
ECE171A: Linear Control System Theory
Lecture 12: Stability Margins

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu
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Stability Margins from a Nyquist Plot

I Consider an open-loop transfer function: G (s) = K

∏m
i=1(s − zi )∏n
i=1(s − pi )

I Changing K scales the magnitude of every point on the contour G (C )

I Increasing K pushes all points on the Nyquist plot of G (s) further away
from the origin

2



Stability Margins from a Nyquist Plot: Example

I Draw a Nyquist plot for G (s) = K
s(s+1)(s+10)

(a) K = 75 (b) K = 150

I The closed-loop system is stable for small K and unstable for large K
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Gain Margin
I Gain Margin:

I the factor by which the open-loop gain can be increased before a stable
closed-loop system becomes unstable

I the factor by which the open-loop gain should be decreased until an
unstable system becomes stable

I On a Nyquist plot, the gain margin is the inverse of the distance to the
first point where G (C ) crosses the real axis
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Phase Margin
I Phase Margin:

I the amount by which the open-loop phase can be decreased before a
stable closed-loop system becomes unstable

I the amount by which the open-loop phase should be increased before an
unstable system becomes stable

I On a Nyquist plot, the phase margin is the smallest angle on the unit
circle between −1 and G (C )
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Algebraic Definitions of Gain Margin and Phase Margin

I Phase-Crossover frequency: the frequency ωp at which G (jω) crosses
the real axis:

G (jωp) = −π

I Gain Margin: the inverse of the open-loop gain at ωp:

GM = 20 log
1

|G (jωp)|
= −20 log |G (jωp)| dB

I Gain-Crossover frequency: the frequency ωg at which G (jω) crosses
the unit circle:

20 log |G (jωg )| = 0 dB

I Phase Margin: the amount by which the open-loop phase at ωg

exceeds −π:
PM = G (jωg ) + π
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Gain Margin and Phase Margin

I For a stable minimum-phase system both GM and PM are positive.
Larger gains mean larger relative stability.

I When ωg = ωp = ω∗, there are closed-loop poles on the imaginary axis:

|G (jω∗)| = 1, G (jω∗) = −π ⇒ 1 + G (jω∗) = 0

I A Bode plot or a Magnitude-Phase plot provides |G (jω)| and G (jω)

I Hence, phase-crossover frequency, gain-crossover frequency, gain margin,
phase margin can all be seen on a Bode plot or a Magnitude-Phase plot

I Caution: the Bode plot or magnitude-phase plot interpretation of gain
and phase margins to determine stability can be incorrect if the system
is non-minimum phase or has delays. Only the Nyquist stability criterion
should be used to determine stability.
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Gain Margin and Phase Margin on a Magnitude-Phase Plot
I Magnitude-phase plot of G1(s) = 1

s(s+1)(s/5+1) and G2(s) = 1
s(s+1)2
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Gain Margin and Phase Margin on a Bode Plot
I Bode plot of G (s) = K

s(s+1)(s/100+1) with K = 1
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Gain Margin and Phase Margin on a Bode Plot

I If K > 0, it has no effect on the phase and shifts the magnitude up or
down by 20 logK . This changes the gain-crossover frequency but not
the phase-crossover frequency.

I Some closed-loop poles lie on the imaginary axis when ωg = ωp

I Choose K ≈ 100 to shift the magnitude up by ∼ 40 dB, making ωg ≈ ωp

I The imaginary axis crossing can be determined from the Bode plot but
we do not know if we are going from stability to instability or vice versa

I Assuming that the system is stable initially (can only be verified by the
Nyquist or the Routh-Hurwitz stability criterion), we expect the region
of stability to be 0 < K < 100
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Gain Margin and Phase Margin on a Bode Plot
I Root locus of G (s) = K

s(s+1)(s/100+1)

-15 -10 -5 0 5 10 15

-10

-5

0

5

10 0.86

0.86

0.93

0.78

0.93

0.78 0.64 0.46 0.24

0.97

0.992

16 14 12 10 8 6 4 2

0.97

0.64 0.46 0.24

0.992

Root Locus

Real Axis (seconds -1 )

