
ECE171A: Linear Control System Theory
Lecture 10: Frequency Response

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu
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Frequency Response
I Consider a control system with input R(s), output Y (s), and transfer

function G (s)

I Consider an exponential test signal defined by s0 = σ + jω:

R(s) =
1

s − s0
r(t) = L−1

{
1

s − s0

}
= es0t , t ≥ 0

I The system response is:

y(t) = L−1 {G (s)R(s)} = (g ∗ r)(t) =

∫ t

0
g(τ)r(t − τ)dτ

= es0t
[∫ t

0
g(τ)e−s0τdτ

]
I As t →∞,

[∫ t
0 g(τ)e−s0τdτ

]
→ L{g(t)} = G (s0)

I The steady-state response to r(t) = es0t is:

yss(t) = G (s0)es0t
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Frequency Response

I Applying the test signal r(t) = es0t for different s0 gives us a way to
identify the transfer function G (s) of an unknown system using the
steady-state response:

yss(t) = G (s0)es0t

I How do we apply r(t) = es0t in practice?

I If Re(s0) > 0 or Re(s0) < 0, the system response either blows up or
decays very quickly.

I Consider s0 = jω and recall that sin(ωt) = Im(e jωt) = e jωt−e−jωt

2j

I By superposition, the steady-state response to r(t) = sin(ωt) is:

yss(t) =
1

2j
G (jω)e jωt − 1

2j
G (jω)e−jωt

= |G (jω)|e j∠G(jω) e
jωt − e−jωt

2j
= |G (jω)| sin (ωt + G (jω))
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Frequency Response

I The frequency response is the steady-state output of a system with
sinusoidal input

I The frequency response of a system with transfer function T (s) to a
reference signal r(t) = sin(ωt) is a sinusoid, scaled by |T (jω)| and
phase-shifted by T (jω):

yss(t) = |T (jω)| sin (ωt + T (jω))

I The experimental determination of the frequency response is often easily
accomplished due to the ready availability of sinusoidal test signals for
various frequency ranges
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Frequency Domain Plots

I Plotting the magnitude and phase of T (jω) provides insight into the
analysis and design of linear control systems

I The following frequency-domain plots of the transfer function are used:

I Polar plot: a plot of Im(T (jω)) versus Re(T (jω)) of a transfer function
T (jω) as ω varies from 0 to ∞

I Magnitude-phase plot: a plot of the log-magnitude 20 log10 |T (jω)| in
decibels (dB) versus the phase T (jω) as ω varies from 0 to ∞

I Bode plot: a plot of the log-magnitude 20 log10 |T (jω)| in decibels (dB)
and the phase T (jω) versus log10 ω as ω varies from 0 to ∞
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Log-scale Units
I Bel: a relative measurement unit of the log-ratio of measured power P

to reference power P0

Log-power ratio = log10

(
P

P0

)
Bels

I Decibel: ten Bels:

Log-power ratio = 10 log10

(
P

P0

)
dB

I The input-output power spectral density relationship for a linear
time-invariant system with input R(s), transfer function T (s), and
output Y (s) is:

SY (ω) = |T (jω)|2SR(ω)

I The log-power ratio at ω in dB is:

10 log10

(
SY (ω)

SR(ω)

)
= 10 log10 |T (jω)|2 = 20 log10 |T (jω)|
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Log-scale Units

I Bode plot: the magnitude 20 log10 |T (jω)| in dB and phase T (jω) in
radians of a transfer function T (s) are plotted versus log10 ω

I The intervals on a log scale are known as decades (base 10) or octaves
(base 2):
I The number of decades between ω1 and ω2 is log10

ω2

ω1

I The number of octaves between ω1 and ω2 is log2
ω2

ω1

I There are log2(10) ≈ 3.32 octaves in one decade

I A slope of 20 dB/decade is the same as 20 dB/decade
log2(10) octave/decade ≈ 6 dB/octave
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Transfer Function in Bode Form

I Transfer function in Bode form: a transfer function with m1 real
zeros, m2 complex conjugate zero pairs, n0 poles at the origin, n1 real
poles, and n2 complex conjugate pole pairs:

