# ECE171A: Linear Control System Theory Lecture 9: Frequency Response

Nikolay Atanasov natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

# **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

Polar Plot

Magnitude-Phase Plot

#### **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

Polar Plot

Magnitude-Phase Plo

#### **Frequency Response**

► LTI ODE System:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
  
 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$   $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$ 

**Frequency response**: response to a sinusoidal input  $u(t) = \sin(\omega t + \phi)$ 

# Frequency Response

The steady-state response of a system with transfer function G(s) to a sinusoidal input  $u(t) = \sin(\omega t + \phi)$  is a sinusoid of the **same frequency** with **amplitude** scaled by  $|G(j\omega)|$  and phase shifted by  $\angle G(j\omega)$ :

$$y_{ss}(t) = |G(j\omega)|\sin(\omega t + \phi + \angle G(j\omega))$$

- ▶ The **magnitude**  $|G(j\omega)|$  is determined from the ratio of the amplitudes of the output versus the input sinusoids
- ▶ The **phase**  $\angle G(j\omega)$  is determined from the ratio of the time of the output versus the input zero crossings

# Frequency Response Proof

- ► Euler's Formula:  $\sin(\omega t + \phi) = \operatorname{Im}(e^{j(\omega t + \phi)}) = \frac{e^{j(\omega t + \phi)} e^{-j(\omega t + \phi)}}{2j}$
- **►** Complex conjugate of G(s):  $G^*(s) = |G(s)|e^{-j\angle G(s)}$
- **Conjugate symmetry of** G(s):

$$G^*(s) = \left(\int_0^\infty g(t)e^{-st}dt\right)^* = \int_0^\infty g^*(t)e^{-s^*t}dt$$

$$\frac{g(t) \text{ is real}}{m} \int_0^\infty g(t)e^{-s^*t}dt = G(s^*)$$

▶ **Proof**: by superposition the steady-state response to  $u(t) = \sin(\omega t + \phi)$  is:

$$y_{ss}(t) = \frac{1}{2j}G(j\omega)e^{j(\omega t + \phi)} - \frac{1}{2j}G(-j\omega)e^{-j(\omega t + \phi)}$$

$$= \frac{1}{2j}|G(j\omega)|e^{j\angle G(j\omega)}e^{j(\omega t + \phi)} - \frac{1}{2j}|G(j\omega)|e^{-j\angle G(j\omega)}e^{-j(\omega t + \phi)}$$

$$= |G(j\omega)|\sin(\omega t + \phi + \angle G(j\omega))$$

### **Empirical Transfer Function Determination**

- ▶ The frequency response can be obtained empirically by applying a sinusoidal test signal at various frequencies and recording the magnitude and phase of the response. This can be used to identify the system's transfer function.
  - 1. Apply a sinusoidal signal at a fixed frequency  $\omega$
  - 2. Measure response amplitude ratio and phase lag at steady state
  - 3. Repeat as  $\omega$  varies from 0 to  $\infty$

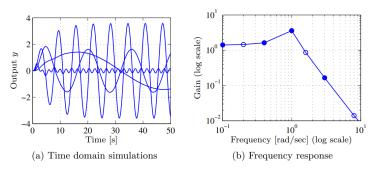


Figure: Gain computed by measuring system response to individual sinusoid inputs

#### **Frequency Domain Plots**

- Plotting the magnitude and phase of the transfer function  $G(j\omega)$  versus the input frequency  $\omega$  provides insight about the behavior of a linear control system
- ▶ The following frequency-domain plots of the transfer function are used:
  - ▶ Bode plot: plot of magnitude  $20\log_{10}|G(j\omega)|$  in decibels (dB) and phase  $\angle G(j\omega)$  in degrees versus  $\log_{10}\omega$  as  $\omega$  varies from 0 to  $\infty$
  - ▶ **Polar plot**: plot of  $Im(G(j\omega))$  versus  $Re(G(j\omega))$  as  $\omega$  varies from 0 to  $\infty$
  - ▶ Magnitude-phase plot: plot of magnitude  $20 \log_{10} |G(j\omega)|$  in decibels (dB) versus phase  $\angle G(j\omega)$  in degrees as  $\omega$  varies from 0 to  $\infty$

#### **Decibel Units**

**Bel**: relative measurement unit of log-ratio of measured power P to reference power  $P_0$ 

Log-power ratio = 
$$\log_{10} \left( \frac{P}{P_0} \right)$$
 Bels

▶ **Decibel**: ten Bels:

$$\mathsf{Log\text{-}power\ ratio} = 10 \, \mathsf{log}_{10} \left( \frac{P}{P_0} \right) \; \mathsf{dB}$$

- ▶ The **power spectral density** of y(t) is the Fourier transform  $S_{yy}(j\omega)$  of the autocorrelation function
- The input-output power spectral density relationship for an LTI system with input U(s), transfer function G(s), and output Y(s) is:

$$S_{yy}(j\omega) = |Y(j\omega)|^2 = |G(j\omega)|^2 |U(j\omega)|^2 = |G(j\omega)|^2 S_{uu}(j\omega)$$

▶ The log-power ratio at  $\omega$  in dB is:

$$10\log_{10}\left(\frac{S_{yy}(j\omega)}{S_{uu}(j\omega)}\right) = 10\log_{10}|G(j\omega)|^2 = 20\log_{10}|G(j\omega)|$$

