the same, and t_s decreases
- As ζ increases with fixed ω_n , t_r stays the same, t_p increases, the percent overshoot decreases, and t_s decreases
- If desired upper bounds are given:

$$t_r \leq \overline{t}_r$$
 $t_p \leq \overline{t}_p$ p.o. \leq p.o. $t_s \leq \overline{t}_s$

we can obtain constraints for ζ and ω_n , which determine valid regions for the transfer function poles $-\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2}$ in the complex plane:

$$\begin{aligned} \frac{2.16\zeta + 0.6}{\omega_n} &\leq \bar{t}_r & \frac{\zeta}{\sqrt{1 - \zeta^2}} \pi \geq -\ln\frac{p.\bar{o}}{100} \\ \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} &\leq \bar{t}_p & \frac{4}{\zeta\omega_n} \leq \bar{t}_s \end{aligned}$$

Effect of Additional Poles or Zeros

So far we analyzed the step response of an underdamped second-order system with transfer function:

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

What happens if the transfer function contains zeros or additional poles?

Effect of Poles on the Step Response

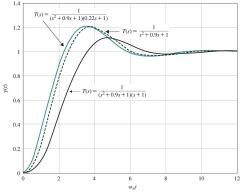
- From the partial fraction expansion of the transfer function, we know that a pole p contributes a term of the form re^{pt}
- If any pole is in the right half-plane (Re(p) > 0), then the step response will go to infinity (unstable system)
- ► If any pole is far left in the left half-plane (Re(p) ≪ 0), then its contribution to the step response dies out quickly
- If the poles can be divided into a set that is close to the origin, and another set that is far away, then the poles that are close to the origin are called **dominant poles**. The exponential terms in the step response of the dominant poles determine the overall system response.
- Adding a left half-plane pole to the transfer function makes the response slower because an additional exponential term must die out before the system reaches its final value

Introducing a Pole in a Second-Order System

• Introduce a pole $s = -1/\gamma$ in the transfer function:

$$T_{\gamma}(s) = rac{\omega_n^2}{(s^2 + 2\zeta\omega_n s + \omega_n^2)(\gamma s + 1)}$$

If |1/γ| ≥ 10|ζω_n|, then T_γ(s) can be approximated by T(s) since the contribution of the new pole to the step response is dominated by the original two poles



Copyright ©2017 Pearson Education, All Rights Reserved

Introducing a Zero in a Second-Order System

• Introduce a zero s = -a in the transfer function:

$$T_a(s) = \frac{(\frac{1}{a}s+1)\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$$

- The reason for writing (¹/_as + 1) instead of s + a is to maintain a steady-state value of 1
- The new transfer function can be decomposed as:

$$T_a(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} + \frac{s}{a} \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = T(s) + \frac{s}{a}T(s)$$

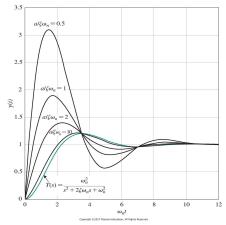
• The response of the third order system to a step R(s) = 1/s is:

$$Y_a(s) = \left(T(s) + \frac{s}{a}T(s)\right)\frac{1}{s} = Y(s) + \frac{s}{a}Y(s)$$
$$y_a(t) = y(t) + \frac{1}{a}\dot{y}(t)$$

where Y(s) and y(t) are the *s*- and *t*-domain step response of the original second-order system

Introducing a Zero in a Second-Order System

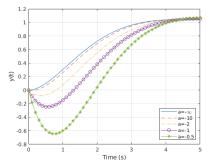
• Step response of a system with transfer function $T_a(s) = \frac{(\frac{1}{a}s+1)\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$ and $\zeta = 0.45$



As a increases, the zero moves farther into the left half-plane and the step response of T_a(s) approaches that of the second-order system T(s)

Introducing a Zero in a Second-Order System

- We can see from the step-response of T_a(s) that adding a zero in the left half-plane makes the step response faster:
 - the rise time decreases
 - the peak time decreases
 - the overshoot increases
 - the settling time does not change
- If the zero is added in the right half-plane (i.e., a < 0), then y(t) is subtracted from y(t) to produce y_a(t). The response is **slower** and can go decrease before before rising to its steady state value (**undershoot**).



