ECE171A: Linear Control System Theory
 Lecture 1: Introduction

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Course Overview

- ECE 171A: Linear Control System Theory focuses on modeling and analysis of single-input single-output linear control systems emphasizing frequency domain techniques:
- Modeling: ordinary differential equations, transfer functions, block diagrams, signal flow graphs
- Charcteristics: feedback, disturbances, sensitivty, transient and steady-state response
- Stability: Routh-Hurwitz stability criterion, relative stability
- Frequency domain behavior: root locus, Bode diagrams, Nyquist plots, Nichols charts
- Textbook: Modern Control Systems: Dorf \& Bishop
- Other references:
- Feedback Control of Dynamic Systems: Franklin, Powell \& Emami-Naeini
- Automatic Control Systems: Kuo \& Golnaraghi
- Feedback Systems: Astrom \& Murray
- Control System Design: Goodwin, Graebe \& Salgado

Logistics

- Course website: https://natanaso.github.io/ece171a
- Includes links to:
- Canvas: course password, discussion Zoom schedule, lecture recordings
- Gradescope: homework submission and grades
- Piazza: discussion and class announcements (please check regularly)
- Assignments:
- 6 homework sets (48% of grade)
- midterm exam (26% of grade)
- final exam (26% of grade)
- Grading:
- A standard grade scale (e.g., $93 \%+=A$) will be used with a curve based on the class performance (e.g., if the top students have grades in the $83 \%-86 \%$ range, then this will correspond to letter grade A)
- no late policy: homework submitted past the deadline will receive 0 credit
- Prerequisites: ECE45: Circuits and Systems or MAE 140: Linear Circuits

Office Hours and Discussion Session

- Office hours:
- Nikolay: Monday, 3:00 pm - 4:00 pm, on Zoom (links on Canvas)
- Chenfeng: Thursday, 3:00 pm - 4:00 pm, on Zoom (links on Canvas).
- Discussion session:
- There is no distinction between a discussion session and office hours.
- No new material will be covered during the discussion session/office hours.
- We will use the time to go over homework solutions and answer questions.
- If you think that two sessions per week are insufficient, I will be happy to add more.

Course Schedule (Tentative)

Date	Lecture	Material	Assignment
Sep 27	Intro, ODEs	Dorf-Bishop Ch. 1, Ch. 2.1-2.3	
Sep 29	Laplace Transform, Transfer Function	Dorf-Bishop Ch. 2.4-2.5	HW1
Oct 04	Block Diagram, Signal Flow Graph	Dorf-Bishop Ch. 2.6-2.7	
Oct 06	Sensitivity, Transient and Steady-state Response	Dorf-Bishop Ch. 4.2-4.7	HW2
Oct 11	Test Signals, Second-order System	Dorf-Bishop Ch. 5.2-5.4	
Oct 13	Root Location, Steady-state Error, Performance Indices	Dorf-Bishop Ch. 5.5-5.7	HW3
Oct 18	Routh-Hurwitz Stability, Relative Stability	Dorf-Bishop Ch. 6.2-6.4	
Oct 20	Catch up		
Oct 25	Midterm Exam		
Oct 27	Root Locus	Dorf-Bishop Ch. 7.2-7.3	
Nov 01	Parameter Design, Sensitivity	Dorf-Bishop Ch. 7.4-7.5	
Nov 03	PID Control, Negative Gain Root Locus	Dorf-Bishop Ch. 7.6-7.7	HW4
Nov 08	Frequency Response	Dorf-Bishop Ch. 8.2-8.3	
Nov 10	Frequency Performance Specifications	Dorf-Bishop Ch. 8.4	HW5
Nov 15	Log-Magnitude and Phase Diagrams	Dorf-Bishop Ch. 8.5	
Nov 17	Catch up		
Nov 22	s-Plane Contours, Nyquist Criterion	Dorf-Bishop Ch. 9.2-9.3	
Nov 24	Nyquist Relative Stability	Dorf-Bishop Ch. 9.4	HW6
Nov 29	Performance Criteria, System Bandwidth	Dorf-Bishop Ch. 9.5-9.6	
Dec 01	Review		
Dec 09	Final Exam		

