ECE171A: Linear Control System Theory Lecture 10: Frequency Response

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant: Chenfeng Wu: chw357@ucsd.edu

> UC San Diego JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Frequency Response

- Consider a control system with input R(s), output Y(s), and transfer function G(s)
- Consider an exponential test signal defined by $s_0 = \sigma + j\omega$:

$$R(s) = rac{1}{s-s_0}$$
 $r(t) = \mathcal{L}^{-1}\left\{rac{1}{s-s_0}
ight\} = e^{s_0 t}, \ t \ge 0$

The system response is:

$$y(t) = \mathcal{L}^{-1} \{ G(s)R(s) \} = (g * r)(t) = \int_0^t g(\tau)r(t-\tau)d\tau$$
$$= e^{s_0 t} \left[\int_0^t g(\tau)e^{-s_0\tau}d\tau \right]$$
As $t \to \infty$, $\left[\int_0^t g(\tau)e^{-s_0\tau}d\tau \right] \to \mathcal{L} \{ g(t) \} = G(s_0)$

• The steady-state response to $r(t) = e^{s_0 t}$ is:

$$y_{ss}(t) = G(s_0)e^{s_0t}$$

Frequency Response

Applying the test signal r(t) = e^{s₀t} for different s₀ gives us a way to identify the transfer function G(s) of an unknown system using the steady-state response:

$$y_{ss}(t) = G(s_0)e^{s_0t}$$

- How do we apply $r(t) = e^{s_0 t}$ in practice?
- If Re(s₀) > 0 or Re(s₀) < 0, the system response either blows up or decays very quickly.</p>
- Consider $s_0 = j\omega$ and recall that $\sin(\omega t) = \operatorname{Im}(e^{j\omega t}) = \frac{e^{j\omega t} e^{-j\omega t}}{2i}$
- ▶ By superposition, the steady-state response to $r(t) = sin(\omega t)$ is:

$$y_{ss}(t) = \frac{1}{2j}G(j\omega)e^{j\omega t} - \frac{1}{2j}G(j\omega)e^{-j\omega t}$$
$$= |G(j\omega)|e^{j\angle G(j\omega)}\frac{e^{j\omega t} - e^{-j\omega t}}{2j} = |G(j\omega)|\sin(\omega t + \underline{/G(j\omega)})$$

Frequency Response

- The frequency response is the steady-state output of a system with sinusoidal input
- ► The frequency response of a system with transfer function T(s) to a reference signal r(t) = sin(ωt) is a sinusoid, scaled by |T(jω)| and phase-shifted by <u>T(jω)</u>:

$$y_{ss}(t) = |T(j\omega)| \sin (\omega t + /T(j\omega))$$

The experimental determination of the frequency response is often easily accomplished due to the ready availability of sinusoidal test signals for various frequency ranges

Frequency Domain Plots

Plotting the magnitude and phase of T(j\u03c6) provides insight into the analysis and design of linear control systems

The following frequency-domain plots of the transfer function are used:

- Polar plot: a plot of Im(T(jω)) versus Re(T(jω)) of a transfer function T(jω) as ω varies from 0 to ∞
- Magnitude-phase plot: a plot of the log-magnitude 20 log₁₀ |T(jω)| in decibels (dB) versus the phase /T(jω) as ω varies from 0 to ∞
- Bode plot: a plot of the log-magnitude 20 log₁₀ |T(jω)| in decibels (dB) and the phase /T(jω) versus log₁₀ ω as ω varies from 0 to ∞

Log-scale Units

Bel: a relative measurement unit of the log-ratio of measured power P to reference power P₀

Log-power ratio =
$$\log_{10}\left(\frac{P}{P_0}\right)$$
 Bels

Decibel: ten Bels:

$$\mathsf{Log} ext{-power ratio} = 10 \log_{10}\left(rac{P}{P_0}
ight) \; \mathsf{dB}$$

