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Stability Margins from a Nyquist Plot
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» Changing K scales the magnitude of every point on the contour G(C)

» Consider an open-loop transfer function: G(s) =

» Increasing K pushes all points on the Nyquist plot of G(s) further away
from the origin
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Stability Margins from a Nyquist Plot: Example

» Draw a Nyquist plot for G(s) = m
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» The closed-loop system is stable for small K and unstable for large K



Gain Margin
» Gain Margin:

P the factor by which the open-loop gain can be increased before a stable
closed-loop system becomes unstable

» the factor by which the open-loop gain should be decreased until an

unstable system becomes stable

» On a Nyquist plot, the gain margin is the inverse of the distance to the
first point where G(C) crosses the real axis
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Phase Margin
» Phase Margin:

» the amount by which the open-loop phase can be decreased before a

stable closed-loop system becomes unstable

» the amount by which the open-loop phase should be increased before an

unstable system becomes stable

» On a Nyquist plot, the phase margin is the smallest angle on the unit

circle between —1 and G(C)
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Algebraic Definitions of Gain Margin and Phase Margin

» Phase-Crossover frequency: the frequency wp at which G(jw) crosses

the real axis:
/ G(jwp) =7

» Gain Margin: the inverse of the open-loop gain at wp:

1
GM = 20log ———— = —20log |G (jwp)| dB
|G (wp)l g
» Gain-Crossover frequency: the frequency wg at which G(jw) crosses

the unit circle:
20log |G(jwg)| =0 dB

» Phase Margin: the amount by which the open-loop phase at w,

exceeds —7r:
PM = /G(jwg) +m



Gain Margin and Phase Margin

» For a stable minimum-phase system both GM and PM are positive.
Larger gains mean larger relative stability.

» When wgy = wp = wy, there are closed-loop poles on the imaginary axis:

|G(jws)| =1, /G(jws) = —7 = 1+ G(jws) =0
> A Bode plot or a Magnitude-Phase plot provides |G(jw)| and /G(jw)

» Hence, phase-crossover frequency, gain-crossover frequency, gain margin,
phase margin can all be seen on a Bode plot or a Magnitude-Phase plot

» Caution: the Bode plot or magnitude-phase plot interpretation of gain
and phase margins to determine stability can be incorrect if the system
is non-minimum phase or has delays. Only the Nyquist stability criterion
should be used to determine stability.



Gain Margin and Phase Margin on a Magnitude-Phase Plot
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Gain Margin and Phase Margin on a Bode Plot

» Bode plot of G(s) = WK/MOH) with K =1

Bode Diagram
Gm = 40.1 dB (at 10 rad/s) , Pm = 51.4 deg (at 0.786 rad/s)
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Gain Margin and Phase Margin on a Bode Plot

» If K > 0, it has no effect on the phase and shifts the magnitude up or
down by 20log K. This changes the gain-crossover frequency but not
the phase-crossover frequency.

> Some closed-loop poles lie on the imaginary axis when wg; = wp
» Choose K ~ 100 to shift the magnitude up by ~ 40 dB, making wgz ~ w,

» The imaginary axis crossing can be determined from the Bode plot but
we do not know if we are going from stability to instability or vice versa

> Assuming that the system is stable initially (can only be verified by the
Nyquist or the Routh-Hurwitz stability criterion), we expect the region
of stability to be 0 < K < 100
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Gain Margin and Phase Margin on a Bode Plot
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Gain Margin and Phase Margin on a Bode Plot
» Use Routh-Hurwitz to verify the region of stability for:

i)~ 66 _ K B 100K
1+ G(s) s(s+1)(s/100+ 1)+ K s34 101s2 + 100s + 100K

» Characteristic polynomial a(s) = s + 101s? + 100s + 100K

» The Routh table is:

s3 1 100

52 101 100K
100K

51 100 ~ Ho1 0

s0 100K 0

» Stability region: 0 < K < 101
» Auxiliary polynomial roots for K = 101:
A(s) = 101(s* 4 100) = s = 4410
12



Stability Margins: Example 1

» What are the gain margin and phase margin of G(s) =

Magnitude (dB)
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Stability Margins: Example 2

» What are the gain margin and phase margin of G(s) = ?%?

Bode Diagram
Gm = -Inf dB (at 0 rad/s) , Pm = 44.5 deg (at 1.26 rad/s)
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Stability Margins: Example 2

s+1)
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Stability Margins: Example 2

| 2

>

| 2

K(s+1)

What are the gain margin and phase margin of G(s) = 2(5/1047)

The gain margin is 0o since the phase hits —180° at w, = o0

As K — oo, the gain-crossover frequency wg moves to the right and the
phase margin decreases

Root locus: a set of poles move vertically in the plane (¢ decreases) as
K — o0

There seems to be a relationship between phase margin and the
damping ratio ¢

We will analyze a second-order system to determine this and, more
generally, the relationship between frequency response and transient
response
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Frequency Domain Performance Specifications

+ w?
R(s) > G 120w » Y(s)