- Check the course website for updates

Control System

- A control system is an interconnection of components that provides a desired response
- Modern control systems include physical and cyber components
- A physical component is a mechanical, electrical, fluid, or thermal device acting as a sensor, actuator, or embedded system component
- A sensor is a device that provides measurements of a signal of interest
- An actuator is a device that alters the configuration of the system or its environment
- A cyber component is a software node that executes a specific function
- Control system engineering focuses on:
- modeling cyberphysical systems
- designing controllers that achieve desired system performance characteristics, such as stability, transient and steady-state tracking, rejection of external disturbances and robustness to modeling uncertainties

Open-loop vs Closed-loop Control Systems

- An open-loop control system utilizes a controller without measurement feedback of the system output

- A closed-loop control system utilizes a controller with measurement feedback of the system output

Copyright Q2017 Pearson Education, All Rights Reserved

Disturbances

- A closed-loop control system controls the actuators to reduce the error between the desired system output and the measured system output
- Unlike open-loop control systems, closed-loop control systems may attenuate the effects of process noise (disturbance), measurement noise, and modeling errors

Disturbance

Copyright ©2017 Pearson Education, All Rights Reserved

Multi-loop Multi-variable Control Systems

- Modern control systems involve multiple measurement and control variables and multiple feedback loops

Copyront ©62017 Pearsonn Educction, All Righes Reserved

Copyriort © 02017 Pearson Elucction, Al Rights Reserved

Example: Rotating Disk Speed Control

- Line-cell imaging in biomedical applications use spinning disk conformal microscopes
- Objective: design a controller for a rotating disk system to ensure the speed of rotation is within a specified percentage of a desired speed
- System components:
- DC motor actuator: provides speed proportional to the applied voltage
- Battery source: provides voltage proprotional to the desired speed
- DC amplifier: amplifies the battery voltage to meet the motor volatage requirements
- Tachometer: provides output voltage proprotional to the speed of its shaft

Open-Loop Rotating Disk System

(a)

(b)

Copyright ©2017 Pearson Education, All Rights Reserved

Closed-Loop Rotating Disk System

(a)

(b)

Control System Analysis

- System elements will be described using linear constant coefficient ordinary differential equations
- Instead of solving the differential equations in the time domain, we will use Laplace transform to study the system behavior in the complex plane
- Time domain:
- Desired Speed: $r(t)$
- Amplifier: $z(t)=\operatorname{Kr}(t)$
- DC Motor: $\dot{u}(t)+u(t)=200 z(t)$
- Rotating Disk:

$$
\dot{y}(t)+8 y(t)=u(t)
$$

- Laplace domain:
- Desired Speed: $R(s)$
- Amplifier: $Z(s)=K R(s)$
- DC Motor: $U(s)=\frac{200}{s+1} Z(s)$
- Rotating Disk:

$$
Y(s)=\frac{1}{s+8} U(s)
$$

- We will study how to choose the amplifier gain K to ensure that system output $y(t)$ tracks the desired reference input $r(t)$

Nominal Rotating Disk System

- A nominal model aims to capture the system behavior accurately but parameter errors or disturbances might be present
- Closed-loop/feedback control becomes important when there are parameter errors and disturbances

Low Gain Rotating Disk System

- The DC motor gain might be different in the real system (e.g., 160) compared to the nominal model (e.g., 200)

Slow Rotating Disk System

- The disk might rotate slower in the real system (e.g., $\dot{y}(t)+2 y(t)=u(t))$ compared to the nominal model (e.g., $\dot{y}(t)+8 y(t)=u(t)$)

Open-loop Step Response

- Without feedback, the real system response might be different than what was planned