The input-output power spectral density relationship for a linear time-invariant system with input R(s), transfer function T(s), and output Y(s) is:

$$S_Y(\omega) = |T(j\omega)|^2 S_R(\omega)$$

• The log-power ratio at ω in dB is:

$$10 \log_{10} \left(\frac{S_{Y}(\omega)}{S_{R}(\omega)} \right) = 10 \log_{10} |T(j\omega)|^{2} = 20 \log_{10} |T(j\omega)|$$

Log-scale Units

Bode plot: the magnitude 20 log₁₀ |T(jω)| in dB and phase <u>/T(jω)</u> in radians of a transfer function T(s) are plotted versus log₁₀ ω

- The intervals on a log scale are known as decades (base 10) or octaves (base 2):
 - The number of **decades** between ω_1 and ω_2 is $\log_{10} \frac{\omega_2}{\omega_1}$
 - The number of **octaves** between ω_1 and ω_2 is $\log_2 \frac{\omega_2}{\omega_1}$
 - There are $\log_2(10) \approx 3.32$ octaves in one decade
 - ► A slope of 20 dB/decade is the same as $\frac{20 \text{ dB/decade}}{\log_2(10) \text{ octave/decade}} \approx 6 \text{ dB/octave}$

Transfer Function in Bode Form

Transfer function in Bode form: a transfer function with m₁ real zeros, m₂ complex conjugate zero pairs, n₀ poles at the origin, n₁ real poles, and n₂ complex conjugate pole pairs:

$$T(s) = \kappa \frac{\prod_{i=1}^{m_1} \left(\frac{s}{z_i} + 1\right) \prod_{l=1}^{m_2} \left(\left(\frac{s}{\omega_{n_l}}\right)^2 + 2\zeta_l \left(\frac{s}{\omega_{n_l}}\right) + 1 \right)}{s^{n_0} \prod_{i=1}^{n_1} \left(\frac{s}{p_i} + 1\right) \prod_{k=1}^{n_2} \left(\left(\frac{s}{\omega_{n_k}}\right)^2 + 2\zeta_k \left(\frac{s}{\omega_{n_k}}\right) + 1 \right)}$$

The magnitude and phase of T(jω) are needed to draw a Bode plot

Magnitude and Phase of $T(j\omega)$

• Magnitude of $T(j\omega)$ in decibels (dB):

$$20 \log |T(j\omega)| = 20 \log |\kappa| + \sum_{i=1}^{m_1} 20 \log \left| j\frac{\omega}{z_i} + 1 \right| + \sum_{l=1}^{m_2} 20 \log \left| \left(\frac{j\omega}{\omega_{n_l}} \right)^2 + 2\zeta_l \left(\frac{j\omega}{\omega_{n_l}} \right) + 1 \right| - 20 \log |(j\omega)^{n_0}| - \sum_{i=1}^{n_1} 20 \log \left| j\frac{\omega}{p_i} + 1 \right| - \sum_{k=1}^{n_2} 20 \log \left| \left(\frac{j\omega}{\omega_{n_k}} \right)^2 + 2\zeta_k \left(\frac{j\omega}{\omega_{n_k}} \right) + 1 \right|$$

• Phase of $T(j\omega)$ in radians:

$$\underline{/T(j\omega)} = \underline{/\kappa} + \sum_{i=1}^{m_1} \tan^{-1}\left(\frac{\omega}{z_i}\right) + \sum_{l=1}^{m_2} \tan^{-1}\left(\frac{2\zeta_l \omega_{n_l} \omega}{\omega_{n_l}^2 - \omega^2}\right)$$
$$- n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right)$$

Drawing Bode Plots

- Instead of computing the magnitude and phase of T(jw) directly, it is preferable to obtain general rules for drawing Bode plots
- A transfer function may contain only four kinds of factors:
 - Constant terms: κ
 - Poles or zeros at the origin: s^q
 - Real poles or zeros: $\left(\frac{s}{p}+1\right)^{-1}$ or $\left(\frac{s}{z}+1\right)$
 - Complex conjugate poles or zeros: $\left(\left(\frac{s}{\omega_n}\right)^2 + 2\zeta\left(\frac{s}{\omega_n}\right) + 1\right)^{\pm 1}$
- If we determine the magnitude and phase plots for these four factors, then we can add them together graphically to obtain a Bode plot for any transfer function

