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LTI ODE Control Systems

» ECE 171A will focus on systems with components modeled as linear
time-invariant (LTI) ordinary differential equations (ODEs):

n n—1

a%y(t)JraHWy(t)qL +a15 y(t) + aoy(t) = u(t)

with forcing function u(t) of the form:

dn—l dn 2
» When clear from the context, we may use short-hand derivative notation:

d : d? ,
sl = — (¢
57 (1) =(t) Sy (0 =J(1)
d3 dr

= — (n)
Syn=ve 0=y

» LTIl ODEs can be analyzed using a Laplace transform



Laplace Transform

» The Laplace transform L converts an LTI ODE in the time domain into
a linear algebraic equation in the complex domain

» Example:
y(6) +y(t) =0 £5 52V (s) — sy(0) — y(0) + Y(s) =0
1
_ . o sy(0) + (0)
y(t) = y(0) cos(t) + y(0)sin(t) F— Y(s)= 211

» Advantage: instead of an ODE, we get an algebraic equation (easier to
solve), e.g., differentiation in t becomes multiplication by s, integration
in t becomes division by s, convolution becomes multiplication

» Drawback: instead of a scalar variable t, we need to work with a
complex variable s = 0 + jw



Complex Numbers C

» A complex number is a number of the form s = o + jw, where ¢ and
w are real numbers and j = v/—1

» The space of complex numbers is denoted by C

» Euclidean coordinates:
» The real part of s =0 + jw is Re(s) = ¢
> The imaginary part of s = o + jw is Im(s) = w

» Polar coordinates:

> The magnitude of s = o + jw is |s| = Vo2 + w?
> The phase of s = o + jw is arg(s) = atan2(Im(s), Re(s))

» The complex conjugate of s =0 + jw is s* =0 — jw

» Example:
1 s* s o LW

s JO'2+UJ2

s st |s2 o2 tw?



Complex Numbers C

whk----- s=o0+jw
Isl/ |
arg(s):
S 7
—wlk - - - _ . !




Complex Polynomial

» A complex polynomial of order n is a function a: C — C:
a(s) = aps" + an_15"t + ...+ aps® + ais + ap
where ag, a1, ..., a, € C are constants.
> A root of a complex polynomial a(s) is a number A € C such that:
a(\)=0

> A root A\ of multiplicity m of a complex polynomial a(s) satisfies:



Complex Polynomial

» Fundamental theorem of algebra: a polynomial of degree n has
exactly n roots, counting multiplicities

» A polynomial a(s) can be expressed in factored form:
a(s)=aps"+...+ao=an(s —A1)---(s— Ap)
where A1, ..., \, are the n roots of a(s)

» The roots of a complex polynomial with real coefficients are either real
or come in complex conjugate pairs

» Vieta's formulas relate the polynomial coefficients a; to its roots A;:

n n
R IR COD S | RO

a a
n i n 1<h <h<--<ix<nj=1



Rational Function

» A rational function F : C — C is a ratio of two polynomials:

F(S)— b(S) B bm5m+...+b15+bo
“a(s)  aps" ...+ a1s + ao

» Rational functions are closed under addition, subtraction, multiplication,
division (except by 0)

» The characteristic equation of a rational function F(s) is:
a(s)=0

» A zero z € C of a rational function F(s) is a root of the numerator:
b(z) =0

> A pole p € C of a rational function F(s) is a root of the characteristic
equation: a(p) =0



Pole-Zero Map
» The pole-zero form of a rational function F(s) is:

bmsm+...+b15+b07k(s—zl)~--(s—zm)
aps"+...+a1s+ag (s—p1) - (s—pn)

F(s) =

where k = by,/ap, z1,...,2m are the zeros of F(s), and p1,...,p, are
the poles of F(s)

» A pole-zero map is a plot of the poles and zeros of a rational function
F(s) in the s-domain:

@

» Example:

(s+15)(s+1+2j)(s+1—-2))