Step Response

Closed-loop Step Response

- Feedback improves the sensitivity to parameter errors and disturbances
- Despite the advantages, feedback architectures need to be designed carefully to avoid oscillations and steady-state error

Overview of Control System Modeling

- Mathematical models of physical systems are key elements in the design and analysis of control systems
- Dynamic behavior is described by ordinary differential equations (ODEs)
- Linearization approximation of a nonlinear system is used to simplify the analysis of the system behavior
- Laplace transform methods describe the input-output relationship of a linear time-invariant (LTI) system in the form of a transfer function
- A transfer functions can represented as a block diagram or signal-flow graph to graphically depict the system interconnections

Differential Equations of Physical Systems

- Physical systems from different domains (electrical, mechanical, fluid, thermal) contain elements that share similar roles

Variable	Electrical	Mechanical	Fluid	Thermal
Through	Current	Force, Torque	Flow rate	Flow rate
Across	Voltage	Velocity	Pressure	Temperature
Inductive	Inductance	Inverse Stiffness	Inertia	-
Capacitive	Capacitance	Mass, Moment of Inertia	Capacitance	Capacitance
Resistive	Resistance	Friction	Resistance	Resistance

- Dynamic behavior is described by physical laws, such as Kirchhoff's laws or Newton's laws, enabling an ODE description of the system

Through and Across Element Variables

Table 2.1	Summary of Through- and Across-Variables for Physical Systems			
	Variable	Integrated	Variable	Integrated
System	Through	Through-	Across Element	Across- Variable
Electrical	Current, i	Charge, q	Voltage difference, v_{21}	Flux linkage, λ_{21}
Mechanical translational	Force, F	Translational momentum, P	Velocity difference, v_{21}	Displacement difference, y_{21}
Mechanical rotational	Torque, T	Angular momentum, h	Angular velocity difference, ω_{21}	Angular displacement difference, θ_{21}
Fluid	Fluid volumetric rate of flow, Q	Volume, V	Pressure difference, P_{21}	Pressure momentum, γ_{21}
Thermal	Heat flow rate, q	Heat energy, H	Temperature difference, \mathscr{T}_{21}	

Inductive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of
Element

Inductive storage	Electrical inductance	$v_{21}=L \frac{d i}{d t}$	$E=\frac{1}{2} L i^{2}$	$v_{2} \circ \overbrace{m}^{L} \stackrel{i}{\longrightarrow} v_{1}$
	Translational spring	$v_{21}=\frac{1}{k} \frac{d F}{d t}$	$E=\frac{1}{2} \frac{F^{2}}{k}$	$v_{2} \mathrm{~m}_{\mathrm{m}}^{\stackrel{k}{v_{1}}} F$
	Rotational spring	$\omega_{21}=\frac{1}{k} \frac{d T}{d t}$	$E=\frac{1}{2} \frac{T^{2}}{k}$	$\stackrel{k}{\omega_{2}} \mathrm{~m}_{\mathrm{m}^{\omega_{1}}}^{\omega_{0}} T$
	Fluid inertia	$P_{21}=I \frac{d Q}{d t}$	$E=\frac{1}{2} I Q^{2}$	$P_{2} \circ \stackrel{I}{m} \stackrel{Q}{\longrightarrow} P_{1}$