T (s) = κ

∏m1
i=1

(
s
zi

+ 1
)∏m2

l=1

((
s
ωnl

)2
+ 2ζl

(
s
ωnl

)
+ 1

)
sn0
∏n1

i=1

(
s
pi

+ 1
)∏n2

k=1

((
s
ωnk

)2
+ 2ζk

(
s
ωnk

)
+ 1

)

I The magnitude and phase of T (jω) are needed to draw a Bode plot
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Magnitude and Phase of T (jω)

I Magnitude of T (jω) in decibels (dB):

20 log |T (jω)|

= 20 log |κ|+
m1∑
i=1

20 log

∣∣∣∣j ωzi + 1

∣∣∣∣+

m2∑
l=1

20 log

∣∣∣∣∣
(
jω

ωnl

)2

+ 2ζl

(
jω

ωnl

)
+ 1

∣∣∣∣∣
− 20 log |(jω)n0 | −

n1∑
i=1

20 log

∣∣∣∣j ωpi + 1

∣∣∣∣− n2∑
k=1

20 log

∣∣∣∣∣
(

jω

ωnk

)2

+ 2ζk

(
jω

ωnk

)
+ 1

∣∣∣∣∣
I Phase of T (jω) in radians:

T (jω) = κ +

m1∑
i=1

tan−1
(
ω

zi

)
+

m2∑
l=1

tan−1
(

2ζlωnlω

ω2
nl
− ω2

)

− n0
π

2
−

n1∑
i=1

tan−1
(
ω

pi

)
−

n2∑
k=1

tan−1
(

2ζkωnkω

ω2
nk
− ω2

)
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Drawing Bode Plots

I Instead of computing the magnitude and phase of T (jω) directly, it is
preferable to obtain general rules for drawing Bode plots

I A transfer function may contain only four kinds of factors:
I Constant terms: κ

I Poles or zeros at the origin: sq

I Real poles or zeros:
(

s
p + 1

)−1

or
(
s
z + 1

)
I Complex conjugate poles or zeros:

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)±1

I If we determine the magnitude and phase plots for these four factors,
then we can add them together graphically to obtain a Bode plot for any
transfer function
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Bode Plot for a Constant Term κ

I Magnitude: 20 log |κ|

I Phase: κ =

{
0 if κ > 0

π if κ < 0

I Example: Bode plot for T (s) = 1
10 and T (s) = −10
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Bode Plot for Pole or Zero at the Origin: sq

I Magnitude: a straight line on a log scale going through the origin with
slope 20q:

20 log |(jω)q| = 20q log |ω|

I Phase: a horizontal line at q π2 :

(jω)q = q (jω) = q
π

2
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Bode Plot for Real Zero
(
s
z + 1

)
I Magnitude: 20 log

∣∣j ωz + 1
∣∣ = 20 log

√
1 +

(
ω
z

)2
I Phase:

(
j ωz + 1

)
= tan−1 ωz

I Extreme ω values:
I Case 1: ω � z : horizontal line at 0:

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 0

(
j ωz + 1

)
≈ 0

I Case 2: ω � z : log-scale line of slope 20 going through 0 when ω = z :

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 20 log

1

z
+ 20 logω

(
j ωz + 1

)
≈ π

2

I Case 3: ω = z (corner frequency):

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 3dB

(
j ωz + 1

)
=
π

4
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Bode Plot for Real Pole
(

s
p + 1

)−1

I Magnitude: 20 log

∣∣∣∣(j ωp + 1
)−1∣∣∣∣ = −20 log

√
1 +

(
ω
p

)2
I Phase:

(
j ωp + 1

)−1
= − tan−1 ωp

I Extreme ω values:
I Case 1: ω � p: horizontal line at 0:

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ 0
(
j ωp + 1

)−1

≈ 0

I Case 2: ω � p: log-scale line of slope −20 going through 0 when ω = p:

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ −20 log
1

p
− 20 logω

(
j ωp + 1

)−1

≈ −π
2

I Case 3: ω = p (corner frequency):