### **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

Polar Plot

Magnitude-Phase Plo

#### **Bode Plot**

- Hendrik Bode: a pioneer of modern control theory and electronic telecommunications
- **Bode plot**: represents the frequency response of a linear system with transfer function G(s) by two plots:
  - ▶ Plot of **magnitude**  $20\log_{10}|G(j\omega)|$  in dB versus  $\log_{10}\omega$
  - ▶ Plot of **phase**  $\underline{/G(j\omega)}$  in degrees versus  $\log_{10} \omega$



H. Bode

- ightharpoonup Logarithmic scale is used for the input frequency  $\omega$  to capture the system behavior over a wide frequency range
- ▶ The log-scale intervals are known as decades (base 10) or octaves (base 2):
  - ► The number of **decades** between  $\omega_1$  and  $\omega_2$  is  $\log_{10} \frac{\omega_2}{\omega_1}$
  - ► The number of **octaves** between  $\omega_1$  and  $\omega_2$  is  $\log_2 \frac{\omega_2}{\omega_1}$
  - ▶ There are  $log_2(10) \approx 3.32$  octaves in one decade
  - ▶ A slope of 20 dB/decade is the same as  $\frac{20~dB/decade}{\log_2(10)~octave/decade} \approx 6~dB/octave$

# **Transfer Function Magnitude and Phase**

- ightharpoonup The magnitude and phase of G(s) are needed to draw a Bode plot
- Consider a transfer function  $G(s) = \frac{b_1(s)b_2(s)}{a_1(s)a_2(s)}$
- ▶ **Magnitude** of G(s) in log-scale is the sum/difference of magnitudes corresponding to terms in the numerator/denominator:

$$\log|G(s)| = \log|b_1(s)| + \log|b_2(s)| - \log|a_1(s)| - \log|a_2(s)|$$

**Phase** of G(s) is the sum/difference of phases corresponding to terms in the numerator/denominator:

$$\angle G(s) = \angle b_1(s) + \angle b_2(s) - \angle a_1(s) - \angle a_2(s).$$

#### **Transfer Function in Bode Form**

- Instead of computing the magnitude and phase of G(s) directly, it is preferable to obtain rules for drawing Bode plots of individual terms
- ▶ Transfer function in Bode form: a transfer function with  $m_1$  real zeros,  $m_2$  complex conjugate zero pairs,  $n_0$  poles at the origin,  $n_1$  real poles, and  $n_2$  complex conjugate pole pairs:

$$G(s) = \kappa \frac{\prod_{i=1}^{m_1} \left(\frac{s}{z_i} + 1\right) \prod_{l=1}^{m_2} \left(\left(\frac{s}{\omega_{n_l}}\right)^2 + 2\zeta_l\left(\frac{s}{\omega_{n_l}}\right) + 1\right)}{s^{n_0} \prod_{i=1}^{n_1} \left(\frac{s}{\rho_i} + 1\right) \prod_{k=1}^{n_2} \left(\left(\frac{s}{\omega_{n_k}}\right)^2 + 2\zeta_k\left(\frac{s}{\omega_{n_k}}\right) + 1\right)}$$

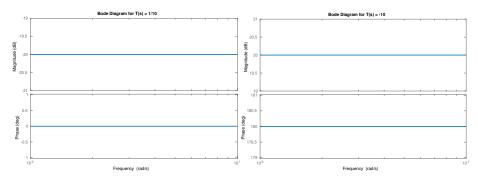
- ▶ A transfer function may contain only four kinds of factors:
  - ightharpoonup Constant term:  $\kappa$
  - Poles  $s^{-q}$  or zeros  $s^q$  at the origin
  - Real poles  $\left(\frac{s}{p}+1\right)^{-1}$  or zeros  $\left(\frac{s}{z}+1\right)$
  - ► Complex conjugate poles or zeros:  $\left(\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1\right)^{\pm 1}$
- ▶ If we determine the magnitude and phase plots for these four factors, we can add them together graphically to obtain a Bode plot for any transfer function

#### Bode Plot for a Constant Term $\kappa$

• Magnitude:  $20 \log |\kappa|$ 

▶ **Phase**: 
$$\underline{\kappa} = \begin{cases} 0^{\circ} & \text{if } \kappa > 0 \\ 180^{\circ} & \text{if } \kappa < 0 \end{cases}$$

**Example:** Bode plot for  $G(s) = \frac{1}{10}$  and G(s) = -10



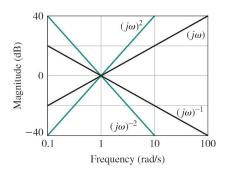
# **Bode Plot for Pole or Zero at the Origin:** $s^q$

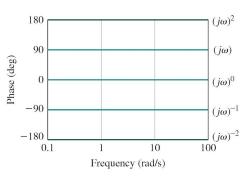
▶ **Magnitude**: straight line (log scale) through the origin with slope 20*q*:

$$20\log|(j\omega)^q|=20q\log|\omega|$$

**Phase**: a horizontal line at  $q90^{\circ}$ :

$$\underline{/(j\omega)^q} = q\underline{/(j\omega)} = q90^\circ$$





# Bode Plot for Real Zero $(\frac{s}{z}+1)$

► Magnitude: 
$$20 \log \left| j \frac{\omega}{z} + 1 \right| = 20 \log \sqrt{1 + \left(\frac{\omega}{z}\right)^2}$$

