ECE171A: Linear Control System Theory Lecture 2: Transfer Function

Instructor:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:

Chenfeng Wu: chw357@ucsd.edu

LTI ODE Control Systems

► ECE 171A will focus on systems with components modeled as linear time-invariant (LTI) ordinary differential equations (ODEs):

$$a_n \frac{d^n}{dt^n} y(t) + a_{n-1} \frac{d^{n-1}}{dt^{n-1}} y(t) + \ldots + a_1 \frac{d}{dt} y(t) + a_0 y(t) = u(t)$$

with forcing function u(t) of the form:

$$u(t) = b_{n-1} \frac{d^{n-1}}{dt^{n-1}} r(t) + b_{n-2} \frac{d^{n-2}}{dt^{n-2}} r(t) + \ldots + b_0 r(t)$$

▶ When clear from the context, we may use short-hand derivative notation:

$$\frac{d}{dt}y(t) \equiv \dot{y}(t) \qquad \qquad \frac{d^2}{dt^2}y(t) \equiv \ddot{y}(t)$$

$$\frac{d^3}{dt^3}y(t) \equiv \dddot{y}(t) \qquad \qquad \frac{d^n}{dt^n}y(t) \equiv y^{(n)}(t)$$

LTI ODEs can be analyzed using a Laplace transform

Laplace Transform

- ightharpoonup The Laplace transform $\mathcal L$ converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain
- Example:

$$\ddot{y}(t) + y(t) = 0 \qquad \xrightarrow{\mathcal{L}} \quad s^2 Y(s) - sy(0) - \dot{y}(0) + Y(s) = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$y(t) = y(0)\cos(t) + \dot{y}(0)\sin(t) \qquad \xleftarrow{\mathcal{L}^{-1}} \quad Y(s) = \frac{sy(0) + \dot{y}(0)}{s^2 + 1}$$

- Advantage: instead of an ODE, we get an algebraic equation (easier to solve), e.g., differentiation in t becomes multiplication by s, integration in t becomes division by s, convolution becomes multiplication
- ▶ Drawback: instead of a scalar variable t, we need to work with a complex variable $s=\sigma+j\omega$

Complex Numbers $\mathbb C$

- ▶ A **complex number** is a number of the form $s=\sigma+j\omega$, where σ and ω are real numbers and $j=\sqrt{-1}$
- ightharpoonup The **space of complex numbers** is denoted by $\mathbb C$
- Euclidean coordinates:
 - ▶ The **real part** of $s = \sigma + j\omega$ is Re(s) = σ
 - ▶ The **imaginary part** of $s = \sigma + j\omega$ is $Im(s) = \omega$
- Polar coordinates:
 - ► The **magnitude** of $s = \sigma + j\omega$ is $|s| = \sqrt{\sigma^2 + \omega^2}$
 - ▶ The **phase** of $s = \sigma + j\omega$ is arg(s) = atan2(Im(s), Re(s))
- ► The **complex conjugate** of $s = \sigma + j\omega$ is $s^* = \sigma j\omega$
- Example:

$$\frac{1}{s} = \frac{s^*}{ss^*} = \frac{s^*}{|s|^2} = \frac{\sigma}{\sigma^2 + \omega^2} - j\frac{\omega}{\sigma^2 + \omega^2}$$

Complex Numbers $\mathbb C$

Complex Polynomial

▶ A **complex polynomial** of order *n* is a function $a : \mathbb{C} \mapsto \mathbb{C}$:

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_2 s^2 + a_1 s + a_0$$

where $a_0, a_1, \ldots, a_n \in \mathbb{C}$ are constants.

▶ A **root** of a complex polynomial a(s) is a number $\lambda \in \mathbb{C}$ such that:

$$a(\lambda) = 0$$

▶ A root λ of **multiplicity** m of a complex polynomial a(s) satisfies:

$$\lim_{s\to\lambda}\frac{a(s)}{(s-\lambda)^m}<\infty$$

Complex Polynomial

- ► Fundamental theorem of algebra: a polynomial of degree *n* has exactly *n* roots, counting multiplicities
- \triangleright A polynomial a(s) can be expressed in **factored form**:

$$a(s) = a_n s^n + \ldots + a_0 = a_n (s - \lambda_1) \cdots (s - \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the *n* roots of a(s)