PO = e 221N 1+)) = R

» X = pole; o = zero; k = not available




Partial Fraction Expansion

» Assume that the rational function:

b(s)  bms™+...+ bis+ bo
a(s)  aps"+...+a1s+ap

F(s) =

is strictly proper (m < n) and has no repeated poles (all roots of a(s)
have multiplicity one)

» The partial fraction expansion of F(s) is:

rn I'n

S—Pp1 S— Pn

where A1,..., A, and r1,..., r, are the poles and residues of F(s)
» The residue r; associated with pole p; is:
C— — p)F
Fi S'_?;')i(s pi)F(s)
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Partial Fraction Expansion (repeated poles)
» Assume that the rational function:

F(s) = b(s) _ bpms™ 4+ ...+ bis+ by
a(s)  an(s—p1)™---(s— px)™

is strictly proper and has poles p1, ..., px with multiplicities my, ...

» The partial fraction expansion of F(s) is:

r]. my r]. m1—1 rl 1
F(s) =—2m__ 4 b dop
=) (s—p1)™  (s—p)™! S —p1
2. my 2. my—1 +.. n1
(s=p2)™  (s—p2)™! s—p2
Fk,my, Ik, m—1 . rk.1
G—p)™  (s—p)mt Ts—p

» The residue r; n,_; associated with pole p; is:

i = Jim (s (s
r”miij_slﬁr?);ﬁ@ S Pi S

, Mk
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Partial Fraction Expansion (nonproper rational function)

» Assume that the rational function:

b(S) . bms™ 4+ ...+ bis+ by

F = =
(s) a(s) aps"+ ...+ a1s+ ag

is proper m < n or nonproper m > n
» The numerator b(s) can be divied by the denominator a(s) to obtain:

F(s):sgg:c(s)—k;j((z))

where c(s) is of order m — n and d(s) is of order k < n

» d(s)/a(s) is now strictly proper and has a partial fraction expansion
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Example

: _ _ 2s5+1
» Consider F(S) = 35242541
> F(s) has one zero: z = —3

» The roots of a quadratic polynomial a(s) = as® + ais + ag are:

—a1 \/a% — 4a54g

232

S =

» F(s) has two conjugate poles: p; = —% +j§ and p, = —% —J

2

2,
2(s — 2)
3(s — p1)(s — p2)

F(s) =

13



Complex Rational Function Example

» The residue associated with p; is:

- . 2s—2z)  2(m+1/2)
= Jlim (s =P)F(s) = M S =) = 3o =)

C2Apm+1/2) 2 (1 ﬁ)zl V2

T2 J2le3 )T
» Residues associated with complex conjugate poles are also complex
conjugate!
1 V2

» The residue associated with pp = pj is n =r{ = 3+ j3¥5

» The partial fraction expansion of F(s) is:

n rn

o= T 6om)
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Laplace Transform

» The Laplace transform F(s) of a function f(t) is:

F(s)=L{f(t)} = / f(t)e 'dt
0
where s = 0 + jw is a complex variable

> The inverse Laplace transform f(t) of a function F(s) is

o+jw
F(t) = £ {F(s)} = 1_I|m/ F(s)e ds

Cauchy’s .
Sy Z residues of F(s)e®

residue theorem
poles of F(s)

where o is greater than the real part of all singularities of F(s)

15



Laplace Transform Example

» Compute the Laplace transform of f(t) = e

t=00

oo oo 1
L1t — / e¥te= St — / e—(s—a)tdt — _ e—(s—a)t
te”) 0 0 (s—a)
Require 0— <_ 1 eo> _ 1
Re(s)>a (s—a) s—a

» Compute the inverse Laplace transform of F(s) =

t=0

1.
s—a’

+j t +j
£t { ! } = 1/(7 ~ Le“ds = i /U ” ie(s_‘?')‘fds
s—a 27 Jo—joo S— 2@ 21) Jo—joo S— 2