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ −3dB
(
j ωp + 1

)−1

≈ −π
4
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Bode Plot for Real Pole
(

s
p + 1

)−1
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Bode Plot Example 1
I Draw a Bode plot for T (s) = 10 s+10

(s+1)(s+100) = (s/10+1)
(s+1)(s/100+1)
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Bode Plot for Complex Conjugate Zeros

I Consider T (s) =

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)
I Magnitude:

|T (jω)| =

∣∣∣∣−ω2

ω2
n

+ 2ζ
ω

ωn
j + 1

∣∣∣∣ =

√√√√(1−
(
ω

ωn

)2
)2

+ 4ζ2
(
ω

ωn

)2

I Phase:

T (jω) = −ω2

ω2
n

+ 2ζ ωωn
j + 1 = tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2
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Bode Plot for Complex Conjugate Zeros

|T (jω)| =

√√√√(1−
(
ω

ωn

)2
)2

+ 4ζ2
(
ω

ωn

)2

T (jω) = tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2


I Extreme ω values:
I Case 1: ω � ωn: horizontal line at 0:

20 log |T (jω)| ≈ 0 T (jω) ≈ 0

I Case 2: ω � ωn: log-scale line of slope 40 going through 0 when ω = ωn:

20 log |T (jω)| ≈ 20 log

√(
ω

ωn

)4

= 40 logω − 40 logωn T (jω) ≈ π

I Case 3: ω = ωn:

20 log |T (jω)| = 20 log(2ζ) T (jω) =
π

2
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Bode Plot for Complex Conjugate Poles

I Consider T (s) =

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)−1

|T (jω)| =
1√(

1−
(
ω
ωn

)2)2

+ 4ζ2
(
ω
ωn

)2 T (jω) = − tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2


I Extreme ω values:
I Case 1: ω � ωn: horizontal line at 0:

20 log |T (jω)| ≈ 0 T (jω) ≈ 0

I Case 2: ω � ωn: log-scale line of slope −40 going through 0 when ω = ωn

20 log |T (jω)| ≈ −20 log

√(
ω

ωn

)4

= −40 logω+40 logωn T (jω) ≈ −π

I Case 3: ω = ωn:

20 log |T (jω)| = −20 log(2ζ) T (jω) = −π
2
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Bode Plot for Complex Conjugate Poles
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Bode Plot Approximations for Basic Transfer Function Terms
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Bode Plot Approximations for Basic Transfer Function Terms
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Bode Plot Approximations for Basic Transfer Function Terms
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Bode Plot Example 2

I Draw a Bode plot for T (s) = 4(1+0.1s)
s(1+0.5s)(1+0.6(s/50)+(s/50)2)

I Factors in order of their occurrence as s = jω increases:

1. A constant gain κ = 4

2. A pole at the origin

3. A pole at ω = 2

4. A zero at ω = 10

5. A pair of complex poles at ω = ωn = 50
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Bode Plot Example 2

I Consider the approximate magnitude plots:

1. Constant gain: 20 log |κ| = 14 dB

2. Pole at the origin: a line with slope −20 dB/decade going 0 when ω = 1

3. Pole at ω = 2: horizontal line at 0 dB until the corner frequency at
ω = 2 and a line with slope −20 dB/decade after

4. Zero at ω = 10: horizontal line at 0 dB until the corner frequency at
ω = 10 and a line with slope 20 dB/decade after

5. Complex pole pair at ω = ωn = 50: horizontal line at 0 dB until the
corner frequency at ω = 50 and a line with slope −40 dB/decade after

I The approximations must be corrected at the corner frequencies:
I Real zero/pole: ±3dB

I Complex pair of zeros/poles: based on ζ
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Bode Plot Example 2

I Complex pole pair correction:
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Bode Plot Example 2
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Bode Plot Example 2
I Consider the approximate phase plots:

1. Constant gain: κ = 0◦

2. Pole at the origin: −90◦

3. Pole at ω = 2: a line with slope −45 deg/decade from ω = 0.2 to ω = 20

4. Zero at ω = 10: a line with slope 45 deg/decade from ω = 1 to ω = 100

5. Complex pole pair at ω = ωn = 50: phase shift of −90 deg/decade from
ω = 5 to ω = 500

I The actual phase characteristic for the complex pole pair should be
obtained from:
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Bode Plot Example 2