Dominant Pole-Zero Approximation

- If a high-order system has a cluster of poles and zeros that are much closer (e.g., 5 times or more) to the origin than the remaining poles and zeros, then the system can be approximated by a lower order system with only those dominant poles and zeros
- **Example**: if $a \gg \zeta \omega_n > 0$ and $1/\gamma \gg \zeta \omega_n > 0$, then:

$$T_{a,\gamma}(s) = \frac{\omega_n^2(\frac{1}{a}s+1)}{(s^2+2\zeta\omega_n s+\omega_n^2)(\gamma s+1)} \approx T(s) = \frac{\omega_n^2}{s^2+2\zeta\omega_n s+\omega_n^2}$$

Example

Consider a control system with transfer function:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{108(s+3)}{(s+9)(s^2+8s+36)}$$

- (a) Determine the steady-state error for a unit step input.
- (b) Assume that the complex poles are dominant. Determine the percent overshoot and the settling time to within 2% of the steady-state value.
- (c) Plot the actual system response and compare it with the estimates of part (b).

Example: Part (a)

► The error is:

$$E(s) = R(s) - Y(s) = R(s) - T(s)R(s) = (1 - T(s))R(s)$$

• The steady-state error for input R(s) = 1/s is:

$$\lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} (1 - T(s))$$
$$= \lim_{s \to 0} \left(1 - \frac{108(s+3)}{(s+9)(s^2 + 8s + 36)} \right) = 1 - \frac{108(3)}{9(36)} = 0$$

Example: Part (b)

Assuming that the complex poles are dominant:

$$T(s) = \frac{36(\frac{s}{3}+1)}{(s+9)(s^2+8s+36)} \approx \frac{36}{s^2+8s+36}$$

- ► The second-order system approximation has natural frequency $\omega_n = 6$ and damping ratio $\zeta = \frac{8}{2\omega_n} = \frac{2}{3}$.
- The percent overshoot is:

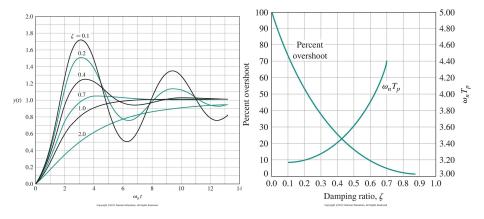
p.o. = 100 exp
$$\left(-\frac{\zeta}{\sqrt{1-\zeta^2}}\pi\right) = 100 \exp\left(-\frac{2\pi}{\sqrt{5}}\right) \approx 6\%$$

The settling time to within 2% of the steady-state value is:

$$t_s \approx rac{4}{\zeta \omega_n} = 1$$
 second.

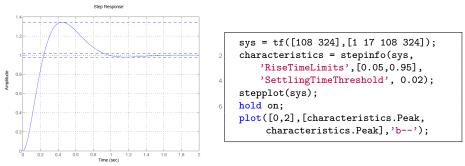
Example: Part (b)

The percent overshoot can also be determined approximately from the second-order system plots:



Example: Part (c)

The step response of the original system is:



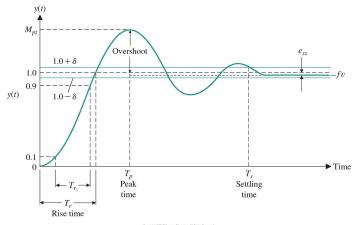
The actual percent overshoot and settling time are:

p.o = 34.4% and $t_s = 1.18$ second.