- ▶ Phase:  $/(j\frac{\omega}{z}+1) = \tan^{-1}\frac{\omega}{z}$
- $\blacktriangleright$  Extreme  $\omega$  values:
  - **Case 1**:  $\omega \ll z$ : horizontal line at 0:

$$20 \log \left| j \frac{\omega}{z} + 1 \right| \approx 0$$
  $\underline{/(j \frac{\omega}{z} + 1)} \approx 0^{\circ}$ 

▶ Case 2:  $\omega \gg z$ : log-scale line of slope 20 going through 0 when  $\omega = z$ :

$$20 \log \left| j \frac{\omega}{z} + 1 \right| \approx 20 \log \frac{1}{z} + 20 \log \omega$$
  $\underline{/(j \frac{\omega}{z} + 1)} \approx 90^{\circ}$ 

**Case 3**:  $\omega = z$  (corner frequency):

$$20 \log \left| j \frac{\omega}{z} + 1 \right| \approx 3 dB$$
  $\left/ (j \frac{\omega}{z} + 1) \right| = 45^{\circ}$ 

# Bode Plot for Real Pole $\left(\frac{s}{p}+1\right)^{-1}$

► Magnitude: 
$$20 \log \left| \left( j \frac{\omega}{p} + 1 \right)^{-1} \right| = -20 \log \sqrt{1 + \left( \frac{\omega}{p} \right)^2}$$

Phase: 
$$\left/\left(j\frac{\omega}{p}+1\right)^{-1}=-\tan^{-1}\frac{\omega}{p}\right|$$

- $\blacktriangleright$  Extreme  $\omega$  values:
  - **Case 1**:  $\omega \ll p$ : horizontal line at 0:

$$-20\log\left|j\frac{\omega}{p}+1\right|\approx 0$$
 
$$\sqrt{\left(j\frac{\omega}{p}+1\right)^{-1}}\approx 0^{\circ}$$

▶ Case 2:  $\omega \gg p$ : log-scale line of slope -20 going through 0 when  $\omega = p$ :

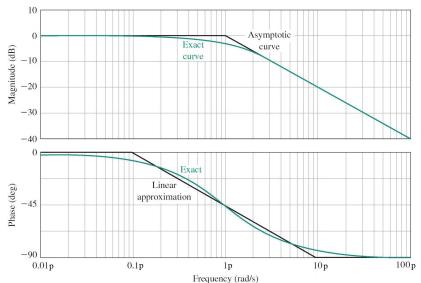
$$-20\log\left|j\frac{\omega}{p}+1\right| \approx -20\log\frac{1}{p}-20\log\omega$$
  $\sqrt{\left(j\frac{\omega}{p}+1\right)^{-1}} \approx -90^{\circ}$ 

**Case 3**:  $\omega = p$  (corner frequency):

$$-20\log\left|j\frac{\omega}{p}+1\right|\approx -3dB$$
 
$$\sqrt{\left(j\frac{\omega}{p}+1\right)^{-1}}\approx -45^{\circ}$$

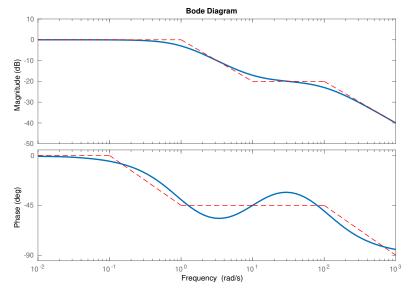
# **Bode Plot for Real Pole** $\left(\frac{s}{p}+1\right)^{-1}$

► A real pole behaves like a constant at low frequencies and like an integrator at high frequencies



- ▶ Draw a Bode plot for  $G(s) = 10 \frac{s+10}{(s+1)(s+100)} = \frac{(s/10+1)}{(s+1)(s/100+1)}$ 
  - Step 1: Find frequency break points (poles and zeros): 1, 10, 100
  - Step 2 : Calculate |G(0)| and  $\angle G(0)$  to determine the starting points
  - Step 3: Sketch the Bode plot by the rules:
    - ► Magnitude increases with a zero: the slope is +20 dB/decade for a real zero
    - ► Magnitude decreases with a pole: the slope is -20 dB/decade for a real pole
    - ▶ Phases increases with a zero: by  $+90^{\circ}$  starting from z/10 and ending at 10z
    - ▶ Phases decreases with a pole: by  $-90^{\circ}$  starting from p/10 and ending at 10p

▶ Draw a Bode plot for  $G(s) = 10 \frac{s+10}{(s+1)(s+100)} = \frac{(s/10+1)}{(s+1)(s/100+1)}$ 



# **Bode Plot for Complex Conjugate Zeros**

► Consider 
$$G(s) = \left(\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1\right)$$

► Magnitude:

$$|G(j\omega)| = \left| -\frac{\omega^2}{\omega_n^2} + 2\zeta \frac{\omega}{\omega_n} j + 1 \right| = \sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}$$