I The exact phase shift can be evaluated at important frequencies:

T (jω) = κ +

m1∑
i=1

tan−1
(
ω

zi

)
+

m2∑
l=1

tan−1
(

2ζlωnlω

ω2
nl
− ω2

)
− n0

π

2
−

n1∑
i=1

tan−1
(
ω

pi

)
−

n2∑
k=1

tan−1
(

2ζkωnkω

ω2
nk
− ω2

)
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Bode Plot Example 3
I Draw a Bode plot for

T (s) =
(s + 1)(s2 + 3s + 100)

s2(s + 10)(s + 100)
=

(s + 1)((s/10)2 + 2(0.15)(s/10) + 1)

10s2(s/10 + 1)(s/100 + 1)

I Magnitude and phase at ω = 0.1:

20 log |T (jω)| ≈ 20dB T (jω) ≈ −π
I Magnitude slope in dB/decade:

ω Zero at −1 Zeros with ωn = 10 Double pole at 0 Pole at −10 Pole at −100

0.1 - 1 0 0 -40 0 0

1 - 10 20 0 -40 0 0

10 - 100 20 40 -40 -20 0

100 - 1000 20 40 -40 -20 -20

I Phase slope in degrees/decade:
ω Zero at −1 Zeros with ωn = 10 Double pole at 0 Pole at −10 Pole at −100

0.1 - 1 45 0 0 0 0

1 - 10 45 90 0 -45 0

10 - 100 0 90 0 -45 -45

100 - 1000 0 0 0 0 -45
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Bode Plot Example 3
I Draw a Bode plot for

T (s) =
(s + 1)(s2 + 3s + 100)

s2(s + 10)(s + 100)
=

(s + 1)((s/10)2 + 2(0.15)(s/10) + 1)

10s2(s/10 + 1)(s/100 + 1)
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Bode Plot Example 4
I Draw a Bode plot for T (s) = 4(s/2+1)

s(1+2s)(1+0.05s+(s/8)2)

I Magnitude at ω = 2−2:

20 log |T (jω)| ≈ 20 log

∣∣∣∣ 4

jω

∣∣∣∣ = 20 log 16 ≈ 24dB

I Magnitude slope in dB/octave:
ω Zero at −2 Pole at 0 Pole at −2−1 Poles with ωn = 23

2−2 - 2−1 0 -6 0 0

2−1 - 21 0 -6 -6 0

21 - 23 6 -6 -6 0

23 - 24 6 -6 -6 -12

I Phase slope in degrees/decade
ω Zero at −2 Pole at 0 Pole at −2−1 Poles with ωn = 23

0.2 - 0.8 45 0 -45 0

0.8 - 5 45 0 -45 -90

5 - 20 45 0 0 -90

20 - 80 0 0 0 -90 32



Bode Plot Example 4
I Draw a Bode plot for T (s) = 4(s/2+1)

s(1+2s)(1+0.05s+(s/8)2)
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Nonminimum Phase Systems

I Minimum phase system: a system whose transfer function poles and
zeros are in the closed left half-plane

I Nonminimum phase system: a system whose transfer function has
zeros in the right half-plane

I Bode plots can also be drawn for nonminimum phase systems

I The magnitude of a transfer function does not depend on whether the
zeros are in the left or right half-plane

I The phase contribution of a zero in the right half-plane is always at least
as large as the phase contribution of a zero in the left half-plane
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Nonminimum Phase Systems
I To understand the difference between minimum and nonminimum phase

systems compare the transfer functions:

G1(s) =
s + z

s + p
G2(s) =

s − z

s + p

I Magnitude: |G1(jω)| = |G2(jω)| =
√
ω2+z2√
ω2+p2

I Phase: G1(jω1) vs G2(jω1)

37



Nonminimum Phase Systems
I The range of phase shifts for a minimum phase transfer function is the

least possible for a given magnitude curve
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Nonminimum Phase Systems: Example
I Draw a Bode plot for G1(s) = 10 s+1

s+10 and G2(s) = 10 s−1
s+10
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Polar Plot