Im
a

g
in

a
ry

 A
x
is

 (
s
e

c
o

n
d

s
-1

)

System: G

Gain: 98.3

Pole: -0.0132 + 9.87i

Damping: 0.00134

Overshoot (%): 99.6

Frequency (rad/s): 9.87

11



Gain Margin and Phase Margin on a Bode Plot
I Use Routh-Hurwitz to verify the region of stability for:

T (s) =
G (s)

1 + G (s)
=

K

s(s + 1)(s/100 + 1) + K
=

100K

s3 + 101s2 + 100s + 100K

I Characteristic polynomial a(s) = s3 + 101s2 + 100s + 100K

I The Routh table is:

s3 1 100

s2 101 100K

s1 100− 100K
101 0

s0 100K 0

I Stability region: 0 < K < 101

I Auxiliary polynomial roots for K = 101:

A(s) = 101(s2 + 100) ⇒ s = ±j10
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Stability Margins: Example 1
I What are the gain margin and phase margin of G (s) = 1

s(s+1)2
?
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Stability Margins: Example 2
I What are the gain margin and phase margin of G (s) = (s+1)

s2(s/10+1)
?
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Stability Margins: Example 2
I Root locus of G (s) = (s+1)

s2(s/10+1)
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Stability Margins: Example 2

I What are the gain margin and phase margin of G (s) = K(s+1)
s2(s/10+1)

?

I The gain margin is ∞ since the phase hits −180◦ at ωp =∞

I As K →∞, the gain-crossover frequency ωg moves to the right and the
phase margin decreases

I Root locus: a set of poles move vertically in the plane (ζ decreases) as
K →∞

I There seems to be a relationship between phase margin and the
damping ratio ζ

I We will analyze a second-order system to determine this and, more
generally, the relationship between frequency response and transient
response
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Frequency Domain Performance Specifications

I Consider a second-order system:

T (s) =
G (s)

1 + G (s)
=

ω2
n

s2 + 2ζωns + ω2
n

=
1

s2

ω2
n

+ 2ζ s
ωn

+ 1

I How does the closed-loop frequency response T (jω) relate to the
time-domain transient response (rise time, overshoot, settling time)?
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Frequency Response of a Second-order System

I Bode plot of T (s) = 1
s2

ω2
n
+2ζ s

ωn
+1

I The damping ratio ζ is related to maxω |T (jω)|

I The rise time tr is related to the bandwidth ωb, which measures the
frequency range over which the system tracks an input signal well

I The natural frequency ωn is related to the bandwidth ωb
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Frequency Domain Performance Specifications

I Low-frequency (DC) gain: the magnitude of the transfer function
|T (jω)| for low frequencies ω → 0

I Bandwidth: the frequency ωb at which the magnitude of the transfer
function drops to 3 dB below the DC gain:

|T (jωb)| =
1√
2
|T (0)|

I Resonant frequency: the frequency at which the transfer function
magnitude is maximized

ωr = arg max
ω

|T (jω)|

I Resonant peak: the maximum value of the transfer function
magnitude:

Mr = |T (jωr )|
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Frequency Domain Performance Specifications
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Frequency Response of a Second-order System

I Consider a second-order system:

T (s) =
ω2
n

s2 + 2ζωns + ω2
n

=
1

s2

ω2
n

+ 2ζ s
ωn

+ 1

I Transfer function magnitude at s = jω:

|T (jω)| =
1

| − ω2

ω2
n

+ 2ζ ωωn
j + 1|

=
1√(

1−
(
ω
ωn

)2)2

+ 4ζ2
(
ω
ωn

)2
I Transfer function phase at s = jω:

T (jω) = 1

−
(

ω
ωn

)2
+2ζ

(
ω
ωn

)
j+1

= − arctan

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2
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Resonant Frequency of a Second-order System

I Resonant frequency:

d |T (jω)|
dω

= 0 ⇒ ωr = 0 OR ωr = ωn

√
1− 2ζ2

I Resonant peak:

I Case 1: ζ ≤ 1√
2

:

ωr = ωn

√
1− 2ζ2 Mr =

1

2ζ
√

1− ζ2

I Case 2: ζ >
1√
2

:

ωr = 0 Mr = 1
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Resonant Frequency of a Second-order System
I Plot of Mr = 1

2ζ
√

1−ζ2
and ωr

ωn
=
√

1− 2ζ2 as a function of ζ

I The resonant peak Mr is related
to the percent overshoot via ζ

I Example:
I The resonant peak of the

closed-loop system should be
less than 1.75 (≈ 5 dB)

I Equivalent to ζ should be
greater than 0.3

I Equivalent to p.o should be less
than 37%
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Bandwidth of a Second-order System

I Bandwidth: the low frequency range (0, ωb) over which the closed-loop
system tracks an input signal well

I Bandwidth: ω such that |T (jω)| = 1√
2
|T (0)|. Let u = ωb/ωn:

u4 + 2(ζ2 − 1)u2 + 1 = 2 ⇒ u2 = (1− 2ζ2)±
√

4ζ4 − 4ζ2 + 2

ωb = ωn

√
(1− 2ζ2) +

√
4ζ4 − 4ζ2 + 2

I Bandwidth ωb and rise time tr ≈ 2.16ζ+0.6
ωn

are inversely proportional:
I If ωn ↑, then ωb ↑ and tr ↓
I If ζ ↑, then ωb ↓ and tr ↑

I Adding a zero to G (s) increases the bandwidth of the closed-loop
transfer function T (s)

I Adding a pole to G (s) decreases the bandwidth of the closed-loop
transfer function T (s)
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Stability Margins of a Second-order System
I Bode plot of G (s) = ω2

n
s(s+2ζωn)
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Stability Margins of a Second-order System
I The phase plot of G (s) shows that the phase-crossover frequency is:

ωp =∞
I The gain margin is:

GM =∞

I Set |G (jω)| to 1 to obtain the gain-crossover frequency ωg :

1 = |G (jωg )| =
ω2
n

|jωg ||jωg + 2ζωn|
=

ω2
n

ωg

√
4ζ2ω2

n + ω2
g

I The gain-crossover frequency is:

ωg = ωn

√√
1 + 4ζ4 − 2ζ2

I The phase margin is:

PM = G (jωg ) + π = tan−1

 2ζ√√
1 + 4ζ4 − 2ζ2
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Phase Margin of a Second-order System
I The phase margin of a second-order system is a function of ζ but not ωn

I The relationship between PM and ζ can be approximated fairly well by a
straight line for small values of ζ
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Phase Margin of a Second-order System

I For 0 ≤ ζ ≤ 0.7, the phase margin PM (in degrees) and the damping
ration ζ of a second-order system are related by:

PM ≈ 100ζ

I The relationship between ζ and PM can be used to design control
systems in the frequency domain meeting time-domain specifications

I Poles that are ignored in a dominant-pole-pair approximation contribute
phase lag so it is important to keep a large phase margin

I For 0.2 ≤ ζ ≤ 0.8, the gain-crossover frequency ωg of G (s) is related to
the closed-loop system bandwidth ωb:

ωb ≈ 1.8ωg
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Frequency Domain Control Design

I To obtain fast transient response we want large ωg since ωb ↑, tr ↓

I To obtain lower steady-state error, we may increase the gain K , which
increases ωg

I Increasing ωg , however, decreases the phase margin

I As the phase margin decreases, the system becomes less stable and
might exhibit oscillatory behavior

I We must consider more complicated controllers than a simple
proportional controller K to obtain a good phase margin, a good
gain-crossover frequency, and good steady state tracking
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Frequency Domain Performance Specifications

I Unity-feedback control system with open-loop transfer function:

G (s) = K

∏m
i=1(s − zi )∏n
i=1(s − pi )

I How can the closed-loop frequency-domain performance specifications
(resonant peak Mr , resonant frequency ωr , bandwidth ωb) be related to
the open-loop frequency response?

