
ECE171A: Linear Control System Theory
Lecture 11: Nyquist Stability

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu
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Chenfeng Wu: chw357@ucsd.edu
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Contours in the Complex Plane

I Nyquist plots complement Bode plots to provide us with frequency
response techniques to determine the stability of a closed-loop system

I Nyquist’s stability criterion utilizes contours in the complex plane to
relate the locations of the open-loop and closed-loop poles

I A contour is a piecewise smooth
path in the complex plane

I A contour is closed if it starts and
ends at the same point

I A contour is simple if it does not
cross itself at any point

I A parameterization z(t) ∈ C of a
contour has direction indicated by
increasing the parameter t ∈ R
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Open-loop Transfer Function

I Consider a control system with open-loop transfer function:

G (s) = κ
(s − z1) · · · (s − zm)

(s − p1) · · · (s − pn)

I At each s, G (s) is a complex number with magnitude and phase:

|G (s)| = |κ|
∏m

i=1 |s − zi |∏n
i=1 |s − pi |

G (s) = κ+
m∑
i=1

(s − zi )−
n∑

i=1

(s − pi )

I Graphical evaluation of the magnitude and phase:
I |s − zi | is the length of the vector from zi to s

I |s − pi | is the length of the vector from pi to s

I (s − zi ) is the angle from the real axis to the vector from zi to s

I (s − pi ) is the angle from the real axis to the vector from pi to s
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Evaluating G (s) along a Contour
I Let C be a simple closed clockwise contour C in the complex plane

I Evaluating G (s) at all points on C produces a new closed contour G (C )

I Assumption: C does not pass through the origin or any of the poles or
zeros of G (s) (otherwise G (s) is undefined)

I A zero zi outside the contour C :
I As s moves around the contour C , the vector s − zi swings up and down

but not all the way around
I The net change in (s − zi ) is 0

I A zero zi inside the contour C :
I As s moves around the contour C , the vector s − zi turns all the way

around
I The net change in (s − zi ) is −2π

I A pole pi outside the contour C : the net change in (s − pi ) is 0

I A pole pi inside the contour C : the net change in (s − pi ) is −2π
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Evaluating G (s) along a Contour
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Principle of the Argument

I Let Z and P be the number of zeros and poles of G (s) inside C

I As s moves around C , G (s) undergoes a net change of −(Z − P)2π

I A net change of −2π means that the vector from 0 to G (s) swings
clockwise around the origin one full rotation

I A net change of −(Z − P)2π means that the vector from 0 to G (s)
must encircle the origin in clockwise direction (Z − P) times

Cauchy’s Principle of the Argument

Consider a transfer function G (s) and a simple closed clockwise contour C .
Let Z and P be the number of zeros and poles of G (s) inside C . Then, the
contour generated by evaluating G (s) along C will encircle the origin in a
clockwise direction Z − P times.
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Principle of the Argument: Example
I Pole-zero map for G (s) = 10(s+1)

(s+2)(s2+1)(s+6)
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Principle of the Argument: Example

I A circle contour C
centered at the origin
with radius 0.5 (green)

I The contour may be
parameterized by
z(t) = 0.5e−jt for
t ∈ [0, 2π]

I The contour C is
mapped by G (s) to a
new contour (from
blue to red), e.g.,
parameterized by
G (z(t)) for t ∈ [0, 2π]
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Principle of the Argument: Example

I A circle contour C
centered at (−1, 0)
with radius 1 (red)

I The contour C is
mapped by G (s) to a
new contour (from
blue to red)
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Principle of the Argument: Example

I A circle contour C
centered at the origin
with radius 1.5
(magenta)

I The contour C is
mapped by G (s) to a
new contour (from
blue to red)
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Frequency-domain Stability

I Consider a feedback control system

I Root locus: analyzes the poles of the closed-loop transfer function T (s)
based on the poles and zeros of the open-loop transfer function G (s)

I Given a Bode plot of the open-loop transfer function G (s), we would
like to analyze the properties of the closed-loop transfer function

I The principle of the argument can be used to study the stability of the
closed-loop system
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Frequency-domain Stability

I Closed-loop transfer function: T (s) =
G (s)

1 + G (s)

I The closed-loop poles are all s such that ∆(s) = 1 + G (s) = 0

I The poles of ∆(s) are the open-loop poles:

∆(s) = 1 + G (s) = 1 +
b(s)

a(s)
=

a(s) + b(s)

a(s)

I The zeros of ∆(s) are the closed-loop poles
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Frequency-domain Stability
I To determine how many closed-loop poles lie in the closed right

half-plane, we will apply the Principle of the Argument to ∆(s)

I Define a contour that covers the closed right half-plane
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Nyquist Contour

I The Nyquist contour is made up of
three parts:

I Contour C1: points s = jω on the
positive imaginary axis, as ω ranges
from 0 to ∞