Bode Plot for a Constant Term κ

Magnitude: $20 \log |\kappa|$

• Phase:
$$\underline{\kappa} = \begin{cases} 0 & \text{if } \kappa > 0 \\ \pi & \text{if } \kappa < 0 \end{cases}$$

• Example: Bode plot for $T(s) = \frac{1}{10}$ and T(s) = -10

Bode Plot for Pole or Zero at the Origin: s^q

Magnitude: a straight line on a log scale going through the origin with slope 20q:

$$20\log|(j\omega)^q| = 20q\log|\omega|$$

• **Phase**: a horizontal line at $q\frac{\pi}{2}$:

$$\underline{/(j\omega)^q} = q\underline{/(j\omega)} = q\frac{\pi}{2}$$

Bode Plot for Real Zero $\left(\frac{s}{z}+1\right)$

• Magnitude: $20 \log \left| j \frac{\omega}{z} + 1 \right| = 20 \log \sqrt{1 + \left(\frac{\omega}{z} \right)^2}$

• Phase:
$$/(j\frac{\omega}{z}+1) = \tan^{-1}\frac{\omega}{z}$$

Extreme ω values:

Case 1: $\omega \ll z$: horizontal line at 0:

$$20 \log \left| j \frac{\omega}{z} + 1 \right| \approx 0$$
 $\underline{/(j \frac{\omega}{z} + 1)} \approx 0$

Case 2: $\omega \gg z$: log-scale line of slope 20 going through 0 when $\omega = z$:

$$20\log\left|j\frac{\omega}{z}+1\right|\approx 20\log\frac{1}{z}+20\log\omega \qquad \qquad \underline{/(j\frac{\omega}{z}+1)}\approx \frac{\pi}{2}$$

• Case 3: $\omega = z$ (corner frequency):

$$20 \log \left| j\frac{\omega}{z} + 1 \right| \approx 3 dB \qquad \qquad \underline{/(j\frac{\omega}{z} + 1)} = \frac{\pi}{4}$$

Bode Plot for Real Pole $\left(\frac{s}{p}+1\right)^{-1}$

• Magnitude: $20 \log \left| \left(j \frac{\omega}{p} + 1 \right)^{-1} \right| = -20 \log \sqrt{1 + \left(\frac{\omega}{p} \right)^2}$

• Phase:
$$\underline{\left(j\frac{\omega}{p}+1\right)^{-1}} = -\tan^{-1}\frac{\omega}{p}$$

Extreme ω values:

Case 1: ω ≪ p: horizontal line at 0:

$$-20\log\left|j\frac{\omega}{p}+1\right|\approx 0$$
 $/(j\frac{\omega}{p}+1)^{-1}\approx 0$

Case 2: $\omega \gg p$: log-scale line of slope -20 going through 0 when $\omega = p$:

$$-20\log\left|j\frac{\omega}{p}+1\right|\approx-20\log\frac{1}{p}-20\log\omega\qquad /\left(j\frac{\omega}{p}+1\right)^{-1}\approx-\frac{\pi}{2}$$

• Case 3: $\omega = p$ (corner frequency):

$$-20\log\left|j\frac{\omega}{p}+1\right|\approx-3dB\qquad\qquad \boxed{\left(j\frac{\omega}{p}+1\right)^{-1}}\approx-\frac{\pi}{4}$$

Bode Plot for Real Pole $\left(\frac{s}{p}+1\right)^{-1}$

• Draw a Bode plot for $T(s) = 10 \frac{s+10}{(s+1)(s+100)} = \frac{(s/10+1)}{(s+1)(s/100+1)}$