Capacitive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of Element	Physical Element	Governing Equation	Energy E or Power \mathscr{P}	Symbol	
Capacitive storage	[Electrical capacitance	$i=C \frac{d v_{21}}{d t}$	$E=\frac{1}{2} C v_{21}^{2}$	$v_{2} \circ \stackrel{i}{\longrightarrow} \\|^{C} \longleftrightarrow v_{1}$	
	Translational mass	$F=M \frac{d v_{2}}{d t}$	$E=\frac{1}{2} M v_{2}^{2}$		
	Rotational mass	$T=J \frac{d \omega_{2}}{d t}$	$E=\frac{1}{2} J \omega_{2}{ }^{2}$	$T \rightarrow \underset{\omega_{2}}{\circ} \xrightarrow{\substack{\omega_{1} \\ \text { constant }}} \omega_{i}^{\omega_{2}}=$	
	Fluid capacitance	$Q=C_{f} \frac{d P_{21}}{d t}$	$E=\frac{1}{2} C_{f} P_{21}{ }^{2}$	$Q \longrightarrow P_{P_{2}}^{\circ} C_{f} \longrightarrow P_{1}$	
	Thermal capacitance	$q=C_{t} \frac{d \mathscr{T}_{2}}{d t}$	$E=C_{t} \mathscr{T}_{2}$	$q \underset{\mathscr{T}_{2}}{\rightarrow 0-C_{t}} \underset{\begin{array}{r} \mathscr{T}_{1} \\ \text { constant } \end{array}}{0}=$	

Resistive Elements

Table 2.2 Summary of Governing Differential Equations for Ideal Elements

Type of	Physical	Governing	Energy E or	
Element	Element	Equation	Power \mathscr{P}	Symbol

Energy dissipators	Electrical resistance	$i=\frac{1}{R} v_{21}$	$\mathscr{P}=\frac{1}{R} v_{21}{ }^{2}$	$v_{2} \circ \underbrace{R} \stackrel{i}{\longrightarrow} \circ v_{1}$
	Translational damper	$F=b v_{21}$	$\mathscr{P}=b v_{21}{ }^{2}$	$F \rightarrow \vec{v}_{2}^{\circ} \xrightarrow[b]{ } \circ v_{1}$
	Rotational damper	$T=b \omega_{21}$	$\mathscr{P}=b \omega_{21}{ }^{2}$	$T \rightarrow \omega_{2} \quad \neg_{b} \circ \omega_{1}$
	Fluid resistance	$Q=\frac{1}{R_{f}} P_{21}$	$\mathscr{P}=\frac{1}{R_{f}} P_{21}^{2}$	$P_{2} \circ \underbrace{R_{f}} \xrightarrow{Q} \circ P_{1}$
	Thermal resistance	$q=\frac{1}{R_{t}} \mathscr{F}_{21}$	$\mathscr{P}=\frac{1}{R_{t}} \mathscr{F}_{21}$	$\mathscr{T}_{2} \circ \underbrace{R_{t}}{ }^{q} \circ \mathscr{T}_{1}$

Spring-Mass-Damper Example

- The behavior of a spring-mass-damper system is described by Newton's second law:

$$
M \frac{d^{2} y(t)}{d t^{2}}+\underbrace{b \frac{d y(t)}{d t}}_{\text {viscous damper }}+\underbrace{k y(t)}_{\text {spring force }}=\underbrace{r(t)}_{\text {input force }}
$$

(b)

Parallel RLC Circuit Example

- The behavior of an electrical RLC circuit is described by Kirchhoff's current law:

$$
r(t)=i_{R}(t)+i_{L}(t)+i_{C}(t)
$$

- Parallel devices have the same voltage $v(t)$:
- Resistor: $v(t)=R i_{R}(t)$
- Inductor: $v(t)=L \frac{d i L}{d t}(t)$
- Capacitor: $i_{C}(t)=C \frac{d v(t)}{d t}$
- The inductor current $i_{L}(t)$ satisfies a second-order LTI ODE:

$$
C L \frac{d^{2} i_{L}(t)}{d t^{2}}+\frac{L}{R} \frac{d i_{L}(t)}{d t}+i_{L}(t)=r(t)
$$

Ordinary Differential Equations

- A differential equation is any equation involving a function and its derivatives
- A solution to a differential equation is any function that satisfies the equation
- An n th-order linear ordinary differential equation is:

$$
a_{n}(t) \frac{d^{n}}{d t^{n}} y(t)+a_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1}(t) \frac{d}{d t} y(t)+a_{0}(t) y(t)=u(t)
$$