Phase:

$$\underline{/G(j\omega)} = \underline{/-\frac{\omega^2}{\omega_n^2} + 2\zeta\frac{\omega}{\omega_n}j + 1} = \tan^{-1}\left(\frac{2\zeta\left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

# **Bode Plot for Complex Conjugate Zeros**

$$|G(j\omega)| = \sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2} \qquad \underline{/G(j\omega)} = \tan^{-1}\left(\frac{2\zeta\left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

- $\triangleright$  Extreme  $\omega$  values:
  - **Case 1**:  $\omega \ll \omega_n$ : horizontal line at 0:

$$20 \log |G(j\omega)| \approx 0$$

$$\underline{/G(j\omega)} \approx 0^{\circ}$$

**Case 2**:  $\omega \gg \omega_n$ : log-scale line of slope 40 going through 0 when  $\omega = \omega_n$ :

$$20 \log |G(j\omega)| \approx 20 \log \sqrt{\left(\frac{\omega}{\omega_n}\right)^4} = 40 \log \omega - 40 \log \omega_n \qquad \underline{/G(j\omega)} \approx 180^\circ$$

**Case 3**:  $\omega = \omega_n$ :

$$20 \log |G(j\omega)| = 20 \log(2\zeta)$$
  $/G(j\omega) = 90^{\circ}$ 

# **Bode Plot for Complex Conjugate Poles**

► Consider 
$$G(s) = \left(\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1\right)^{-1}$$

$$|G(j\omega)| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}} \qquad \underline{/G(j\omega)} = -\tan^{-1}\left(\frac{2\zeta \left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

- ightharpoonup Extreme  $\omega$  values:
  - **Case 1**:  $\omega \ll \omega_n$ : horizontal line at 0:

$$20 \log |G(j\omega)| \approx 0$$
  $\underline{/G(j\omega)} \approx 0^{\circ}$ 

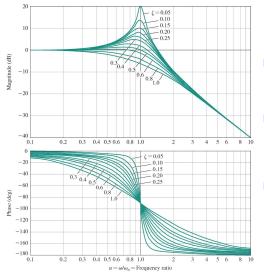
**Case 2**:  $\omega \gg \omega_n$ : log-scale line of slope −40 going through 0 when  $\omega = \omega_n$ 

$$|20 \log |G(j\omega)| \approx -20 \log \sqrt{\left(rac{\omega}{\omega_n}
ight)^4} = -40 \log \omega + 40 \log \omega_n \quad \underline{/G(j\omega)} \approx -180^\circ$$

**Case 3**:  $\omega = \omega_n$ :

$$20\log|G(j\omega)| = -20\log(2\zeta)$$
  $/G(j\omega) = -90^{\circ}$ 

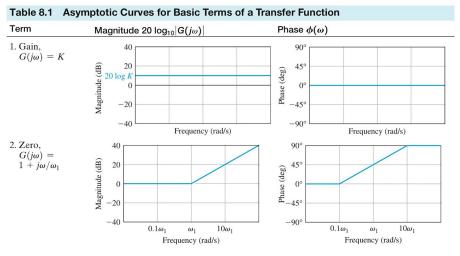
# **Bode Plot for Complex Conjugate Poles**



$$G(s) = \frac{1}{\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1}$$

- ▶ Resonant frequency: the largest gain  $\max_{\omega} |G(j\omega)| \approx \frac{1}{2\zeta}$  occurs at  $\omega \approx \omega_n$
- The asymptotic approximation is poor near  $\omega=\omega_n$  and the magnitude and phase depend on  $\zeta$

### **Bode Plot Approximations for Basic Transfer Function Terms**



Copyright @2017 Pearson Education, All Rights Reserved

#### **Bode Plot Approximations for Basic Transfer Function Terms**

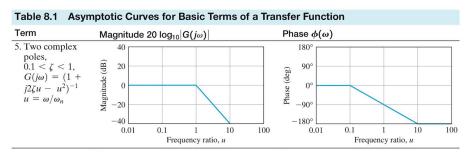
Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function Term Magnitude 20  $\log_{10} |G(j\omega)|$ Phase  $\phi(\omega)$ 3. Pole. 40 90°  $G(j\omega) =$ Magnitude (dB)  $(1 + j\omega/\omega_1)^{-1}$ 20 45° Phase (deg) 00 0 -45° -20 -40-90°  $0.1\omega_1$  $10\omega_1$  $0.1\omega_1$  $10\omega_1$  $\omega_1$  $\omega_1$ Frequency (rad/s) Frequency (rad/s) 4. Pole at 40 90° the origin, Magnitude (dB) 20 45°  $G(i\omega) = 1/i\omega$ Phase (deg) 0 0° -45° -20-40-90° 0.1 10 100 0.01 0.01 0.1 10 100

Copyright ©2017 Pearson Education, All Rights Reserved

Frequency (rad/s)

Frequency (rad/s)

#### **Bode Plot Approximations for Basic Transfer Function Terms**



Copyright ©2017 Pearson Education, All Rights Reserved

#### LTI Systems as Filters

- ► A Bode plot allows viewing a stable linear system as a filter that changes input signals depending on the frequency range
- Low-pass filter:

$$G(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

Band-pass filter:

$$G(s) = \frac{2\zeta\omega_0 s}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

High-pass filter:

$$G(s) = \frac{s^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2}$$

# LTI Systems as Filters

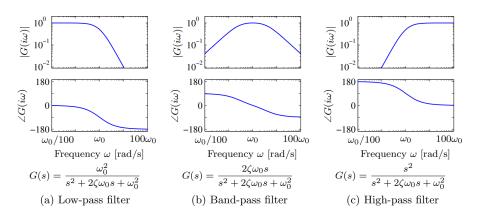


Figure: Bode plots for low-pass, band-pass, and high-pass filters. Each system passes frequencies in a specific range and attenuates the frequencies outside of that range.