- ► The roots of a complex polynomial with real coefficients are either real or come in complex conjugate pairs
- ▶ **Vieta's formulas** relate the polynomial coefficients a_i to its roots λ_i :

$$\sum_{i=1}^{n} \lambda_{i} = -\frac{a_{n-1}}{a_{n}} \qquad \prod_{i=1}^{n} \lambda_{i} = (-1)^{n} \frac{a_{0}}{a_{n}} \qquad \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} \prod_{j=1}^{k} \lambda_{i_{j}} = (-1)^{k} \frac{a_{n-k}}{a_{n}}$$

Rational Function

▶ A rational function $F : \mathbb{C} \mapsto \mathbb{C}$ is a ratio of two polynomials:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

- ▶ Rational functions are closed under addition, subtraction, multiplication, division (except by 0)
- ▶ The **characteristic equation** of a rational function F(s) is:

$$a(s)=0$$

- ▶ A **zero** $z \in \mathbb{C}$ of a rational function F(s) is a root of the numerator: b(z) = 0
- ▶ A **pole** $p \in \mathbb{C}$ of a rational function F(s) is a root of the characteristic equation: a(p) = 0

Pole-Zero Map

The **pole-zero form** of a rational function F(s) is:

$$F(s) = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0} = k \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

where $k = b_m/a_n$, z_1, \ldots, z_m are the zeros of F(s), and p_1, \ldots, p_n are the poles of F(s)

- A pole-zero map is a plot of the poles and zeros of a rational function F(s) in the s-domain:
 - Example:

$$F(s) = k \frac{(s+1.5)(s+1+2j)(s+1-2j)}{(s+2.5)(s-2)(s-1-j)(s-1+j)}$$

 \times = pole; \circ = zero; k = not available

Partial Fraction Expansion

Assume that the rational function:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

is **strictly proper** (m < n) and has no repeated poles (all roots of a(s) have multiplicity one)

▶ The partial fraction expansion of F(s) is:

$$F(s) = \frac{r_1}{s - p_1} + \cdots + \frac{r_n}{s - p_n}$$

where $\lambda_1, \ldots, \lambda_n$ and r_1, \ldots, r_n are the poles and residues of F(s)

▶ The **residue** r_i associated with pole p_i is:

$$r_i = \lim_{s \to p_i} (s - p_i) F(s)$$

Partial Fraction Expansion (repeated poles)

Assume that the rational function:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n (s - p_1)^{m_1} \cdots (s - p_k)^{m_k}}$$

is **strictly proper** and has poles p_1, \ldots, p_k with multiplicities m_1, \ldots, m_k

▶ The partial fraction expansion of F(s) is:

$$F(s) = \frac{r_{1,m_1}}{(s-p_1)^{m_1}} + \frac{r_{1,m_1-1}}{(s-p_1)^{m_1-1}} + \dots + \frac{r_{1,1}}{s-p_1} + \frac{r_{2,m_2}}{(s-p_2)^{m_2}} + \frac{r_{2,m_2-1}}{(s-p_2)^{m_2-1}} + \dots + \frac{r_{2,1}}{s-p_2} + \dots + \frac{r_{k,m_k}}{(s-p_k)^{m_k}} + \frac{r_{k,m_k-1}}{(s-p_k)^{m_k-1}} + \dots + \frac{r_{k,1}}{s-p_k}$$

▶ The **residue** r_{i,m_i-j} associated with pole p_i is:

$$r_{i,m_i-j} = \lim_{s \to p_i} \frac{1}{i!} \frac{d^j}{ds^j} \left[(s - p_i)^{m_i} F(s) \right]$$

Partial Fraction Expansion (nonproper rational function)

► Assume that the rational function:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

is proper $m \le n$ or nonproper m > n

▶ The numerator b(s) can be divided by the denominator a(s) to obtain:

$$F(s) = \frac{b(s)}{a(s)} = c(s) + \frac{d(s)}{a(s)}$$

where c(s) is of order m - n and d(s) is of order k < n

ightharpoonup d(s)/a(s) is now strictly proper and has a partial fraction expansion