- If $u(t)=0$, then the n th-order linear ODE is called homogeneous
- A solution $y(t)$ of an n th-order ODE that contains n arbitrary constants is called a general solution
- A solution $y_{p}(t)$ of an ODE that contains no arbitrary constants is called a particular solution

Existence and Uniqueness of Solutions

- An initial value problem is an ODE:

$$
a_{n}(t) \frac{d^{n}}{d t^{n}} y(t)+a_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1}(t) \frac{d}{d t} y(t)+a_{0}(t) y(t)=u(t)
$$

together with initial value constraints:

$$
y\left(t_{0}\right)=y_{0}, \quad \dot{y}\left(t_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1}
$$

Theorem

Let $a_{n}(t), a_{n-1}(t), \ldots, a_{1}(t), a_{0}(t)$, and $u(t)$ be continuous on an interval $\mathcal{I} \subseteq \mathbb{R}$. Let $a_{n}(t) \neq 0$ for all $t \in \mathcal{I}$. Then, for any $t_{0} \in \mathcal{I}$, a solution $y(t)$ of the initial value problem exists on \mathcal{I} and is unique.

Superposition Principle for Homogeneous Linear ODEs

Let $y_{1}, y_{2}, \ldots, y_{k}$ be solutions to a homogeneous n th-order linear ODE on an interval \mathcal{I}. Then, any linear combination:

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+\ldots+c_{k} y_{k}(t)
$$

is also a solution, where $c_{1}, c_{2}, \ldots, c_{k}$ are constants.

Superposition Principle for Nonhomogeneous Linear ODEs

For $i=1, \ldots, k$, let $y_{p_{i}}(t)$ denote particular solutions to the linear ODEs:

$$
a_{n}(t) \frac{d^{n}}{d t^{n}} y(t)+a_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1}(t) \frac{d}{d t} y(t)+a_{0}(t) y(t)=u_{i}(t)
$$

Then, $y_{p}(t)=c_{1} y_{p_{1}}(t)+c_{2} y_{p_{2}}(t)+\ldots+c_{k} y_{p_{k}}(t)$ is a particular solution of:

$$
\begin{aligned}
a_{n}(t) \frac{d^{n}}{d t^{n}} y(t) & +a_{n-1}(t) \frac{d^{n-1}}{d t^{n-1}} y(t)+\ldots+a_{1}(t) \frac{d}{d t} y(t)+a_{0}(t) y(t) \\
& =c_{1} u_{1}(t)+c_{2} u_{2}(t)+\ldots+c_{k} u_{k}(t)
\end{aligned}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are constants.

Superposition Example

- Consider the homogeneous linear ODE: $\frac{d^{2}}{d t^{2}} y(t)+y(t)=0$
- Two particular solutions are:

$$
\begin{aligned}
& y_{1}(t)=\cos (t) \\
& y_{2}(t)=\sin (t)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} \cos (t) & =-\cos (t) \\
\frac{d^{2}}{d t^{2}} \sin (t) & =-\sin (t)
\end{aligned}
$$

- Then, any linear combination $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$ is also a solution

State Space Model

- Define variables:

$$
x_{1}(t)=y(t), \quad x_{2}(t)=\frac{d}{d t} y(t), \quad \ldots, \quad x_{n}(t)=\frac{d^{n-1}}{d t^{n-1}} y(t)
$$

- The linear ODE specifies the following relationships:

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =x_{3}(t) \\
\vdots & \\
\dot{x}_{n-1}(t) & =x_{n}(t) \\
\dot{x}_{n}(t) & =-\frac{a_{0}(t)}{a_{n}(t)} x_{1}(t)-\frac{a_{1}(t)}{a_{n}(t)} x_{2}(t)-\cdots-\frac{a_{n-1}(t)}{a_{n}(t)} x_{n}(t)+\frac{1}{a_{n}(t)} u(t)
\end{aligned}
$$