Bode Plot for Complex Conjugate Zeros

• Consider
$$T(s) = \left(\left(\frac{s}{\omega_n} \right)^2 + 2\zeta \left(\frac{s}{\omega_n} \right) + 1 \right)$$

Magnitude:

$$|T(j\omega)| = \left|-\frac{\omega^2}{\omega_n^2} + 2\zeta \frac{\omega}{\omega_n} j + 1\right| = \sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}$$

Phase:

$$\underline{/T(j\omega)} = \underline{/-\frac{\omega^2}{\omega_n^2} + 2\zeta \frac{\omega}{\omega_n} j + 1} = \tan^{-1} \left(\frac{2\zeta \left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right)$$

Bode Plot for Complex Conjugate Zeros

$$|T(j\omega)| = \sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2} \qquad \underline{/T(j\omega)} = \tan^{-1}\left(\frac{2\zeta \left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

Extreme ω values:

Case 1: $\omega \ll \omega_n$: horizontal line at 0:

$$20 \log |T(j\omega)| \approx 0$$
 $/T(j\omega) \approx 0$

Case 2: $\omega \gg \omega_n$: log-scale line of slope 40 going through 0 when $\omega = \omega_n$:

$$20 \log |T(j\omega)| \approx 20 \log \sqrt{\left(\frac{\omega}{\omega_n}\right)^4} = 40 \log \omega - 40 \log \omega_n \qquad \underline{/T(j\omega)} \approx \pi$$

• Case 3:
$$\omega = \omega_n$$
:

$$20 \log |T(j\omega)| = 20 \log(2\zeta) \qquad \qquad /T(j\omega) = \frac{\pi}{2}$$

Bode Plot for Complex Conjugate Poles

• Consider
$$T(s) = \left(\left(\frac{s}{\omega_n} \right)^2 + 2\zeta \left(\frac{s}{\omega_n} \right) + 1 \right)^{-1}$$

$$|T(j\omega)| = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2 \left(\frac{\omega}{\omega_n}\right)^2}} \qquad \underline{/T(j\omega)} = -\tan^{-1}\left(\frac{2\zeta \left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

Extreme ω values:

Case 1: $\omega \ll \omega_n$: horizontal line at 0:

 $20 \log |T(j\omega)| \approx 0$ $/T(j\omega) \approx 0$

Case 2: $\omega \gg \omega_n$: log-scale line of slope -40 going through 0 when $\omega = \omega_n$

$$20 \log |T(j\omega)| \approx -20 \log \sqrt{\left(\frac{\omega}{\omega_n}\right)^4} = -40 \log \omega + 40 \log \omega_n \quad \underline{/T(j\omega)} \approx -\pi$$

Case 3: $\omega = \omega_n$: $20 \log |T(j\omega)| = -20 \log(2\zeta)$ $/T(j\omega) = -\frac{\pi}{2}$

Bode Plot for Complex Conjugate Poles

Bode Plot Approximations for Basic Transfer Function Terms

Copyright ©2017 Pearson Education, All Rights Reserved

Bode Plot Approximations for Basic Transfer Function Terms

Copyright @2017 Pearson Education, All Rights Reserved

Bode Plot Approximations for Basic Transfer Function Terms

Copyright @2017 Pearson Education, All Rights Reserved

- Draw a Bode plot for $T(s) = \frac{4(1+0.1s)}{s(1+0.5s)(1+0.6(s/50)+(s/50)^2)}$
- ▶ Factors in order of their occurrence as $s = j\omega$ increases:
 - 1. A constant gain $\kappa = 4$
 - 2. A pole at the origin
 - 3. A pole at $\omega = 2$
 - 4. A zero at $\omega = 10$
 - 5. A pair of complex poles at $\omega = \omega_n = 50$