Example

- Consider $F(s) = \frac{2s+1}{3s^2+2s+1}$
- ▶ F(s) has one zero: $z = -\frac{1}{2}$
- ▶ The roots of a quadratic polynomial $a(s) = a_2s^2 + a_1s + a_0$ are:

$$s = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$$

▶ F(s) has two conjugate poles: $p_1 = -\frac{1}{3} + j\frac{\sqrt{2}}{3}$ and $p_2 = -\frac{1}{3} - j\frac{\sqrt{2}}{3}$:

$$F(s) = \frac{2(s-z)}{3(s-p_1)(s-p_2)}$$

Complex Rational Function Example

▶ The residue associated with p_1 is:

$$r_1 = \lim_{s \to p_1} (s - p_1) F(s) = \lim_{s \to p_1} \frac{2(s - z)}{3(s - p_2)} = \frac{2(p_1 + 1/2)}{3(p_1 - p_2)}$$
$$= \frac{2(p_1 + 1/2)}{j2\sqrt{2}} = -j\frac{\sqrt{2}}{2} \left(\frac{1}{6} + j\frac{\sqrt{2}}{3}\right) = \frac{1}{3} - j\frac{\sqrt{2}}{12}$$

- Residues associated with complex conjugate poles are also complex conjugate!
- ▶ The residue associated with $p_2 = p_1^*$ is $r_2 = r_1^* = \frac{1}{3} + j\frac{\sqrt{2}}{12}$
- ▶ The partial fraction expansion of F(s) is:

$$F(s) = \frac{r_1}{(s - p_1)} + \frac{r_2}{(s - p_2)}$$

Laplace Transform

▶ The **Laplace transform** F(s) of a function f(t) is:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt$$

where $s = \sigma + j\omega$ is a complex variable

▶ The **inverse Laplace transform** f(t) of a function F(s) is:

$$f(t) = \mathcal{L}^{-1} \left\{ F(s) \right\} = \frac{1}{2\pi j} \lim_{\omega \to \infty} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{st} ds$$

$$\frac{\text{Cauchy's}}{\text{residue theorem}} \sum_{\text{poles of } F(s)} \text{residues of } F(s) e^{st}$$

where σ is greater than the real part of all singularities of F(s)

Laplace Transform Example

▶ Compute the Laplace transform of $f(t) = e^{at}$:

$$\mathcal{L}\left\{e^{at}\right\} = \int_0^\infty e^{at} e^{-st} dt = \int_0^\infty e^{-(s-a)t} dt = -\frac{1}{(s-a)} e^{-(s-a)t} \Big|_{t=0}^{t=\infty}$$

$$\frac{\text{Require}}{\text{Re}(s)>a} 0 - \left(-\frac{1}{(s-a)} e^0\right) = \frac{1}{s-a}$$

► Compute the inverse Laplace transform of $F(s) = \frac{1}{s-a}$:

$$\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} \frac{1}{s-a} e^{st} ds = \frac{e^{at}}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} \frac{1}{s-a} e^{(s-a)t} ds$$

$$\frac{\text{Cauchy's}}{\text{residue theorem}} e^{at} \lim_{s \to a} \left\{ (s-a) \frac{1}{s-a} e^{(s-a)t} \right\} = e^{at}$$

Initial and Final Value Theorems

Initial Value Theorem

Suppose that f(t) has a Laplace transform F(s). Then:

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$$

Final Value Theorem

Suppose that f(t) has a Laplace transform F(s). Suppose that every pole of F(s) is either in the open left-half plane or at the origin of \mathbb{C} . Then:

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

Laplace Transform Properties

	t domain	s domain	
linearity	af(t) + bg(t)	aF(s) + bG(s)	
convolution	(f*g)(t)	F(s)G(s)	
multiplication	f(t)g(t)	$\frac{1}{2\pi j} \int_{Re(\sigma)-j\infty}^{Re(\sigma)+j\infty} F(\sigma) G(s-\sigma) d\sigma$	
scaling, a > 0	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	
s-domain derivative	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	
time-domain derivative	$f^{(n)}(t)$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$	
s-domain integarion	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(\sigma) d\sigma$	
time-domain integarion	$\int_0^t f(\tau)d\tau = (H*f)(t)$	$\frac{1}{s}F(s)$	
s-domain shift	$e^{at}f(t)$	F(s-a)	
time-domain shift, $a > 0$	f(t-a)H(t-a)	$e^{-as}F(s)$	

