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Contours in the Complex Plane

» Nyquist plots complement Bode plots to provide us with frequency
response techniques to determine the stability of a closed-loop system

» Nyquist's stability criterion utilizes contours in the complex plane to
relate the locations of the open-loop and closed-loop poles

» A contour is a piecewise smooth

path in the complex plane A
» A contour is closed if it starts and C
ends at the same point
o)
» A contour is simple if it does not
» o
cross itself at any point 0
o)

» A parameterization z(t) € C of a
contour has direction indicated by
increasing the parameter t € R




Open-loop Transfer Function
» Consider a control system with open-loop transfer function:

7ﬁ(s—zl)-~-(s—zm)
) = e p) (5 o)

» At each s, G(s) is a complex number with magnitude and phase:

1G(s)| = ||11m /6(s) = m+> fs— )~ Js — p)
= ! i=1 i=1

» Graphical evaluation of the magnitude and phase:
> |s — z] is the length of the vector from z; to s

> |s — p;| is the length of the vector from p; to s
> f(s — z;) is the angle from the real axis to the vector from z; to s

> /(s — p;) is the angle from the real axis to the vector from p; to s



Evaluating G(s) along a Contour

» Let C be a simple closed clockwise contour C in the complex plane
» Evaluating G(s) at all points on C produces a new closed contour G(C)

» Assumption: C does not pass through the origin or any of the poles or
zeros of G(s) (otherwise /G(s) is undefined)

» A zero z; outside the contour C:
» As s moves around the contour C, the vector s — z; swings up and down
but not all the way around
» The net change in /(s —z) is 0

» A zero z; inside the contour C:
> As s moves around the contour C, the vector s — z; turns all the way
around
> The net change in /(s — z) is =27

» A pole p; outside the contour C: the net change in /(s — p;) is 0

» A pole p; inside the contour C: the net change in /(s — p;) is —27



Evaluating G(s) along a Contour

contlour

> o




Principle of the Argument

» Let Z and P be the number of zeros and poles of G(s) inside C
> As s moves around C, /G(s) undergoes a net change of —(Z — P)2r

» A net change of —27 means that the vector from 0 to G(s) swings
clockwise around the origin one full rotation

» A net change of —(Z — P)2m means that the vector from 0 to G(s)
must encircle the origin in clockwise direction (Z — P) times

Cauchy'’s Principle of the Argument

Consider a transfer function G(s) and a simple closed clockwise contour C.
Let Z and P be the number of zeros and poles of G(s) inside C. Then, the
contour generated by evaluating G(s) along C will encircle the origin in a
clockwise direction Z — P times.




Principle of the Argument: Example

10(s+1)

» Pole-zero map for G(s) = (GGG
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Principle of the Argument: Example

» A circle contour C
centered at the origin s

with radius 0.5 ( )

» The contour may be

parameterized by 05|

z(t) = 0.5e7Jt for

t € [0,2n] oF
» The contour C is o5t

mapped by G(s) to a
new contour (from
blue to red), e.g.,

parameterized by e 0 e
G(z(t)) for t € [0,27]



Principle of the Argument: Example

» A circle contour C
centered at (—1,0)
with radius 1 (red)

» The contour C is
mapped by G(s) to a
new contour (from
blue to red)
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Principle of the Argument:

Example

» A circle contour C i
centered at the origin
with radius 1.5 05 -
(magenta)

» The contour C is
mapped by G(s) to a
new contour (from
blue to red)

-05 -
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Frequency-domain Stability

R(s) *, Y
:f\ G (S) (S) >

A 4

» Consider a feedback control system

» Root locus: analyzes the poles of the closed-loop transfer function T(s)
based on the poles and zeros of the open-loop transfer function G(s)

> Given a Bode plot of the open-loop transfer function G(s), we would
like to analyze the properties of the closed-loop transfer function

» The principle of the argument can be used to study the stability of the
closed-loop system
11



Frequency-domain Stability

R(s) Yes)

A\ 4

G(s)

__G(s)
14 G(s)
» The closed-loop poles are all s such that A(s) =1+ G(s) =0

» Closed-loop transfer function: T (s)

» The poles of A(s) are the open-loop poles:
b(s)  a(s) + b(s)
a(s)  als)

» The zeros of A(s) are the closed-loop poles

A(s)=1+G(s) =1+
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Frequency-domain Stability

» To determine how many closed-loop poles lie in the closed right
half-plane, we will apply the Principle of the Argument to A(s)

» Define a contour that covers the closed right half-plane

Jjo

Nyquist contour

A
e Radius = r
r— 0

0
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Nyquist Contour

» The Nyquist contour is made up of
three parts:

» Contour C;: points s = jw on the
positive imaginary axis, as w ranges
from 0 to oo

> Contour GC,: points s = re/? on a
semi-circle as r — oo and 6 ranges
from Z to —% Cs

» Contour (3: points s = jw on the
negative imaginary axis, as w ranges
from —oo to 0
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Nyquist Plot

>

| 2

A Nyquist plot evaluates A(s) = 1+ G(s) over the Nyquist contour C

The contour A(C) may be obtained by shifting the contour G(C) by
one unit to the right