I Contour C2: points s = re jθ on a
semi-circle as r →∞ and θ ranges
from π

2 to −π2
I Contour C3: points s = jω on the

negative imaginary axis, as ω ranges
from −∞ to 0
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Nyquist Plot
I A Nyquist plot evaluates ∆(s) = 1 + G (s) over the Nyquist contour C

I The contour ∆(C ) may be obtained by shifting the contour G (C ) by
one unit to the right

I The contour G (C ) is obtained by combining G (C1), G (C2), and G (C3):
I Contour C1:

I plot G(jω) for ω ∈ (0,∞) in the complex plane
I equivalent to a polar plot for G(s)

I Contour C2:
I plot G(re jθ) for r →∞ and θ from π

2
to −π

2
I as r →∞, s = re jθ dominates every factor it appears in
I if G(s) is strictly proper, then G(re jθ)→ 0
I if G(s) is non-strictly proper, then G(re jθ)→ const

I Contour C3:
I plot G(jω) for ω ∈ (−∞, 0) in the complex plane
I G(−jb) is the complex conjugate of G(jb)
I G(−jb) and G(jb) have the same magnitude but opposite phases
I G(C3) is a reflected version of G(C1) about the real axis
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Nyquist Plot: Example 1
I Draw a Nyquist plot for G (s) = s+1

s+10

I Type 0 system as on Slide 42 of Lecture 10 with limr→∞ G (re jθ) = 1
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Nyquist Plot: Example 1

I Draw a Nyquist plot for G (s) = s+1
s+10

I Contour C1:
I ω = 0 and ω →∞:

G (j0) =
1

10
0◦ G (j∞) = 1 0◦

I for 0 < ω <∞:

|G (jω)| =
1

10

√
1 + ω2√

1 + (ω/10)2
G (jω) = tan−1(ω)− tan−1(ω/10)

I Contour C2 with s = re jθ for r →∞ and θ from π
2 to −π

2 :

lim
r→∞

G (re jθ) = lim
r→∞

re jθ + 1

re jθ + 10
= 1 0◦

I Contour C3 with ω ∈ (−∞, 0):
I G (C3) is a reflection (complex conjugate) of G (C1) about the real axis
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Nyquist Plot: Example 2
I Draw a Nyquist plot for G (s) = κ

(1+τ1s)(1+τ2s)
= 100

(1+s)(1+s/10)

I Contour C1: G (j0) = κ 0◦, G (j∞) = 0 −180◦

I Contour C2: limr→∞ G (re jθ) = 0
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Nyquist Plot: Pole/Zero on the Imaginary Axis

I The Principle of the Argument assumes
that C does not pass through any zeros
or poles

I There might be poles or zeros of G (s) on
the imaginary axis

I The Nyquist contour needs to be
modified to take a small detour around
such poles or zeros

I Contour C4:
I plot G (εe jθ) for ε→ 0 and θ ∈ (−π2 ,

π
2 )

I substitute s = εe jθ into G (s) and
examine what happens as ε→ 0
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Nyquist Plot: Example 3
I Draw a Nyquist plot for a type 1 system: G (s) = κ

s(1+τs)

I Since there is a pole at the origin, we need to use a modified Nyquist
contour

20



Nyquist Plot: Example 3

I Contour C4 with s = εe jθ for ε→ 0 and θ ∈ (−π
2 ,

π
2 ):

lim
ε→0

G (εe jθ) = lim
ε→0

κ

εe jθ
= lim

ε→0

κ

ε
e−jθ =∞ −θ

I The phase of G (s) changes from π
2 at ω = 0− to −π2 at ω = 0+

I Asymptote as ω → 0:

lim
ω→0

G (jω) = lim
ω→0

κ

jω(1 + jωτ)
= lim
ω→0

κ

jω
(1− jωτ) = lim

ω→0
−κτ − j

κ

ω
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Nyquist Plot: Example 3

I Contour C1 with ω ∈ (0,∞): polar plot as on Slide 44 of Lecture 10:

G (j0+) =∞ −90◦

G (j∞) = lim
ω→∞

κ

jω(1 + jωτ)
= lim

ω→∞

∣∣∣ κ
τω2

∣∣∣ −π/2− tan−1(ωτ)

= 0 −180◦

I Contour C2 with s = re jθ for r →∞ and θ from π
2 to −π

2 :

lim
r→∞

G (re jθ) = lim
r→∞

∣∣∣ κ
τ r2

∣∣∣ e−2jθ = 0 −2θ

I The phase of G (s) changes from −π at ω =∞ to π at ω = −∞

I Contour C3 with ω ∈ (−∞, 0):
I G (C3) is a reflection (complex conjugate) of G (C1) about the real axis
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Nyquist Plot: Example 4

I Draw a Nyquist plot for a type 1 system: G (s) = κ
s(1+τ1s)(1+τ2s)

I Contour C4 with s = εe jθ for ε→ 0 and θ ∈ (−π
2 ,

π
2 ):

I C4 maps into a semicircle with infinite radius as in Example 3:

G (j0) =∞ −θ

I Contour C2 with s = re jθ for r →∞ and θ from π
2 to −π

2 :
I C2 maps into a point at 0 with phase −3θ

I Contour C3: G (C3) is a reflection of G (C1) about the real axis

I Contour C1 with ω ∈ (0,∞): polar plot as on Slide 45 of Lecture 10:

G (j∞) = 0 −270◦
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Nyquist Plot: Example 4
I Contour C1 with ω ∈ (0,∞):

G (jω) =
κ

jω(1 + jωτ1)(1 + jωτ2)
=
−κ(τ1 + τ2)− jκ(1− ω2τ1τ2)ω

1 + ω2(τ21 + τ22 ) + ω4τ21 τ
2
2

=
κ√

ω4(τ1 + τ2)2 + ω2(1− ω2τ1τ2)2
−(π/2)− tan−1(ωτ1)− tan−1(ωτ2)
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Nyquist Plot: Example 5

I Draw a Nyquist plot for a type 2 system: G (s) = κ
s2(1+τs)

I Two poles at the origin ⇒ need to use a modified Nyquist contour

I Magnitude and phase:

G (jω) =
κ

(jω)2(1 + jωτ)
=

|κ|√
ω4 + ω6τ2

−π − tan−1(ωτ)

I Contour C4 with s = εe jθ for ε→ 0 and θ ∈ (−π
2 ,

π
2 ):

lim
ε→0

G (s) = lim
ε→0

κ

s2
= lim

ε→0

κ

ε2
e−2jθ =∞ −2θ

I The phase of G (s) changes from π at ω = 0− to −π at ω = 0+
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Nyquist Plot: Example 5

I Contour C1 with ω ∈ (0,∞):

G (j0+) =∞ −180◦

G (j∞) = lim
ω→∞

κ

(jω)2(1 + jωτ)
= lim

ω→∞

∣∣∣ κ
τω3

∣∣∣ −π − tan−1(ωτ)

= 0 −270◦

I Contour C2 with s = re jθ for r →∞ and θ from π
2 to −π

2 :

lim
r→∞

G (s) = lim
r→∞

κ

τs3
= lim

r→∞

∣∣∣ κ
τ r3

∣∣∣ e−3jθ = 0 −3θ

I The phase of G (s) changes from − 3π
2 at ω =∞ to 3π

2 at ω = −∞

I Contour C3 with ω ∈ (−∞, 0):
I G (C3) is a reflection (complex conjugate) of G (C1) about the real axis
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Nyquist Plot: Example 5
I Draw a Nyquist plot for a type 2 system: G (s) = κ

s2(1+τs)
= 1

s2(s+1)
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Nyquist Plot: Example 5

I Draw a Nyquist plot for a type 2 system: G (s) = κ
s2(1+τs)
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Nyquist Plot: Example 6
I Draw a Nyquist plot for G (s) = s(s+1)

(s+10)2
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Nyquist’s Stability Criterion

I Consider the stability of the closed-loop transfer function:

T (s) =
G (s)

1 + G (s)
=

G (s)

∆(s)

I The poles of ∆(s) are the poles of G (s) (open-loop poles)

I The zeros of ∆(s) are the poles of T (s) (closed-loop poles)

I Principle of the Argument applied to ∆(s) = 1 + G (s):

I Let C be a Nyquist contour.

I Let Z be the number of zeros of ∆(s) (closed-loop poles) inside C .

I Let P be the number of poles of ∆(s) (open-loop poles) inside C .

I Then, ∆(C ) encircles the origin in clockwise direction N = Z − P times.

30



Nyquist’s Stability Criterion

I From the Principle of the Argument applied to ∆(s), the number of
closed-loop poles in the closed right half-plane is:

Z = N + P

where:
I N: the clockwise encirclements of the origin by ∆(C ) correspond to the

clockwise encirclements of −1 + j0 by G (C ) and can be determined from
a Nyquist plot of G (s)

I P: the number of poles of ∆(s) inside C corresponds to the number of
poles of G (s) inside C and can be determined from G (s) or its Bode plot

Nyquist’s Stability Criterion

Consider a unity feedback control system with open-loop transfer function
G (s). Let C be a Nyquist contour. The system is stable if and only if the
number of counterclockwise encirclements of −1 + j0 by G (C ) is equal to
the number of poles of G (s) inside C .
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Nyquist Stability: Example 4
I Determine the closed-loop stability of G (s) = κ

s(1+τ1s)(1+τ2s)
= κ

s(1+s)2

I G (C1) crosses the real axis when:

G (jω) =
−κ(τ1 + τ2)− jκ(1− ω2τ1τ2)ω

1 + ω2(τ21 + τ22 ) + ω4τ21 τ
2
2

= α + j0

⇒ ω =
1

√
τ1τ2

α = − κτ1τ2
τ1 + τ2

I The system is stable when α = − κτ1τ2
τ1+τ2

≥ −1
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