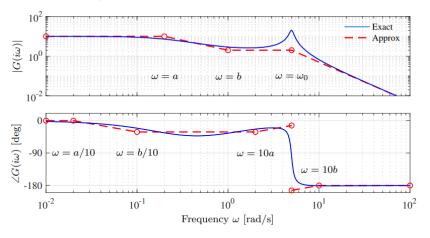
▶ Draw a Bode plot for  $G(s) = \frac{k(s+b)}{(s+a)(s^2+2\zeta\omega_0s+\omega_0^2)}$  with  $a \ll b \ll \omega_0$ 

#### ► Magnitude plot:

- ▶ Begin with  $G(0) = \frac{kb}{a\omega_0^2}$
- At  $\omega=a$ , the effect of the real pole begins and the gain decreases with slope  $-20~{\rm dB/decade}$
- At  $\omega=b$ , the real zero increases the slope by 20 dB/decade, leaving a net slope of 0 dB/decade
- ▶ This slope is used until the second-order pole affects it at  $\omega=\omega_0$  by -40 dB/decade

#### Phase plot:

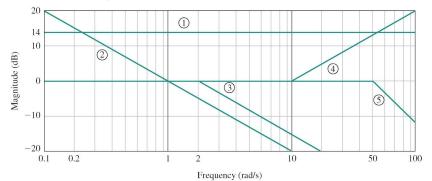
The approximation process is similar but effect of the poles and zeros on the phase begin one decade earlier and terminate one decade later.



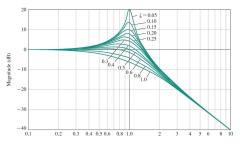
**Figure 9.15:** Asymptotic approximation to a Bode plot. The solid curve is the Bode plot for the transfer function  $G(s) = k(s+b)/(s+a)(s^2+2\zeta\omega_0s+\omega_0^2)$ , where  $a \ll b \ll \omega_0$ . Each segment in the gain and phase curves represents a separate portion of the approximation, where either a pole or a zero begins to have effect. Each segment of the approximation is a straight line between these points at a slope given by the rules for computing the effects of poles and zeros.

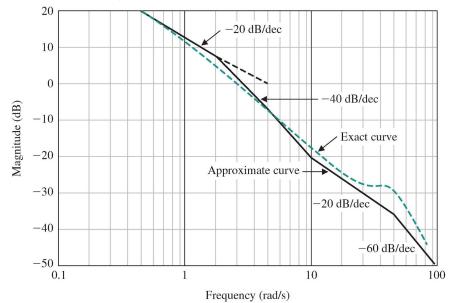
- ► Draw a Bode plot for  $G(s) = \frac{4(1+0.1s)}{s(1+0.5s)(1+0.6(s/50)+(s/50)^2)}$
- ▶ Factors in order of their occurrence as  $s = j\omega$  increases:
  - 1. A constant gain  $\kappa = 4$
  - 2. A pole at the origin
  - 3. A pole at  $\omega = 2$
  - 4. A zero at  $\omega = 10$
  - 5. A pair of complex poles at  $\omega = \omega_n = 50$

- Consider the approximate magnitude plots:
  - 1. Constant gain:  $20 \log |\kappa| = 14 \text{ dB}$
  - 2. Pole at the origin: a line with slope  $-20~\mathrm{dB/decade}$  through 0 when  $\omega=1$
  - 3. Pole at  $\omega=2$ : horizontal line at 0 dB until the corner frequency at  $\omega=2$  and a line with slope -20 dB/decade after
  - 4. Zero at  $\omega=10$ : horizontal line at 0 dB until the corner frequency at  $\omega=10$  and a line with slope 20 dB/decade after
  - 5. Complex pole pair at  $\omega=\omega_n=50$ : horizontal line at 0 dB until the corner frequency at  $\omega=50$  and a line with slope -40 dB/decade after
- The approximations must be corrected at the corner frequencies:
  - ► Real zero/pole: ±3*dB*
  - Complex pair of zeros/poles: based on ζ



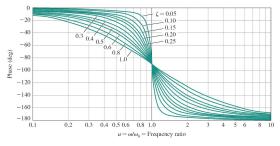
► Complex pole pair correction:

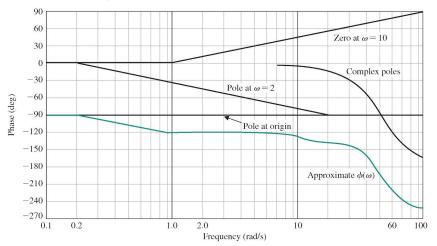




Copyright ©2017 Pearson Education, All Rights Reserved

- Consider the approximate phase plots:
  - 1. Constant gain:  $\underline{\kappa} = 0^{\circ}$
  - 2. Pole at the origin:  $-90^{\circ}$
  - 3. **Pole at**  $\omega=2$ : a line with slope -45~deg/decade from  $\omega=0.2$  to  $\omega=20$
  - 4. **Zero at**  $\omega=10$ : a line with slope 45 deg/decade from  $\omega=1$  to  $\omega=100$
  - 5. Complex pole pair at  $\omega=\omega_n=50$ : phase shift of -90 deg/decade from  $\omega=5$  to  $\omega=500$
- ▶ The phase characteristic for the complex pole pair should be obtained from:





The exact phase shift can be evaluated at important frequencies:

$$\underline{/G(j\omega)} = \underline{/\kappa} + \sum_{i=1}^{m_1} \tan^{-1}\left(\frac{\omega}{z_i}\right) + \sum_{l=1}^{m_2} \tan^{-1}\left(\frac{2\zeta_l \omega_{n_l} \omega}{\omega_{n_l}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{\rho_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right)$$

#### **Bode Plot Example 4**

Draw a Bode plot for

$$G(s) = \frac{(s+1)(s^2+3s+100)}{s^2(s+10)(s+100)} = \frac{(s+1)((s/10)^2+2(0.15)(s/10)+1)}{10s^2(s/10+1)(s/100+1)}$$

▶ Magnitude and phase at  $\omega = 0.1$ :

$$20 \log |G(j\omega)| \approx 20 dB$$
  $\underline{/G(j\omega)} \approx -180^{\circ}$ 

Magnitude slope in dB/decade:

| _          | •            | ,                          |                  |               |                |
|------------|--------------|----------------------------|------------------|---------------|----------------|
| $\omega$   | Zero at $-1$ | Zeros with $\omega_n = 10$ | Double pole at 0 | Pole at $-10$ | Pole at $-100$ |
| 0.1 - 1    | 0            | 0                          | -40              | 0             | 0              |
| 1 - 10     | 20           | 0                          | -40              | 0             | 0              |
| 10 - 100   | 20           | 40                         | -40              | -20           | 0              |
| 100 - 1000 | 20           | 40                         | -40              | -20           | -20            |

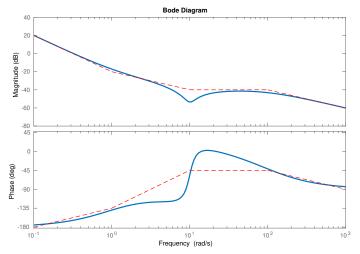
Phase slope in degrees/decade:

| $\omega$   | Zero at $-1$ | Zeros with $\omega_n = 10$ | Double pole at 0 | Pole at $-10$ | Pole at $-100$ |  |  |
|------------|--------------|----------------------------|------------------|---------------|----------------|--|--|
| 0.1 - 1    | 45           | 0                          | 0                | 0             | 0              |  |  |
| 1 - 10     | 45           | 90                         | 0                | -45           | 0              |  |  |
| 10 - 100   | 0            | 90                         | 0                | -45           | -45            |  |  |
| 100 - 1000 | 0            | 0                          | 0                | 0             | -45            |  |  |

#### **Bode Plot Example 4**

▶ Draw a Bode plot for

$$G(s) = \frac{(s+1)(s^2+3s+100)}{s^2(s+10)(s+100)} = \frac{(s+1)((s/10)^2+2(0.15)(s/10)+1)}{10s^2(s/10+1)(s/100+1)}$$



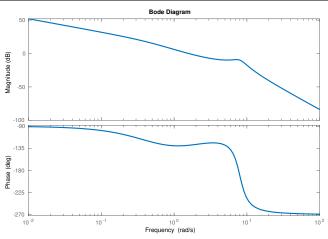
#### **Bode Plot in Matlab**

▶ Bode plot for  $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$ 

```
s = tf('s');

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

bodeplot(G);
```



## **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

Polar Plot

Magnitude-Phase Plo

## **Non-Minimum Phase Systems**

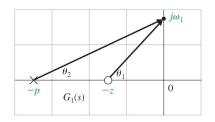
- ▶ **Minimum phase system**: a system whose transfer function poles and zeros are in the closed left half-plane
- ▶ Non-minimum phase system: a system whose transfer function has zeros or poles in the right half-plane
- Bode plots can also be drawn for non-minimum phase systems
- ► The magnitude of a transfer function does not depend on whether the zeros and poles are in the left or right half-plane
- ► The phase contribution of a zero or pole in the right half-plane is always at least as large as the phase contribution of a zero or pole in the left half-plane

## **Non-Minimum Phase Systems**

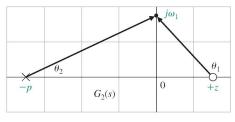
➤ To understand the difference between minimum and non-minimum phase systems compare the transfer functions:

$$G_1(s) = \frac{s+z}{s+p}$$
  $G_2(s) = \frac{s-z}{s+p}$ 

- ► Magnitude:  $|G_1(j\omega)| = |G_2(j\omega)| = \frac{\sqrt{\omega^2 + z^2}}{\sqrt{\omega^2 + \rho^2}}$
- ▶ Phase:  $/G_1(j\omega_1)$  vs  $/G_2(j\omega_1)$