I Polar plot: a plot of Im(G (jω)) versus Re(G (jω)) of a transfer function
G (jω) as ω varies from 0 to ∞

I A polar plot contains less information than a Bode plot because the
frequency values ω are not captured

I The general shape of the polar plot can be determined from:
I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞
I Intersection of the polar plot with the real and imaginary axes
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Polar Plot: Type 0 System
I Draw a polar plot for G (s) = 1

1+Ts

I Magnitude: |G (jω)| = 1√
1+ω2T 2

I Phase: G (jω) = − tan−1(ωT )

I Polar plot: |G (j0)| = 1, G (j0) = 0; |G (j∞)| = 0, G (j∞) = −π
2
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Polar Plot: Type 0 System

I Draw a polar plot for G (s) = 1+T2s
1+T1s

I Magnitude: |G (jω)| =

√
1+ω2T 2

2√
1+ω2T 2

1

I Phase: G (jω) = tan−1(ωT2)− tan−1(ωT1)

I The polar plot depends on the relative magnitudes of T1 and T2

I If T2 > T1:

|G (jω)| ≥ 1 G (jω) ≥ 0

I If T1 > T2:

|G (jω)| ≤ 1 G (jω) ≤ 0
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Polar Plot: Type 0 System
I Draw a polar plot for G (s) = κ

(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) = κ 0◦ G (j∞) = 0 −180◦
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Polar Plot: Type 1 System
I Draw a polar plot for G (s) = κ

s(1+τs)

I Magnitude |G (jω)| and phase G (jω):

|G (jω)| =
κ√

ω2 + ω4τ2

G (jω) = −π
2
− tan−1(ωτ)

I Values at ω = 0, ω = 1/τ , ω =∞:

G (j0) =∞ −90◦

G (j
1

τ
) =

κτ√
2
−135◦

G (j∞) = 0 −180◦

I Asymptote as ω → 0:

G (jω) =
κ

jω(1 + τ jω)

small ω
≈ κ

jω
(1− jτω) = −κτ − j

κ

ω
44



Polar Plot: Type 1 System
I Draw a polar plot for G (s) = κ

s(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) =∞ −90◦ G (j∞) = 0 −270◦
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Polar Plot: Type 2 System
I Draw a polar plot for G (s) = κ

s2(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) =∞ −180◦ G (j∞) = 0 −360◦
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Magnitude-Phase Plot

I Magnitude-phase plot: a plot of the magnitude 20 log10 |G (jω)| in
decibels (dB) versus the phase G (jω) as ω varies from 0 to ∞

I A magnitude-phase plot can be obtained from the information on a
Bode plot

I A magnitude-phase plot is shifted up or down when the gain factor κ
varies

I The Bode plot property of adding plots of individual components does
not carry over

I The magnitude-phase plot of the forward-path transfer function G (s) of
a unity-feedback system can be superposed on a Nichols chart to give
information about the system’s relative stability and frequency response
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Magnitude-Phase Plot

(a) G1(s) = 5
s(s/2+1)(s/6+2)

(b) G2(s) = 5(s/10+1)
s(s/2+1)(1+0.6(s/50)+(s/50)2)
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Magnitude-Phase Plot

I The shape of the magnitude-phase plot is important where the
magnitude approaches 0 dB and the phase approaches 180◦

I Gain-Crossover frequency: ω at which 20 log |G (jω)| = 0 dB

I Phase-Crossover frequency: ω at which G (jω) = −π

I Unity-feedback closed-loop transfer function:

T (s) =
G (s)

1 + G (s)

I Instability occurs when 1 + G (s) = 0:

|G (s)| = 1 G (s) = −π
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Magnitude-Phase Plot
I Draw a polar plot and a magnitude-phase plot for G (s) = 10(s+10)

s(s+2)(s+5)
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Frequency Domain Plots in Matlab
I Bode plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

2 G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 bodeplot(G);
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Frequency Domain Plots in Matlab
I Nyquist plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

2 G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 nyquistplot(G);
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Frequency Domain Plots in Matlab
I Nichols plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

2 G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 nicholsplot(G);
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