- Consider the approximate magnitude plots:
 - 1. Constant gain: $20 \log |\kappa| = 14 \text{ dB}$
 - 2. Pole at the origin: a line with slope $-20~{\rm dB/decade}$ going 0 when $\omega=1$
 - 3. Pole at $\omega = 2$: horizontal line at 0 dB until the corner frequency at $\omega = 2$ and a line with slope -20 dB/decade after
 - 4. Zero at $\omega = 10$: horizontal line at 0 dB until the corner frequency at $\omega = 10$ and a line with slope 20 dB/decade after
 - 5. Complex pole pair at $\omega = \omega_n = 50$: horizontal line at 0 dB until the corner frequency at $\omega = 50$ and a line with slope -40 dB/decade after
- The approximations must be corrected at the corner frequencies:
 - ► Real zero/pole: ±3*dB*
 - Complex pair of zeros/poles: based on ζ

Bode Plot Example 2

26

Bode Plot Example 2

- Consider the approximate phase plots:
 - 1. Constant gain: $\underline{\prime\kappa} = 0^{\circ}$
 - 2. Pole at the origin: -90°
 - 3. Pole at $\omega = 2$: a line with slope $-45~{
 m deg}/{
 m decade}$ from $\omega = 0.2$ to $\omega = 20$
 - 4. Zero at $\omega = 10$: a line with slope 45 deg/decade from $\omega = 1$ to $\omega = 100$
 - 5. Complex pole pair at $\omega = \omega_n = 50$: phase shift of -90 deg/decade from $\omega = 5$ to $\omega = 500$
- The actual phase characteristic for the complex pole pair should be obtained from:

The exact phase shift can be evaluated at important frequencies: $\underline{/T(j\omega)} = \underline{\kappa} + \sum_{i=1}^{m_1} \tan^{-1}\left(\frac{\omega}{z_i}\right) + \sum_{l=1}^{m_2} \tan^{-1}\left(\frac{2\zeta_l \omega_{n_l} \omega}{\omega_{n_l}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_2} \tan^{-1}\left(\frac{2\zeta_k \omega_{n_k} \omega}{\omega_{n_k}^2 - \omega^2}\right) - n_0 \frac{\pi}{2} - \sum_{i=1}^{n_1} \tan^{-1}\left(\frac{\omega}{p_i}\right) - \sum_{k=1}^{n_1} \tan^{-1}\left(\frac{$

Draw a Bode plot for

$$T(s) = rac{(s+1)(s^2+3s+100)}{s^2(s+10)(s+100)} = rac{(s+1)((s/10)^2+2(0.15)(s/10)+1)}{10s^2(s/10+1)(s/100+1)}$$

• Magnitude and phase at $\omega = 0.1$:

$$20 \log |T(j\omega)| \approx 20 dB$$

$$/T(j\omega) \approx -\pi$$

Magnitude slope in dB/decade:

ω	Zero at -1	Zeros with $\omega_n = 10$	Double pole at 0	Pole at -10	Pole at -100
0.1 - 1	0	0	-40	0	0
1 - 10	20	0	-40	0	0
10 - 100	20	40	-40	-20	0
100 - 1000	20	40	-40	-20	-20

Phase slope in degrees/decade:

ω	Zero at -1	Zeros with $\omega_n = 10$	Double pole at 0	Pole at -10	Pole at -100
0.1 - 1	45	0	0	0	0
1 - 10	45	90	0	-45	0
10 - 100	0	90	0	-45	-45
100 - 1000	0	0	0	0	-45

Frequency (rad/s)

• Draw a Bode plot for $T(s) = \frac{4(s/2+1)}{s(1+2s)(1+0.05s+(s/8)^2)}$

• Magnitude at
$$\omega = 2^{-2}$$
:

$$20 \log |\mathcal{T}(j\omega)| \approx 20 \log \left|\frac{4}{j\omega}\right| = 20 \log 16 \approx 24 dB$$

Magnitude slope in dB/octave:

ω	Zero at -2	Pole at 0	Pole at -2^{-1}	Poles with $\omega_n = 2^3$
$2^{-2} - 2^{-1}$	0	-6	0	0
$2^{-1} - 2^1$	0	-6	-6	0
$2^1 - 2^3$	6	-6	-6	0
$2^3 - 2^4$	6	-6	-6	-12