► Heaviside step function
$$H(t) = \begin{cases} 1, & t \geq 0, \\ 0, & t < 0 \end{cases}$$

► Convolution:
$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$$

	$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	
1.	İ	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$	
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^p , $p > -I$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^{n} s^{n+\frac{1}{2}}}$	
7.	$\sin(at)$	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^2-a^2)}{(s^2+a^2)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	
17.	sinh(at)	$\frac{a}{s^2-a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$	
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$\mathbf{e}^{\mathrm{st}}\sinhig(btig)$	$\frac{b}{(s-a)^2-b^2}$	22.	$e^{at}\cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23.	$t^n e^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
25.	$u_c(t) = u(t-c)$ <u>Heaviside Function</u>	$\frac{e^{-cs}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e ^{-cs}	
27.	$u_c(t) f(t-c)$	$e^{-cs}F(s)$	28.	$u_c(t)g(t)$	$e^{-cs} \mathfrak{L}\{g(t+c)\}$	
29.	$e^{ct}f(t)$	F(s-c)	30.	$t^{n} f(t), n = 1, 2, 3,$	$(-1)^n F^{(n)}(s)$	
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$	
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T) = f(t)	$\frac{\int_{0}^{T} \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$	
35.	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$	
37.	37. $f^{(n)}(t)$ $s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}(0) - f^{(n-1)}(0)$					

Transfer Function

► Consider the LTI ODE with zero initial conditions:

$$a_0y(t) + \sum_{i=1}^n a_i \frac{d^i}{dt^i} y(t) = b_0r(t) + \sum_{i=1}^{n-1} b_i \frac{d^i}{dt^i} r(t)$$

► Laplace transform:

$$a_0Y(s) + \sum_{i=1}^n a_i s^i Y(s) = b_0R(s) + \sum_{i=1}^{n-1} b_i s^i R(s)$$

➤ Transfer function: ratio of the Laplace transform of the state variable to the Laplace transform of the input variable with zero initial conditions:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{b(s)}{a(s)}$$

where $a(s) = \sum_{i=0}^{n} a_i s^i$ and $b(s) = \sum_{i=0}^{n-1} b_i s^i$

► The transfer function of this LTI ODE is a **strictly proper rational function**

System Total Response

Superposition: the general solution y(t) of a nonhomogeneous linear ODE can be obtained as the sum of one particular solution $y_p(t)$ and the general solution $y_h(t)$ to the associated homogeneous ODE:

$$y(t) = y_h(t) + y_p(t)$$

► The complete response of an LTI ODE system consist of a natural response (determined by the initial conditions) plus a forced response (determined by the input):

$$Y(s) = \underbrace{\frac{c(s)}{a(s)}}_{\text{natural response}} + \underbrace{\frac{b(s)}{a(s)}R(s)}_{\text{forced response}}$$

▶ If the reference input R(s) is a rational function, then the output Y(s) is also a rational function

Spring-Mass-Damper Example

► Consider the spring-mass-damper system:

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

Laplace transform:

$$M(s^2Y(s) - sy(0) - \dot{y}(0)) + b(sY(s) - y(0)) + kY(s) = R(s)$$

Natural response (set $r(t) \equiv 0$):

$$Y(s) = \frac{My(0)s + by(0) + M\dot{y}(0)}{Ms^2 + bs + k}$$

► Transfer function (set $y(0) = \dot{y}(0) = 0$):

$$T(s) = \frac{Y(s)}{R(s)} = \frac{1}{Ms^2 + bs + k}$$

Spring-Mass-Damper Example

▶ Consider the natural response with k/M = 2 and b/M = 3:

$$Y(s) = \frac{(s+3)y(0) + \dot{y}(0)}{s^2 + 3s + 2} = \frac{(s+3)y(0) + \dot{y}(0)}{(s+1)(s+2)}$$
$$= \frac{2y(0) + \dot{y}(0)}{s+1} - \frac{y(0) + \dot{y}(0)}{s+2}$$

- ▶ Poles: $p_1 = -1$ and $p_2 = -2$
- ► Zeros: $z_1 = -\frac{\dot{y}(0)}{y(0)} 3$
- ► Residues:

$$r_1 = \frac{(s+3)y(0) + \dot{y}(0)}{(s+2)} \bigg|_{s=-1} \qquad r_2 = \frac{(s+3)y(0) + \dot{y}(0)}{(s+1)} \bigg|_{s=-2}$$
$$= 2y(0) + \dot{y}(0) \qquad = -y(0) - \dot{y}(0)$$

