
ECE171A: Linear Control System Theory
Lecture 1: Introduction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu
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Course Overview
I ECE 171A: Linear Control System Theory focuses on modeling and

analysis of single-input single-output linear control systems emphasizing
frequency domain techniques:
I Modeling: ordinary differential equations, transfer functions, block

diagrams, signal flow graphs

I Charcteristics: feedback, disturbances, sensitivty, transient and
steady-state response

I Stability: Routh-Hurwitz stability criterion, relative stability

I Frequency domain behavior: root locus, Bode diagrams, Nyquist plots,
Nichols charts

I Textbook: Modern Control Systems: Dorf & Bishop

I Other references:
I Feedback Control of Dynamic Systems: Franklin, Powell & Emami-Naeini
I Automatic Control Systems: Kuo & Golnaraghi
I Feedback Systems: Astrom & Murray
I Control System Design: Goodwin, Graebe & Salgado
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Logistics

I Course website: https://natanaso.github.io/ece171a

I Includes links to:
I Canvas: course password, discussion Zoom schedule, lecture recordings
I Gradescope: homework submission and grades
I Piazza: discussion and class announcements (please check regularly)

I Assignments:
I 6 homework sets (48% of grade)
I midterm exam (26% of grade)
I final exam (26% of grade)

I Grading:
I A standard grade scale (e.g., 93%+ = A) will be used with a curve based

on the class performance (e.g., if the top students have grades in the
83%-86% range, then this will correspond to letter grade A)

I no late policy: homework submitted past the deadline will receive 0 credit

I Prerequisites: ECE45: Circuits and Systems or MAE 140: Linear Circuits
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Office Hours and Discussion Session

I Office hours:
I Nikolay: Monday, 3:00 pm - 4:00 pm, on Zoom (links on Canvas)

I Chenfeng: Thursday, 3:00 pm - 4:00 pm, on Zoom (links on Canvas).

I Discussion session:
I There is no distinction between a discussion session and office hours.

I No new material will be covered during the discussion session/office hours.

I We will use the time to go over homework solutions and answer questions.

I If you think that two sessions per week are insufficient, I will be happy to
add more.
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Course Schedule (Tentative)

I Check the course website for updates
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Control System

I A control system is an interconnection of components that provides a
desired response

I Modern control systems include physical and cyber components

I A physical component is a mechanical, electrical, fluid, or thermal
device acting as a sensor, actuator, or embedded system component
I A sensor is a device that provides measurements of a signal of interest
I An actuator is a device that alters the configuration of the system or its

environment

I A cyber component is a software node that executes a specific function

I Control system engineering focuses on:
I modeling cyberphysical systems
I designing controllers that achieve desired system performance

characteristics, such as stability, transient and steady-state tracking,
rejection of external disturbances and robustness to modeling uncertainties
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Open-loop vs Closed-loop Control Systems

I An open-loop control system utilizes a controller without
measurement feedback of the system output

I A closed-loop control system utilizes a controller with measurement
feedback of the system output
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Disturbances

I A closed-loop control system controls the actuators to reduce the error
between the desired system output and the measured system output

I Unlike open-loop control systems, closed-loop control systems may
attenuate the effects of process noise (disturbance), measurement
noise, and modeling errors
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Multi-loop Multi-variable Control Systems
I Modern control systems involve multiple measurement and control

variables and multiple feedback loops

9



Example: Rotating Disk Speed Control
I Line-cell imaging in biomedical applications use spinning disk conformal

microscopes

I Objective: design a controller for a rotating disk system to ensure the
speed of rotation is within a specified percentage of a desired speed

I System components:
I DC motor actuator: provides speed proportional to the applied voltage
I Battery source: provides voltage proprotional to the desired speed
I DC amplifier: amplifies the battery voltage to meet the motor volatage

requirements
I Tachometer: provides output voltage proprotional to the speed of its shaft
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Open-Loop Rotating Disk System
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Closed-Loop Rotating Disk System
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Control System Analysis

I System elements will be described using linear constant coefficient
ordinary differential equations

I Instead of solving the differential equations in the time domain, we will
use Laplace transform to study the system behavior in the complex plane

I Time domain:
I Desired Speed: r(t)
I Amplifier: z(t) = Kr(t)
I DC Motor: u̇(t) + u(t) = 200z(t)
I Rotating Disk:

ẏ(t) + 8y(t) = u(t)

I Laplace domain:
I Desired Speed: R(s)
I Amplifier: Z (s) = KR(s)
I DC Motor: U(s) = 200

s+1Z (s)
I Rotating Disk:

Y (s) = 1
s+8U(s)

I We will study how to choose the amplifier gain K to ensure that system
output y(t) tracks the desired reference input r(t)
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Nominal Rotating Disk System

I A nominal model aims to capture the system behavior accurately but
parameter errors or disturbances might be present

I Closed-loop/feedback control becomes important when there are
parameter errors and disturbances
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Low Gain Rotating Disk System

I The DC motor gain might be different in the real system (e.g., 160)
compared to the nominal model (e.g., 200)
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Slow Rotating Disk System

I The disk might rotate slower in the real system (e.g., ẏ(t) + 2y(t) = u(t))
compared to the nominal model (e.g., ẏ(t) + 8y(t) = u(t))
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Open-loop Step Response
I Without feedback, the real system response might be different than

what was planned
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Closed-loop Step Response
I Feedback improves the sensitivity to parameter errors and disturbances

I Despite the advantages, feedback architectures need to be designed
carefully to avoid oscillations and steady-state error
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Overview of Control System Modeling

I Mathematical models of physical systems are key elements in the design
and analysis of control systems

I Dynamic behavior is described by ordinary differential equations
(ODEs)

I Linearization approximation of a nonlinear system is used to simplify the
analysis of the system behavior

I Laplace transform methods describe the input-output relationship of a
linear time-invariant (LTI) system in the form of a transfer function

I A transfer functions can represented as a block diagram or signal-flow
graph to graphically depict the system interconnections
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Differential Equations of Physical Systems

I Physical systems from different domains (electrical, mechanical, fluid,
thermal) contain elements that share similar roles

Variable Electrical Mechanical Fluid Thermal

Through Current Force, Torque Flow rate Flow rate
Across Voltage Velocity Pressure Temperature

Inductive Inductance Inverse Stiffness Inertia –
Capacitive Capacitance Mass, Moment of Inertia Capacitance Capacitance
Resistive Resistance Friction Resistance Resistance

I Dynamic behavior is described by physical laws, such as Kirchhoff’s laws
or Newton’s laws, enabling an ODE description of the system

20



Through and Across Element Variables
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Inductive Elements
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Capacitive Elements
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Resistive Elements
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Spring-Mass-Damper Example

I The behavior of a spring-mass-damper system is
described by Newton’s second law:

M
d2y(t)

dt2
+ b

dy(t)

dt︸ ︷︷ ︸
viscous damper

+ ky(t)︸ ︷︷ ︸
spring force

= r(t)︸︷︷︸
input force

I The mass displacement y(t) satisfies a
second-order linear time-invariant (LTI) ordinary
differential equation (ODE)
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Parallel RLC Circuit Example

I The behavior of an electrical RLC circuit
is described by Kirchhoff’s current law:

r(t) = iR(t) + iL(t) + iC (t)

I Parallel devices have the same voltage v(t):
I Resistor: v(t) = RiR(t)
I Inductor: v(t) = L diL(t)

dt

I Capacitor: iC (t) = C dv(t)
dt

I The inductor current iL(t) satisfies a second-order LTI ODE:

CL
d2iL(t)

dt2
+

L

R

diL(t)

dt
+ iL(t) = r(t)
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Ordinary Differential Equations

I A differential equation is any equation involving a function and its
derivatives

I A solution to a differential equation is any function that satisfies the
equation

I An nth-order linear ordinary differential equation is:

an(t)
dn

dtn
y(t)+an−1(t)

dn−1

dtn−1
y(t)+ . . .+a1(t)

d

dt
y(t)+a0(t)y(t) = u(t)

I If u(t) = 0, then the nth-order linear ODE is called homogeneous

I A solution y(t) of an nth-order ODE that contains n arbitrary constants
is called a general solution

I A solution yp(t) of an ODE that contains no arbitrary constants is called
a particular solution
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Existence and Uniqueness of Solutions

I An initial value problem is an ODE:

an(t)
dn

dtn
y(t)+an−1(t)

dn−1

dtn−1
y(t)+ . . .+a1(t)

d

dt
y(t)+a0(t)y(t) = u(t)

together with initial value constraints:

y(t0) = y0, ẏ(t0) = y1, . . . , y (n−1)(t0) = yn−1.