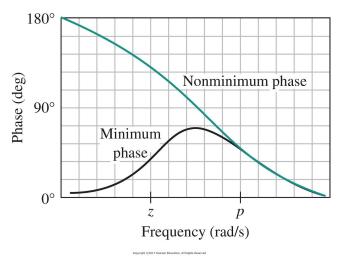
(a)



(b)

# **Non-Minimum Phase Systems**

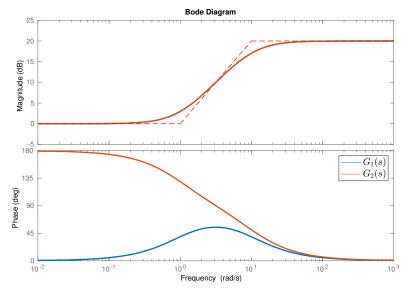
► A minimum phase system has the smallest phase lag of all systems with the same magnitude curve



43

# Non-minimum Phase Systems: Example 1

lacksquare Draw a Bode plot for  $G_1(s)=10rac{s+1}{s+10}$  and  $G_2(s)=10rac{s-1}{s+10}$ 



# Non-Minimum Phase Systems: Example 2

$$G(s) = \frac{s+1}{(s+0.1)(s+10)} \qquad G_{\rm rhpp}(s) = \frac{s+1}{(s-0.1)(s+10)} \qquad G_{\rm rhpz}(s) = \frac{-s+1}{(s+0.1)(s+10)}$$

$$\frac{10^0}{\frac{a}{4}} = \frac{10^0}{10^{-2}} \qquad \frac{10^0}{10^{-$$

## Non-Minimum Phase Systems: Example 3

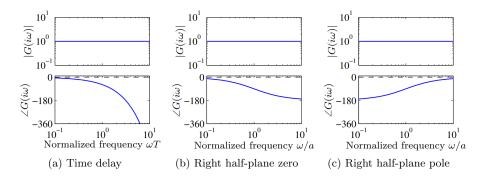


Figure: Bode plots of non-minimum phase systems: (a) Time delay  $G(s) = e^{-sT}$ , (b) system with right half-plane zero G(s) = (a-s)/(a+s), (c) system with right half-plane pole G(s) = (s+a)/(s-a). The corresponding minimum phase system has transfer function G(s) = 1 in all cases.

## **Non-Minimum Phase System Control**

- ► The presence of poles and zeros in the right half-plane imposes limitations on the achievable control performance
- ► The extra phase causes difficulty fot control because there is a delay between applying an input and seeing its effect
- ▶ **Zeros** depend on the relationship of inputs and outputs of a system. They can be changed by moving or adding sensors and actuators
- ▶ Poles are intrinsic to a system and do not depend on sensors or actuators

## **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

Polar Plot

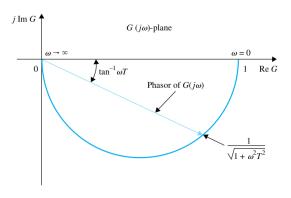
Magnitude-Phase Plo

#### **Polar Plot**

- ▶ **Polar plot**: a plot of  $Im(G(j\omega))$  versus  $Re(G(j\omega))$  of a transfer function  $G(j\omega)$  as  $\omega$  varies from 0 to  $\infty$
- $\blacktriangleright$  A polar plot contains less information than a Bode plot because the frequency values  $\omega$  are not captured
- ▶ The general shape of the polar plot can be determined from:
  - ▶ Magnitude  $|G(j\omega)|$  and phase  $/G(j\omega)$  at  $\omega=0$  and  $\omega=\infty$
  - Intersection of the polar plot with the real and imaginary axes

## Polar Plot: Type 0 System

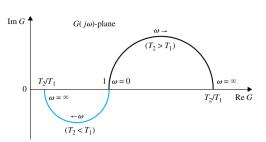
- ▶ Draw a polar plot for  $G(s) = \frac{1}{1+Ts}$
- ► Magnitude:  $|G(j\omega)| = \frac{1}{\sqrt{1+\omega^2T^2}}$
- ▶ Phase:  $/G(j\omega) = -\tan^{-1}(\omega T)$
- ▶ Polar plot: |G(j0)| = 1, /G(j0) = 0;  $|G(j\infty)| = 0$ ,  $/G(j\infty) = -90^{\circ}$



# Polar Plot: Type 0 System

- ▶ Draw a polar plot for  $G(s) = \frac{1+T_2s}{1+T_1s}$
- Magnitude:  $|G(j\omega)| = \frac{\sqrt{1+\omega^2 T_2^2}}{\sqrt{1+\omega^2 T_1^2}}$
- ▶ Phase:  $/G(j\omega) = \tan^{-1}(\omega T_2) \tan^{-1}(\omega T_1)$
- lacktriangle The polar plot depends on the relative magnitudes of  $T_1$  and  $T_2$

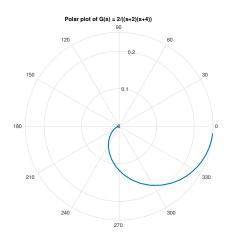
▶ If 
$$T_2 > T_1$$
: 
$$|G(j\omega)| \ge 1 \qquad \underline{/G(j\omega)} \ge 0$$
▶ If  $T_1 > T_2$ : 
$$|G(j\omega)| \le 1 \qquad \underline{/G(j\omega)} \le 0$$