State Space Model

- Let $\mathbf{x}(t):=\left[\begin{array}{llll}x_{1}(t) & x_{2}(t) & \cdots & x_{n}(t)\end{array}\right]^{\top}$ be a vector called system state
- A state space model of the linear ODE is obtained by re-writing the equations in vector-matrix form:

$$
\dot{\mathbf{x}}(t)=\underbrace{\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
-\frac{a_{0}(t)}{a_{n}(t)} & -\frac{a_{1}(t)}{a_{n}(t)} & \cdots & -\frac{a_{n-1}(t)}{a_{n}(t)}
\end{array}\right]}_{\mathbf{A}(t)} \mathbf{x}(t)+\underbrace{\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\frac{1}{a_{n}(t)}
\end{array}\right]}_{\mathbf{b}(t)} u(t)
$$

- ECE 171B will focus on time-domain analysis of state space models $\dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{b}(t) u(t)$

Linearization

- In practice, many systems may be described by a nonlinear ODE:

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), u(t), t)
$$

- A nonlinear system can be approximated with a linear one by modeling its behavior in a restricted operational domain
- Linearization is based on a Taylor series expansion around a nominal state-input trajectory
- The Taylor series expansion of an infinitely differentiable function $f(x)$ around a nominal point \bar{x} is:

$$
f(x)=f(\bar{x})+\frac{1}{1!} f^{\prime}(\bar{x})(x-\bar{x})+\frac{1}{2!} f^{\prime \prime}(\bar{x})(x-\bar{x})^{2}+\frac{1}{3!} f^{\prime \prime \prime}(\bar{x})(x-\bar{x})^{3}+\cdots
$$

Linearization

- Linearization of $\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t), u(t), t)$
- A nominal trajectory $\overline{\mathbf{x}}(t)$ is obtained from a nominal initial state $\overline{\mathbf{x}}_{0}$ with nominal reference input $\bar{u}(t)$:

$$
\dot{\overline{\mathbf{x}}}(t)=\mathbf{f}(\overline{\mathbf{x}}(t), \bar{u}(t), t), \quad \overline{\mathbf{x}}(0)=\overline{\mathbf{x}}_{0}
$$

- An operational domain is specified as the deviation $(\tilde{\mathbf{x}}(t), \tilde{u}(t))$ around the nominal state-input trajectory $(\overline{\mathbf{x}}(t), \bar{u}(t))$:

$$
\mathbf{x}(t)=\overline{\mathbf{x}}(t)+\tilde{\mathbf{x}}(t) \quad u(t)=\bar{u}(t)+\tilde{u}(t)
$$

- The nonlinear function \mathbf{f} is linearized around $(\overline{\mathbf{x}}(t), \bar{u}(t))$ using the first two terms from its Taylor series expansion:

$$
\underbrace{\mathbf{f}(\mathbf{x}, u, t)}_{\dot{\overline{\mathbf{x}}}+\dot{\tilde{\mathbf{x}}}} \approx \underbrace{\mathbf{f}(\overline{\mathbf{x}}, \bar{u}, t)}_{\dot{\overline{\mathbf{x}}}}+\underbrace{\left[\frac{d}{d \mathbf{x}} \mathbf{f}(\overline{\mathbf{x}}, \bar{u}, t)\right]}_{\mathbf{A}(t)} \underbrace{(\mathbf{x}-\overline{\mathbf{x}})}_{\tilde{\mathbf{x}}}+\underbrace{\left[\frac{d}{d u} \mathbf{f}(\overline{\mathbf{x}}, \bar{u}, t)\right]}_{\mathbf{b}(t)} \underbrace{(u-\bar{u})}_{\tilde{u}}
$$

- Linearized system: $\dot{\tilde{\mathbf{x}}}(t)=\mathbf{A}(t) \tilde{\mathbf{x}}(t)+\mathbf{b}(t) \tilde{u}(t)$