» Consider a second-order system:

G(s) w? 1

T 1+G(s) 2+ 2was twd S5 +1

T(s)

» How does the closed-loop frequency response T (jw) relate to the
time-domain transient response (rise time, overshoot, settling time)?
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Frequency Response of a Second-order System

» Bode plot of T(s) = —1—
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» The damping ratio  is related to max,, | T (jw)|

» The rise time t, is related to the bandwidth wp, which measures the
frequency range over which the system tracks an input signal well

» The natural frequency w,, is related to the bandwidth wy,
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Frequency Domain Performance Specifications

> Low-frequency (DC) gain: the magnitude of the transfer function
| T (jw)| for low frequencies w — 0

» Bandwidth: the frequency wy at which the magnitude of the transfer
function drops to 3 dB below the DC gain:

IT(w)] = | T(0)

» Resonant frequency: the frequency at which the transfer function
magnitude is maximized

w, = argmax | T (jw)]
w

» Resonant peak: the maximum value of the transfer function

magnitude:
M, =|T(jw)|

19



Frequency Domain Performance Specifications
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Frequency Response of a Second-order System

» Consider a second-order system:

w2 1

T(s) = =
(s) $2 + 2Cwps + w2 é+2€§n+1

» Transfer function magnitude at s = jw:

1 B 1
w? w -
— % 4+ 2C2 i+ 1 2\ 2 2
w? wn
(1-(2)) +ee(2)

» Transfer function phase at s = jw:

I TGw)| =

. o 1 _
T(jw) = —(ﬁ)2+2c(ﬁ>j+1 = —arctan L <i>2
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Resonant Frequency of a Second-order System

» Resonant frequency:

d’Td(iw)':O = w =0 OR w =wn/1-2¢

» Resonant peak:
1
» Casel: ( < —:
NG
wy = wpy/1 — 2¢2 M=—-"__
n ¢ NG

» Case 2: ( >

&\H

w,=0 M, =1



Resonant Frequency of a Second-order System
> =1 wr — 202 ;
Plot of M, G and ok =11 2(? as a function of ¢
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» The resonant peak M, is related 2as edon 050
to the percent overshoot via ¢

2.5 0.70
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» The resonant peak of the

closed-loop system should be L \
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» Equivalent to p.o should be less h o
than 37% .
125 0.20
1.0 \ 0.10
0.20 030 0.40 0.50 0.60 0.70

/o,

23



Bandwidth of a Second-order System

» Bandwidth: the low frequency range (0,wp) over which the closed-loop
system tracks an input signal well

» Bandwidth: w such that |T(jw)| = %|T(O)\ Let u = wp/wp:
VG2 +1=2 = P =(1-20%) £ A4 -4+ 2

wp = w,,\/(l —202) + /A — 42 42

2.16¢+40.6
Wn

» Bandwidth wp and rise time t, ~ are inversely proportional:

» If w, T, then wp T and t, |
» If ¢ 1, then wp | and t, T

» Adding a zero to G(s) increases the bandwidth of the closed-loop
transfer function T(s)

» Adding a pole to G(s) decreases the bandwidth of the closed-loop
transfer function T(s)
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Stability Margins of a Second-order System
» Bode plot of G(s) = s(sﬁ—iwn)

Bode Diagram
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Stability Margins of a Second-order System
» The phase plot of G(s) shows that the phase-crossover frequency is:

wp = 00
» The gain margin is:
GM = o0
» Set |G(jw)| to 1 to obtain the gain-crossover frequency wy:
(A)2 Wz

n n

B |.ng”ng + 2Cwn’ a wWg /4C2w% —{—wé

» The gain-crossover frequency is:

W :wn\/\/1+4C4—2C2

1= [G(juwg)l

» The phase margin is:
1 2¢
\/\/1 +4¢* —2¢2

PM = /G(jwg) + T =tan™
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Phase Margin of a Second-order System

» The phase margin of a second-order system is a function of ¢ but not wj,

» The relationship between PM and { can be approximated fairly well by a

straight line for small values of (

0.8
~
06 -
2
g _
o0 Linear approximation A=
£ 04 £=001¢ 32
=) pm b =
<
8 -
~ r -
0.2 ~=
~
//
//
0.0
0° 10° 20° 30° 40° 50° 60° 70°

Phase margin (deg)

27



Phase Margin of a Second-order System

» For 0 < ¢ < 0.7, the phase margin PM (in degrees) and the damping
ration ¢ of a second-order system are related by:

PM =~ 100¢

» The relationship between ¢ and PM can be used to design control
systems in the frequency domain meeting time-domain specifications

» Poles that are ignored in a dominant-pole-pair approximation contribute
phase lag so it is important to keep a large phase margin

» For 0.2 < ¢ < 0.8, the gain-crossover frequency w, of G(s) is related to
the closed-loop system bandwidth wp:

wp ~ 1.8wg
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Frequency Domain Control Design

» To obtain fast transient response we want large wg since wy, T, t, |

» To obtain lower steady-state error, we may increase the gain K, which
increases wg

» Increasing wg, however, decreases the phase margin

» As the phase margin decreases, the system becomes less stable and
might exhibit oscillatory behavior

» We must consider more complicated controllers than a simple
proportional controller K to obtain a good phase margin, a good
gain-crossover frequency, and good steady state tracking
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Frequency Domain Performance Specifications

Y(s) .