# Polar Plot: Type 0 System

- ▶ Draw a polar plot for  $G(s) = \frac{\kappa}{(1+T_1s)(1+T_2s)}$
- ▶ Magnitude  $|G(j\omega)|$  and phase  $/G(j\omega)$  at  $\omega = 0$  and  $\omega = \infty$ :

$$G(j0) = \kappa / 0^{\circ}$$
  $G(j\infty) = 0 / -180^{\circ}$ 



# Polar Plot: Type 1 System

- Draw a polar plot for  $G(s) = \frac{\kappa}{s(1+\tau s)}$
- ▶ Magnitude  $|G(j\omega)|$  and phase  $\angle G(j\omega)$ :

$$|G(j\omega)| = \frac{\kappa}{\sqrt{\omega^2 + \omega^4 \tau^2}}$$
$$\underline{/G(j\omega)} = -\frac{\pi}{2} - \tan^{-1}(\omega\tau)$$

▶ Values at  $\omega = 0$ ,  $\omega = 1/\tau$ ,  $\omega = \infty$ :

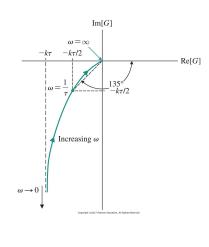
$$G(j0) = \infty / -90^{\circ}$$

$$G(j\frac{1}{\tau}) = \frac{\kappa \tau}{\sqrt{2}} / -135^{\circ}$$

$$G(j\infty) = 0 / -180^{\circ}$$

Asymptote as  $\omega \to 0$ :

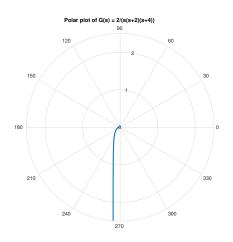
$$G(j\omega) = \frac{\kappa}{j\omega(1+\tau j\omega)} \stackrel{\mathsf{small}}{\approx} \frac{\omega}{j\omega} \left(1-j\tau\omega\right) = -\kappa\tau - j\frac{\kappa}{\omega}$$



## Polar Plot: Type 1 System

- ▶ Draw a polar plot for  $G(s) = \frac{\kappa}{s(1+T_1s)(1+T_2s)}$
- ▶ Magnitude  $|G(j\omega)|$  and phase  $/G(j\omega)$  at  $\omega = 0$  and  $\omega = \infty$ :

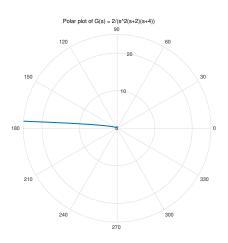
$$G(j0) = \infty / -90^{\circ}$$
  $G(j\infty) = 0 / -270^{\circ}$ 



# Polar Plot: Type 2 System

- ▶ Draw a polar plot for  $G(s) = \frac{\kappa}{s^2(1+T_1s)(1+T_2s)}$
- ▶ Magnitude  $|G(j\omega)|$  and phase  $/G(j\omega)$  at  $\omega = 0$  and  $\omega = \infty$ :

$$G(j0) = \infty / -180^{\circ}$$
  $G(j\infty) = 0 / -360^{\circ}$ 



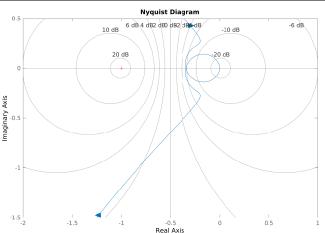
#### Polar Plot in Matlab

► Nyquist plot for  $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$ 

```
s = tf('s');

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

nyquistplot(G);
```



#### **Outline**

Frequency Response

Bode Plot

Non-Minimum Phase Systems

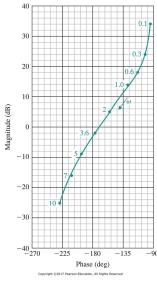
Polar Plot

 ${\sf Magnitude\text{-}Phase\ Plot}$ 

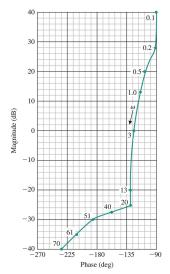
## Magnitude-Phase Plot

- ▶ A magnitude-phase plot can be obtained from the information on a Bode plot
- lacktriangle A magnitude-phase plot is shifted up or down when the gain factor  $\kappa$  varies
- ▶ The Bode plot property of adding plots of individual components does not carry over

## Magnitude-Phase Plot



(a) 
$$G_1(s) = \frac{5}{s(s/2+1)(s/6+2)}$$



Copyright @2017 Pearson Education, All Rights Reserved

(b) 
$$G_2(s) = \frac{5(s/10+1)}{s(s/2+1)(1+0.6(s/50)+(s/50)^2)}$$

## Magnitude-Phase Plot

▶ Draw a polar plot and a magnitude-phase plot for  $G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$ 



## Magnitude-Phase Plot in Matlab

► Nichols plot for  $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$ 

```
s = tf('s');

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

nicholsplot(G);
```