Spring-Mass-Damper Pole-Zero Map

Let the initial conditions of the spring-mass-damper system be y(0)=1 and $\dot{y}(0)=0$

► The poles and zeros are:

$$p_1 = -1, \quad p_2 = -2, \quad z_1 = -3$$

► The residues are:

$$r_1 = \frac{(s+3)}{(s+2)}\Big|_{s=-1} = 2$$
 $r_2 = \frac{(s+3)}{(s+1)}\Big|_{s=-2} = -1$

Spring-Mass-Damper Response

► The time-domain response of the spring-mass-damper system can be obtained using an inverse Laplace transform:

$$y(t) = \mathcal{L}^{-1} \left\{ Y(s) \right\} = \mathcal{L}^{-1} \left\{ \frac{2y(0) + \dot{y}(0)}{s+1} \right\} - \mathcal{L}^{-1} \left\{ \frac{y(0) + \dot{y}(0)}{s+2} \right\}$$
$$= (2y(0) + \dot{y}(0)) e^{-t} - (y(0) + \dot{y}(0)) e^{-2t}$$

► The **steady-state** response can be obtained via the Final Value Thm:

$$\lim_{t\to\infty}y(t)=\lim_{s\to 0}sY(s)=0$$

Second-order ODE System

► The spring-mass-damper system is an example of a second-order ODE:

$$\frac{1}{\omega_n^2}\frac{d^2y(t)}{dt^2} + \frac{2\zeta}{\omega_n}\frac{dy(t)}{dt} + y(t) = 0$$

with natural frequency $\omega_n = \sqrt{k/M}$ and damping ratio $\zeta = b/(2\sqrt{kM})$

► The *s*-domain response is:

$$Y(s) = \frac{(s + 2\zeta\omega_n)y(0) + \dot{y}(0)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• Characteristic equation $a(s) = s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$

Second-order System Poles

- ▶ The system response is determined by the poles:
 - **Overdamped** ($\zeta > 1$): the poles are real:

$$p_1 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}$$
 $p_2 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$

Critically damped ($\zeta = 1$): the poles are repeated and real:

$$p_1 = p_2 = -\omega_n$$

▶ **Underdamped** (ζ < 1): the poles are complex:

$$p_1 = -\zeta \omega_n - j\omega_n \sqrt{1 - \zeta^2} \qquad p_2 = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2}$$

Spring-Mass-Damper Locus of Roots

- ► s-domain plot of the poles (\times) and zeros (\circ) of Y(s) with $\dot{y}(0) = 0$
- For constant ω_n , as ζ varies, the complex conjugate roots follow a circular locus
- The poles and zeros can be expressed either in Euclidean coordinates or Polar coordinates (e.g., magnitude ω_n and angle $\theta = \cos^{-1}(\zeta)$)

Spring-Mass-Damper Response

- ► The time domain response can be obtained by determining the residues and applying an inverse Laplace transform:
 - **Overdamped** $(\zeta > 1)$:

$$\begin{split} y(t) &= r_1 e^{p_1 t} + r_2 e^{p_2 t} \\ \text{where } p_1 &= -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}, \; p_2 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}, \\ r_1 &= \frac{p_2 y(0) + \dot{y}(0)}{p_2 - p_1}, \; \text{and} \; r_2 = -\frac{p_1 y(0) + \dot{y}(0)}{p_2 - p_1} \end{split}$$

Critically damped $(\zeta = 1)$:

$$y(t) = y(0)e^{-\omega_n t} + (\dot{y}(0) + \omega_n y(0))te^{-\omega_n t}$$

▶ Underdamped (ζ < 1):

$$y(t) = e^{-\zeta \omega_n t} \left(c_1 \cos(\omega_n \sqrt{1 - \zeta^2} t) + c_2 \sin(\omega_n \sqrt{1 - \zeta^2} t) \right)$$

where
$$c_1=y(0)$$
 and $c_2=rac{\dot{y}(0)+\zeta\omega_ny(0)}{\omega_n\sqrt{1-\zeta^2}}$

Spring-Mass-Damper Response with $\dot{y}(0) = 0$