A\ 4

R(s) +
() G(s)

» Unity-feedback control system with open-loop transfer function:

G(S) — KH;:ZI(S B Zi)
[TiZi(s — pi)
» How can the closed-loop frequency-domain performance specifications
(resonant peak M,, resonant frequency w,, bandwidth wy) be related to
the open-loop frequency response?

» How can the gain K be adjusted to meet frequency-domain performance
specifications?
30



Closed-loop Transfer Function Magnitude

» Closed-loop transfer function:

_Y(s) _  G(s)
T)=Rs) " 15 6(s)

» Closed-loop transfer function magnitude:

M(s) = |T(6) = 15 e

» Obtain M(s) as a function of the real and imaginary parts of
G(s) = x(s) +Jy(s):

vo AP

(14 x)2+y?

» This equation turns out to be a circle on a Nyquist plot
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Constant Magnitude Circles

» Relationship between the magnitude of the closed-loop transfer function
M and the real part x and imaginary part y of the open-loop transfer

function:
I\/I2(1 +x)2 4 I\/I2y2 — )2 +y2

M? = (1 — M?)x? —2M?x + (1 — M?)y?
» Assume M # 1 and divide both sides by (1 — M?):

M2 , M2
T T 1w

x2 -2

» Add M*/(1 — M?)? to both sides to complete the square for x:

2 2 2
1— M? (1—I\/I2)2
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Constant Magnitude Circles

» M circle: a circle of constant closed-loop transfer function magnitude
on a polar/Nyquist plot:

2 2 2
.o by M
1— M2 (1 - M?)?

) . M2 . . M
» An M circle is centered at (W?O) with radius =l

» As M — oo, the M circle is centered at (—1,0) with radius 0

» For 1 < M < oo, the M circle center moves to the left of (—1,0), while
the radius increases

» As M — 0, the M circle is centered at (0,0) with radius 0

» For 0 < M < 1, the M circle center moves to the right of (0,0), while
the radius increases

> At M =1, we get a degenerate circle at (+00,0) with radius co
33



Constant Magnitude Circles on a Nyquist Plot

_ 4(s/2+1)
= s(25+1)(1+0.4(s/8) 1 (s/8)%)

» Nyquist plot for G(s)

» If the frequencies w along the polar plot of G(s) are available, we can
construct a closed-loop Bode plot using the M circles

Nyquist Diagram
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Constant Phase Circles
» N circle: a circle of constant N = tan fT(s) on a polar/Nyquist plot:

EA N S N
T YTon) AT W
> An N circle is centered at (—0.5,0.5/N) with radius 0.5y/1 + 1/N?

» N circles are orthogonal to M circles, i.e., intersect at 90°
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Frequency Domain Performance Specifications

> Given the frequency response of an open-loop transfer function G(s), we

can verify stability and frequency domain performance metrics
» Stability:
» Determine using the Nyquist criterion
» What if K < 07 Rotate the Nyquist plot clockwise by 180°.
» Gain margin GM and phase margin PM:
» Can be obtained from a Nyquist plot

» Even easier to determine on a Bode plot or magnitude-phase plot

» Resonant peak M,, resonant frequency w,, and bandwidth w:

» Use the M circles on a Nyquist plot
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Open-loop Bode Plot

» Open-loop Bode plot for G(s) =

Magnitude (dB)

Phase (deg)
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Bode Diagram
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Nyquist Plot

» Nyquist plot for G(s) = P
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Closed-loop Bode Plot

» Closed-loop Bode plot for G(s) =

Magnitude (dB)

Phase (deg)
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Frequency Domain Control Design

» How should K be adjusted to meet desired closed-loop frequency
domain specifications?
» It is difficult to determine how much to change K to meet a resonant
peak specification on a Nyquist plot

» It is difficult to tell where the Nyquist plot would become tangent to the
desired M circle

» Nathaniel Nichols proposed to transform the M and N circles from a
Nyquist plot to a magnitude-phase plot

» On a magnitude-phase plot, the M and N contours are no longer circles

» If K changes, a magnitude-phase plot only moves up or down, which is
much easier to interpret that the change of the shape on a Nyquist plot
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Nichols Chart

» Nichols chart: a
magnitude-phase plot with
overlaid M and N contours of
constant closed-loop
transfer-function magnitude
and phase

The gain margin and phase
margin can be obtained

The resonant peak and
bandwidth can be obtained

A change in the gain K moves
the system response up or
down and can be used to meet
closed-loop frequency domain
specifications

Loop gain GG, in decibels
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Nichols Chart

. o 4(s/2+1)
» Nichols plot for G(s) = ST 04(s B) T8
Nichols Chart
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