Theorem

Let an(t), an−1(t), . . ., a1(t), a0(t), and u(t) be continuous on an interval
I ⊆ R. Let an(t) 6= 0 for all t ∈ I. Then, for any t0 ∈ I, a solution y(t) of
the initial value problem exists on I and is unique.
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Superposition Principle for Homogeneous Linear ODEs

Let y1, y2, . . ., yk be solutions to a homogeneous nth-order linear ODE on an
interval I. Then, any linear combination:

y(t) = c1y1(t) + c2y2(t) + . . . + ckyk(t)

is also a solution, where c1, c2, . . ., ck are constants.

Superposition Principle for Nonhomogeneous Linear ODEs

For i = 1, . . . , k , let ypi (t) denote particular solutions to the linear ODEs:

an(t)
dn

dtn
y(t) + an−1(t)

dn−1

dtn−1
y(t) + . . . + a1(t)

d

dt
y(t) + a0(t)y(t) = ui (t).

Then, yp(t) = c1yp1(t) + c2yp2(t) + . . . + ckypk (t) is a particular solution of:

an(t)
dn

dtn
y(t) + an−1(t)

dn−1

dtn−1
y(t) + . . . + a1(t)

d

dt
y(t) + a0(t)y(t)

= c1u1(t) + c2u2(t) + . . . + ckuk(t),

where c1, c2, . . ., ck are constants. 29



Superposition Example

I Consider the homogeneous linear ODE:
d2

dt2
y(t) + y(t) = 0

I Two particular solutions are:

y1(t) = cos(t)
d2

dt2
cos(t) = − cos(t)

y2(t) = sin(t)
d2

dt2
sin(t) = − sin(t)

I Then, any linear combination y(t) = c1y1(t) + c2y2(t) is also a solution
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State Space Model

I Define variables:

x1(t) = y(t), x2(t) =
d

dt
y(t), . . . , xn(t) =

dn−1

dtn−1
y(t)

I The linear ODE specifies the following relationships:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...

ẋn−1(t) = xn(t)

ẋn(t) = −a0(t)

an(t)
x1(t)− a1(t)

an(t)
x2(t)− · · · − an−1(t)

an(t)
xn(t) +

1

an(t)
u(t)
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State Space Model

I Let x(t) :=
[
x1(t) x2(t) · · · xn(t)

]>
be a vector called system

state

I A state space model of the linear ODE is obtained by re-writing the
equations in vector-matrix form:

ẋ(t) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

− a0(t)
an(t) − a1(t)

an(t) · · · −an−1(t)
an(t)


︸ ︷︷ ︸

A(t)

x(t) +


0
...
0
1

an(t)


︸ ︷︷ ︸

b(t)

u(t)

I ECE 171B will focus on time-domain analysis of state space models
ẋ(t) = A(t)x(t) + b(t)u(t)
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Linearization

I In practice, many systems may be described by a nonlinear ODE:

ẋ(t) = f(x(t), u(t), t)

I A nonlinear system can be approximated with a linear one by modeling
its behavior in a restricted operational domain

I Linearization is based on a Taylor series expansion around a nominal
state-input trajectory

I The Taylor series expansion of an infinitely differentiable function f (x)
around a nominal point x̄ is:

f (x) = f (x̄) +
1

1!
f ′(x̄)(x − x̄) +

1

2!
f ′′(x̄)(x − x̄)2 +

1

3!
f ′′′(x̄)(x − x̄)3 + · · ·
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Linearization
I Linearization of ẋ(t) = f(x(t), u(t), t)

I A nominal trajectory x̄(t) is obtained from a nominal initial state x̄0

with nominal reference input ū(t):

˙̄x(t) = f(x̄(t), ū(t), t), x̄(0) = x̄0

I An operational domain is specified as the deviation (x̃(t), ũ(t)) around
the nominal state-input trajectory (x̄(t), ū(t)):

x(t) = x̄(t) + x̃(t) u(t) = ū(t) + ũ(t)

I The nonlinear function f is linearized around (x̄(t), ū(t)) using the first
two terms from its Taylor series expansion:

f(x, u, t)︸ ︷︷ ︸
˙̄x+˙̃x

≈ f(x̄, ū, t)︸ ︷︷ ︸
˙̄x

+

[
d

dx
f(x̄, ū, t)

]
︸ ︷︷ ︸

A(t)

(x− x̄)︸ ︷︷ ︸
x̃

+

[
d

du
f(x̄, ū, t)

]
︸ ︷︷ ︸

b(t)

(u − ū)︸ ︷︷ ︸
ũ

I Linearized system: ˙̃x(t) = A(t)x̃(t) + b(t)ũ(t)
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