I How can the gain K be adjusted to meet frequency-domain performance
specifications?
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Closed-loop Transfer Function Magnitude

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

G (s)

1 + G (s)

I Closed-loop transfer function magnitude:

M(s) = |T (s)| =
|G (s)|
|1 + G (s)|

I Obtain M(s) as a function of the real and imaginary parts of
G (s) = x(s) + jy(s):

M =

√
x2 + y2√

(1 + x)2 + y2

I This equation turns out to be a circle on a Nyquist plot
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Constant Magnitude Circles

I Relationship between the magnitude of the closed-loop transfer function
M and the real part x and imaginary part y of the open-loop transfer
function:

M2(1 + x)2 + M2y2 = x2 + y2

M2 = (1−M2)x2 − 2M2x + (1−M2)y2

I Assume M 6= 1 and divide both sides by (1−M2):

x2 − 2
M2

1−M2
x + y2 =

M2

1−M2

I Add M4/(1−M2)2 to both sides to complete the square for x :(
x − M2

1−M2

)2

+ y2 =
M2

(1−M2)2
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Constant Magnitude Circles
I M circle: a circle of constant closed-loop transfer function magnitude

on a polar/Nyquist plot:(
x − M2

1−M2

)2

+ y2 =
M2

(1−M2)2

I An M circle is centered at
(

M2

1−M2 , 0
)

with radius M
|(1−M2)|

I As M →∞, the M circle is centered at (−1, 0) with radius 0

I For 1 < M <∞, the M circle center moves to the left of (−1, 0), while
the radius increases

I As M → 0, the M circle is centered at (0, 0) with radius 0

I For 0 < M < 1, the M circle center moves to the right of (0, 0), while
the radius increases

I At M = 1, we get a degenerate circle at (±∞, 0) with radius ∞
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Constant Magnitude Circles on a Nyquist Plot
I Nyquist plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

I If the frequencies ω along the polar plot of G (s) are available, we can
construct a closed-loop Bode plot using the M circles
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Constant Phase Circles
I N circle: a circle of constant N = tan T (s) on a polar/Nyquist plot:(

x +
1

2

)2

+

(
y − 1

2N

)2

=
1

4

(
1 +

1

N2

)
I An N circle is centered at (−0.5, 0.5/N) with radius 0.5

√
1 + 1/N2

I N circles are orthogonal to M circles, i.e., intersect at 90◦
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Frequency Domain Performance Specifications

I Given the frequency response of an open-loop transfer function G (s), we
can verify stability and frequency domain performance metrics

I Stability:
I Determine using the Nyquist criterion

I What if K < 0? Rotate the Nyquist plot clockwise by 180◦.

I Gain margin GM and phase margin PM:
I Can be obtained from a Nyquist plot

I Even easier to determine on a Bode plot or magnitude-phase plot

I Resonant peak Mr , resonant frequency ωr , and bandwidth ωb:
I Use the M circles on a Nyquist plot
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Open-loop Bode Plot
I Open-loop Bode plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)
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Nyquist Plot
I Nyquist plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)
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Closed-loop Bode Plot
I Closed-loop Bode plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)
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Frequency Domain Control Design

I How should K be adjusted to meet desired closed-loop frequency
domain specifications?
I It is difficult to determine how much to change K to meet a resonant

peak specification on a Nyquist plot

I It is difficult to tell where the Nyquist plot would become tangent to the
desired M circle

I Nathaniel Nichols proposed to transform the M and N circles from a
Nyquist plot to a magnitude-phase plot

I On a magnitude-phase plot, the M and N contours are no longer circles

I If K changes, a magnitude-phase plot only moves up or down, which is
much easier to interpret that the change of the shape on a Nyquist plot
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Nichols Chart

I Nichols chart: a
magnitude-phase plot with
overlaid M and N contours of
constant closed-loop
transfer-function magnitude
and phase

I The gain margin and phase
margin can be obtained

I The resonant peak and
bandwidth can be obtained

I A change in the gain K moves
the system response up or
down and can be used to meet
closed-loop frequency domain
specifications
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Nichols Chart
I Nichols plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)
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