Phase slope in degrees/decade

ω	Zero at -2	Pole at 0	Pole at -2^{-1}	Poles with $\omega_n = 2^3$
0.2 - 0.8	45	0	-45	0
0.8 - 5	45	0	-45	-90
5 - 20	45	0	0	-90
20 - 80	0	0	0	-90 32

• Draw a Bode plot for $T(s) = \frac{4(s/2+1)}{s(1+2s)(1+0.05s+(s/8)^2)}$

Nonminimum Phase Systems

- Minimum phase system: a system whose transfer function poles and zeros are in the closed left half-plane
- Nonminimum phase system: a system whose transfer function has zeros in the right half-plane
- Bode plots can also be drawn for nonminimum phase systems
- The magnitude of a transfer function does not depend on whether the zeros are in the left or right half-plane
- The phase contribution of a zero in the right half-plane is always at least as large as the phase contribution of a zero in the left half-plane

Nonminimum Phase Systems

To understand the difference between minimum and nonminimum phase systems compare the transfer functions:

$$G_1(s) = rac{s+z}{s+p}$$
 $G_2(s) = rac{s-z}{s+p}$

• Magnitude:
$$|G_1(j\omega)| = |G_2(j\omega)| = \frac{\sqrt{\omega^2 + z^2}}{\sqrt{\omega^2 + p^2}}$$

• Phase: $/G_1(j\omega_1)$ vs $/G_2(j\omega_1)$

(a)

(b)

Copyright €2017 Pearson Education, All Rights Reserved

Nonminimum Phase Systems

The range of phase shifts for a minimum phase transfer function is the least possible for a given magnitude curve

Copyright @2017 Pearson Education, All Rights Reserved

Nonminimum Phase Systems: Example

• Draw a Bode plot for $G_1(s) = 10 \frac{s+1}{s+10}$ and $G_2(s) = 10 \frac{s-1}{s+10}$

Polar Plot

- Polar plot: a plot of Im(G(jω)) versus Re(G(jω)) of a transfer function G(jω) as ω varies from 0 to ∞
- A polar plot contains less information than a Bode plot because the frequency values ω are not captured
- The general shape of the polar plot can be determined from:
 - ▶ Magnitude $|G(j\omega)|$ and phase $/G(j\omega)$ at $\omega = 0$ and $\omega = \infty$
 - Intersection of the polar plot with the real and imaginary axes

Polar Plot: Type 0 System

• Draw a polar plot for
$$G(s) = \frac{1}{1+Ts}$$

- Magnitude: $|G(j\omega)| = \frac{1}{\sqrt{1+\omega^2T^2}}$
- Phase: $\underline{/G(j\omega)} = -\tan^{-1}(\omega T)$
- ► Polar plot: |G(j0)| = 1, $\underline{/G(j0)} = 0$; $|G(j\infty)| = 0$, $\underline{/G(j\infty)} = -\frac{\pi}{2}$

Polar Plot: Type 0 System

• Draw a polar plot for
$$G(s) = \frac{1+T_2s}{1+T_1s}$$

• Magnitude:
$$|G(j\omega)| = \frac{\sqrt{1+\omega^2 T_2^2}}{\sqrt{1+\omega^2 T_1^2}}$$

• Phase:
$$/G(j\omega) = \tan^{-1}(\omega T_2) - \tan^{-1}(\omega T_1)$$

The polar plot depends on the relative magnitudes of T₁ and T₂

Polar Plot: Type 0 System

• Draw a polar plot for $G(s) = \frac{\kappa}{(1+T_1s)(1+T_2s)}$

► Magnitude $|G(j\omega)|$ and phase $\underline{/G(j\omega)}$ at $\omega = 0$ and $\omega = \infty$: $G(j0) = \kappa \underline{/0^{\circ}}$ $G(j\infty) = 0 \underline{/-180^{\circ}}$