► The difference in the actual and estimated percent overshoot is due to the term (^s/_a + 1) in the numerator, which does not satisfy the requirement for an accurate dominant pole-zero approximation:

$$3 = a \gg \zeta \omega_n = 4$$

Step Response Performance Measures



Rise time: from 10% to 90% of steady-state value: $t_r \approx \frac{2.16\zeta + 0.6}{\omega_n \pi}$ **Peak time**: time at which the response is maximum: $t_p = \frac{\omega_n}{\omega_n \sqrt{1-\zeta^2}}$

- **Overshoot**: overshoot as percent of steady-state: p.o. = $100 \exp\left(-\frac{\zeta \pi}{\sqrt{1-\zeta^2}}\right)\%$
- **Settling time**: response settles within 2% of steady-state: $t_s \approx \frac{4}{\zeta \omega_n}$
- **Steady-state error**: $e_{ss} = 1 \lim_{t \to \infty} y(t) = 1 G(0)$

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

Exponential Response

LTI ODE System:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$ $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Exponential response: SISO LTI system response to u(t) = e^{s₀t} for t ≥ 0 such that s₀ ∈ C is not an eigenvalue of A:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\left(\mathbf{x}(0) - (s_0\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\right)}_{\text{transient response}} + \underbrace{\left(\mathbf{C}(s_0\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right)e^{s_0t}}_{\text{steady-state response}}$$

• The transfer function G(s) is a complex number:

$$G(s) = |G(s)|e^{j \angle G(s)}$$

Steady-state exponential response:

$$y_{ss}(t) = |G(s_0)|e^{j\angle G(s_0)}e^{s_0t} = |G(s_0)|e^{s_0t+j\angle G(s_0)}$$

Outline

System Response to Test Input Signals

Impulse Response

Step Response

Exponential Response

Frequency Response

Frequency Response

LTI ODE System:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$
 $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

Frequency response: response to a sinusoidal input $u(t) = sin(\omega t + \phi)$

Frequency Response

The steady-state response of LTI ODE system with transfer function G(s) to a sinusoidal input $u(t) = \sin(\omega t + \phi)$ is a sinusoid of the **same frequency** with **amplitude scaled by** $|G(j\omega)|$ and **phase shifted by** $\angle G(j\omega)$:

$$y_{ss}(t) = |G(j\omega)|\sin(\omega t + \phi + \angle G(j\omega))|$$

- ► The magnitude |G(jω)| is determined from the ratio of the amplitudes of the output versus the input sinusoids
- The phase ∠G(jω) is determined from the ratio of the time of the output versus the input zero crossings

Example: Stable System Frequency Response

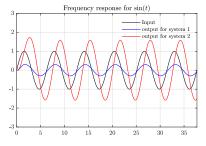
System 1:

$$\mathbf{A}_{1} = \begin{bmatrix} -1 & 4 \\ -3 & -2 \end{bmatrix}, \quad \mathbf{B}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C}_{1} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D}_{1} = 0$$
$$G_{1}(s) = \frac{4}{s^{2} + 3s + 14} \quad |G_{1}(j)| = 0.3 \quad \angle G(j) = -13^{\circ}$$

System 2:

$$\mathbf{A}_2 = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, \quad \mathbf{B}_2 = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad \mathbf{C}_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D}_2 = 0$$
$$G_2(s) = \frac{5}{s^2 + 3s + 2} \quad |G_2(j)| = 1.58 \quad \angle G_2(j) = -71.5^{\circ}$$

• Response to $u(t) = \sin(t)$



Example: Stable System Frequency Response

System 1:

$$\mathbf{A}_{1} = \begin{bmatrix} -1 & 4 \\ -3 & -2 \end{bmatrix}, \quad \mathbf{B}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{C}_{1} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D}_{1} = 0$$
$$G_{1}(s) = \frac{4}{s^{2} + 3s + 14} \quad |G_{1}(0.5j)| = 0.29 \quad \angle G(0.5j) = -6.2^{\circ}$$

System 2:

$$\mathbf{A}_{2} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, \quad \mathbf{B}_{2} = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad \mathbf{C}_{2} = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad \mathbf{D}_{2} = 0$$
$$G_{2}(s) = \frac{5}{s^{2} + 3s + 2} \quad |G_{2}(0.5j)| = 2.17 \quad \angle G_{2}(0.5j) = -40.6^{\circ}$$

▶ Response to u(t) = sin(0.5t)