The contour G(C) is obtained by combining G(C1), G((,), and G(G3):
» Contour Ci:
> plot G(jw) for w € (0,00) in the complex plane
> equivalent to a polar plot for G(s)

» Contour G:
> plot G(re/’) for r — co and 0 from Z to —%
> as r — 0o, s = re/® dominates every factor it appears in
> if G(s) is strictly proper, then G(re’’) — 0
> if G(s) is non-strictly proper, then G(re’’) — const
» Contour Ci:
> plot G(jw) for w € (—o0,0) in the complex plane
» G(—jb) is the complex conjugate of G(jb)
» G(—jb) and G(jb) have the same magnitude but opposite phases
> G(G) is a reflected version of G(C;) about the real axis
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Nyquist Plot: Example 1

» Draw a Nyquist plot for G(s) = ss—l——l—llo

» Type 0 system as on Slide 42 of Lecture 10 with lim,_,, G(re/?) =1

Nyquist Diagram
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Nyquist Plot: Example 1

» Draw a Nyquist plot for G(s) = s+l

s+10
» Contour Ci:
» w=0and w— oc:
. 1 .
G(j0) = 754° G(joo) = 1/0°
> for 0 < w < oo:
. V14 w? 1 1
G G(jw) = tan™ —tan™ 10
|G(jw)| = 10 V1% (@/10) /G(jw) = tan™"(w) — tan™ " (w/10)
» Contour G, with s = re/? for r — oo and 6 from 5 to =3¢
0
i0 rej +1 °
r|l>no10 G(rej ) - r|l>oo rei +10 =1/

» Contour C3 with w € (—00,0):
> G(G) is a reflection (complex conjugate) of G(C;) about the real axis
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Nyquist Plot: Example 2

» Draw a Nyquist plot for G(s) = 100

(1+Tlsﬁ1+725) = (I+s)(1+s/10)
» Contour Gi: G(jO) = k/0°, G(joo) = 0/—180°
» Contour Go: lim, o G(re®) =0

Jjo Jv
A Negative frequency
Ny —0=-076
T/ 50/ = ™ \\ L(s)-plane
s-plane ‘/ \\
= —0=-3 ’
0="32 Lps %
[ =00 w=0
\ \
> & Y / | } \/# u
- _ =10 3 100
72
©=32 R
Nyquist ‘l’osilivc
contour T —j50 [requency
®=0.76

(b)
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Nyquist Plot: Pole/Zero on the Imaginary Axis

» The Principle of the Argument assumes
that C does not pass through any zeros j
or poles 4

> There might be poles or zeros of G(s) on ¢,

the imaginary axis s-plane

Radius €

» The Nyquist contour needs to be Ca
modified to take a small detour around A
such poles or zeros

~
~
~

. \\
Radius ™~
r— 00

» Contour (y: Nyquist contour
> plot G(ee/?) for €0 and 0 € (%, %)
> substitute s = ee’/’ into G(s) and |

examine what happens as ¢ — 0




Nyquist Plot: Example 3

» Draw a Nyquist plot for a type 1 system: G(s)

» Since there is a pole at the origin, we need to use a modified Nyquist

contour

Jjo

$

s-plane

Radius €

Radius >~ _

r— o0

(a)

Copyright ©2017 P

_ K
 s(1+47s)

Nyquist contour

(b)
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Nyquist Plot: Example 3

> Contour G4 with s = ee/’ fore — 0 and 6 € (-3, 3):

lim G(ee!?) = lim — = lim “e ™% = 00/

e—0 e—0 €ej€ e—0 €

» The phase of G(s) changes from 5 at w =0~ to —% at w =07

» Asymptote as w — 0:

. . . K . K . . R
Jimy GUw) = fim T jor) — iy 7 (1 —Jwr) = lim k7 =
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Nyquist Plot: Example 3

» Contour C; with w € (0,00): polar plot as on Slide 44 of Lecture 10:

G(jOT) = 0o/—90°

. . . I - N —1
G(joo) = w||—>moojw(1 o) Jim ‘Twz‘/ /2 —tan™H(wT)
= 0/-180°
» Contour G, with s = re/? for r — oo and 6 from 5 to —73:
: 0y _ 20 _q/_
Jim G/ = fim [ 5] €7 <0120
> The phase of G(s) changes from —m at w = 0o to 7 at w = —00

» Contour C3 with w € (—00,0):
> G(G) is a reflection (complex conjugate) of G(C;) about the real axis
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Nyquist Plot: Example 4

K

» Draw a Nyquist plot for a type 1 system: G(s) = A9 T

> Contour G4 with s = ee/’ fore — 0 and 0 € (-3, 3):
» (4 maps into a semicircle with infinite radius as in Example 3:

G(j0) = 00/=8

» Contour G, with s = re/? for r — oo and 6 from 5 to —73:
» ( maps into a point at 0 with phase /—30

» Contour C3: G(G3) is a reflection of G(Cy) about the real axis

» Contour C; with w € (0,00): polar plot as on Slide 45 of Lecture 10:

G(joo) = 0/—270°
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Nyquist Plot: Example 4
» Contour C; with w € (0,00):
Gjw) = K =K1+ 72) — jr(1 W T T2 )w
W= jw(l 4 jwr)(1+jwr) 1+ w?(r2+ 73) + wiriTs

- \/w4(7_1 + 7'2)2 jwz(l _ UJ27'17-2)2/7(7T/2) - tanfl(wq-l) _ tanfl(sz)

; ju
Jo
* 4 L(s)-plane
T
l N
A 4
s-plane Ky | \\
Tt T | \
Radius € | \
4 w=+00 | >
a \\l ' Lgl
=L AR s g I
T Radius™~ /’
r— o ‘ - ot // Iy
Nyquist contour »
7
T, I e
w=0,
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Nyquist Plot: Example 5

» Draw a Nyquist plot for a type 2 system: G(s) = %
» Two poles at the origin = need to use a modified Nyquist contour

» Magnitude and phase:

K

||
- - = —7m — tan
(w2 (1 +jwr)  Vwr+ w67'2/

> Contour G4 with s = ee/’ fore — 0 and 0 € (-3, 3):

Gjw) = “Hwr)

_ KK o
lim G(s) = lim — = lim —e 20 = 50/—20
e—0 e—0S e—0 €

» The phase of G(s) changes from 7 at w =0~ to —7 at w = 0"
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Nyquist Plot: Example 5
» Contour C; with w € (0, 00):

G(joT) = co/—180°

K
[ — _ 1
G(joc) = Jm, (jw)?(1 + jwT) Jm ) ‘/ T —tan” (wr)
=0/-270°
» Contour G, with s = re/? for r — oo and 6 from 5 to —73:
' — IATNT -3j0 _
Jim, 6(5) = Jim, =55 = fim | [ e = 0/~
» The phase of G(s) changes from —3 at w = oo to 3F at w = —o0

» Contour C3 with w € (—00,0):
> G(G) is a reflection (complex conjugate) of G(C;) about the real axis
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Nyquist Plot: Example 5
» Draw a Nyquist plot for a type 2 system: G(s) =

Nyquist Diagram
T

2dB _<4dB
! 6dB
a2
x
<
2
©
£
o
©
E
-0.8 & N 1
-1 -0.5 0 05

Real Axis



Nyquist Plot: Example 5

K

» Draw a Nyquist plot for a type 2 system: G(s) = P g

Sy
\\
4
\
\
\
\
w =+00 | -~
=—0 e
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Nyquist Plot: Example 6
» Draw a Nyquist plot for G(s)

_ s(s+1)
— (s+10)2

Nyquist Diagram
T

0.8F T
0.6

040 dB

0.2
20 dB

4dB 2d8 0dB  -2dB “4dB

Imaginary Axis
o

.02+

04t

0.6

-0.8 & v

oy

0
Real Axis

0.5
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Nyquist's Stability Criterion

» Consider the stability of the closed-loop transfer function:

1+G(s) A(s)

re)— G G()

» The poles of A(s) are the poles of G(s) (open-loop poles)
(

» The zeros of A(s) are the poles of T(s) (closed-loop poles)
» Principle of the Argument applied to A(s) =1+ G(s):

» Let C be a Nyquist contour.

> Let Z be the number of zeros of A(s) (closed-loop poles) inside C.
> Let P be the number of poles of A(s) (open-loop poles) inside C.
>

Then, A(C) encircles the origin in clockwise direction N = Z — P times.
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Nyquist's Stability Criterion

» From the Principle of the Argument applied to A(s), the number of
closed-loop poles in the closed right half-plane is:

Z=N+P

where:
> N: the clockwise encirclements of the origin by A(C) correspond to the
clockwise encirclements of —1 + 0 by G(C) and can be determined from

a Nyquist plot of G(s)

> P: the number of poles of A(s) inside C corresponds to the number of
poles of G(s) inside C and can be determined from G(s) or its Bode plot

Nyquist's Stability Criterion
Consider a unity feedback control system with open-loop transfer function
G(s). Let C be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of —1 + j0 by G(C) is equal to
the number of poles of G(s) inside C.
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Nyquist Stability: Example 4

» Determine the closed-loop stability of G(s) = S(1+T1SI;(1+T2S) = s(lis)2

» G((C;) crosses the real axis when:

—k(11 + 7)) — jr(l — W)W B

G(jw) = =a+/0
1+ w?(72 + 73) + w2
1 KT1T2
> W = —- o= ——
T1T2 T+ T
» The system is stable when oo = —£0.12 > ]
T1+T2
15 T 1.5 1.5
\ IL.(s)-plane L(s)-plane L(s)-plane
1 A 1 1
\
\ \
“ 05 Z 05 Z 05 (—1,0)
g 1o\ z \\ -1,0) 2 |
£ o N £ o i g o '
i‘ I gb R g /\\L__//
E 05| k=1, £ —o0s e Z 05| k=3,
stable marginally unstable
_ system _ stable system . system
—15 =S -15
=2 -15 -1 05 0 05 1 =2, =15 -1 =05 & 085 1 =2 =15 =1 08 O @5 1

Real axis Real axis Real axis 32