Polar Plot: Type 1 System • Draw a polar plot for $\check{G}(s) = \frac{\kappa}{s(1+\tau s)}$ $\operatorname{Im}[G]$ Magnitude $|G(j\omega)|$ and phase $/G(j\omega)$: $\omega = \infty$ $-k\tau/2$ Re[G] $|G(j\omega)| = \frac{\kappa}{\sqrt{\omega^2 + \omega^4 \tau^2}}$ 135 $\omega = 0$ $\bar{k}\tau/2$ $/G(j\omega) = -\frac{\pi}{2} - \tan^{-1}(\omega\tau)$ ▶ Values at $\omega = 0$, $\omega = 1/\tau$, $\omega = \infty$: Increasing ω $G(i0) = \infty / -90^{\circ}$ $G(j\frac{1}{\tau}) = \frac{\kappa\tau}{\sqrt{2}}/(-135^{\circ})$ $\omega \rightarrow 0$ $G(i\infty) = 0/-180^{\circ}$

• Asymptote as $\omega \to 0$:

$$G(j\omega) = \frac{\kappa}{j\omega(1+\tau j\omega)} \stackrel{\text{small }\omega}{\approx} \frac{\kappa}{j\omega} (1-j\tau\omega) = -\kappa\tau - j\frac{\kappa}{\omega}$$

Polar Plot: Type 1 System

• Draw a polar plot for $G(s) = \frac{\kappa}{s(1+T_1s)(1+T_2s)}$

► Magnitude $|G(j\omega)|$ and phase $\underline{/G(j\omega)}$ at $\omega = 0$ and $\omega = \infty$: $G(j0) = \infty \underline{/-90^{\circ}}$ $G(j\infty) = 0 \underline{/-270^{\circ}}$

Polar Plot: Type 2 System

• Draw a polar plot for $G(s) = \frac{\kappa}{s^2(1+T_1s)(1+T_2s)}$

► Magnitude $|G(j\omega)|$ and phase $\underline{/G(j\omega)}$ at $\omega = 0$ and $\omega = \infty$: $G(j0) = \infty \underline{/-180^{\circ}}$ $G(j\infty) = 0 \underline{/-360^{\circ}}$

Magnitude-Phase Plot

- Magnitude-phase plot: a plot of the magnitude 20 log₁₀ |G(jω)| in decibels (dB) versus the phase /G(jω) as ω varies from 0 to ∞
- A magnitude-phase plot can be obtained from the information on a Bode plot
- A magnitude-phase plot is shifted up or down when the gain factor κ varies
- The Bode plot property of adding plots of individual components does not carry over
- The magnitude-phase plot of the forward-path transfer function G(s) of a unity-feedback system can be superposed on a Nichols chart to give information about the system's relative stability and frequency response

Magnitude-Phase Plot

Copyright ©2017 Pearson Education, All Rights Reserved

(a)
$$G_1(s) = \frac{5}{s(s/2+1)(s/6+2)}$$

Copyright @2017 Pearson Education, All Rights Reserved

(b)
$$G_2(s) = \frac{5(s/10+1)}{s(s/2+1)(1+0.6(s/50)+(s/50)^2)}$$

Magnitude-Phase Plot

- The shape of the magnitude-phase plot is important where the magnitude approaches 0 dB and the phase approaches 180°
- Gain-Crossover frequency: ω at which $20 \log |G(j\omega)| = 0$ dB
- Phase-Crossover frequency: ω at which $\angle G(j\omega) = -\pi$
- Unity-feedback closed-loop transfer function:

$$T(s) = rac{G(s)}{1+G(s)}$$

• Instability occurs when 1 + G(s) = 0:

$$|G(s)| = 1$$
 $\angle G(s) = -\pi$

Magnitude-Phase Plot

• Draw a polar plot and a magnitude-phase plot for $G(s) = \frac{10(s+10)}{s(s+2)(s+5)}$

Frequency Domain Plots in Matlab

3

• Bode plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

Frequency Domain Plots in Matlab

2 3

• Nyquist plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

Frequency Domain Plots in Matlab

3

• Nichols plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