Cauchy's . _
—2" A% |im (5 — a) e(s arl _ et
residue theorem s—a

S—a
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Initial and Final Value Theorems

Initial Value Theorem

Suppose that f(t) has a Laplace transform F(s). Then:

lim f(t) = lim sF(s)

t—0 5—00

Final Value Theorem

Suppose that f(t) has a Laplace transform F(s). Suppose that every pole of
F(s) is either in the open left-half plane or at the origin of C. Then:

lim f(t) = lim sF(s)

t—00 s—0
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Laplace Transform Properties

t domain s domain
linearity af (t) + bg(t) aF(s) + bG(s)
convolution (Fxg)(t) F(s)G(s)
multiplication f(t)g(t) % lgee((:))_tjs F(o)G(s — o)do
scaling, a> 0 f(at) 1F(2)
s-domain derivative t"f(t) (- 1)”F(”)(s)
time-domain derivative £ (¢) s"F(s) — Sop_; s"KF(k=1)(0)
s-domain integarion 1f(1) [ F(o)do
time-domain integarion fot f(r)dr = (H=f)(t) 1F(s)
s-domain shift et f(t) F(s—a)
time-domain shift, a > 0 f(t—a)H(t — a) e ?*F(s)
» Heaviside step function H(t) = {1’ t=20,
0, t<O
» Convolution: (f x g)( fo g(t—71)dr
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f()=2{F ()

Flo) =2/ (1)

fe) =2 )

23.

25.

27.
29.

1

", n=123,...

Ji
sin(at)

tsin(at)

sin(at) - atcos(at)

cos(ar)-atsin(ar)

. sinfat+b)

sinh (ar)

e sin(br)

_ e sinh(br)

e, n=1,23,...

u(t)=u(t-c)

Heaviside Function

u (1) f(1=c)
e (1)

S

S (i-7)g(r)dr

70
£

1

s
n!

P
s

ssin(b)+acos(h)

s+a
a

5 ;ﬂ'
(s—a) +b
b
(s—a) -5
(s—a)”

&

e"\;(a)
F(s-c)

[P (u)du
F(5)G(s)

sF(s)-f(0)

30.

32,

34.

36.

S (s)—s

20.

22.

24.

26.

28.

o

p-l

7, a=123,..
cos(at)

teos(ar)
sin(at) +at cos(at)
cos(at)+atsin(at)
cos(at+b)

cosh (at)

" cos (br)

e cosh (br)

f(er)
&(t-c)

Dirac Delta Funetion

u(t)glt)

CF(), m=123

[ s (e
F(t+T)y=71(1)
(1)

C(p+1)
T

K

1-3:5-(2n=1)7

2" ‘_m‘y

e

e
(s +a ):

2as
(s‘ +u")
5(53 +3¢%)
(s +a1)1

scos(b)-asin(b)
s +a’
5

s —a’
s—a
(saf +5°
s—a

(s—a) b
()
e"'.‘:{?g(l +c)}

(1 F ()
1)

'[”re'”j (¢)de

1-e'

S'F(5)=9/(0)-1"(0)

TF(0)=s" 2 (0) =t (0) - £ (0)
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fit) Fls)
t F(S 1 0
s () dt T) + 7 f(r) ar
Impulse function §(¢) 1
e " sin wt S () S
(s + a)® + o?
e " cos wt sta
(s + a)® + &*
i 1) i o s+ a
;[(a - a)? + o] 2e sin(wt + @), 7(3_ P
¢ = tan'—2
o —
oy

———e'sinw, V1 - 2,0 <1
Vi-g ’

1 1

S N N ——
@+ o oVt o

¢ = tan' -2
—a

1_ P . —
V1-22

d=coslt <1

L tontgin(w,VI— 0t + 4),

@ 1 (a—a)2+w2
2 2ty 2 2
a” + o 2] a” +

d>=tém'1 —tan” —

12
j| e sin(wt + ¢).

s + 2lwps + w?

-
s[(s + a)® + ]

2
Wy

s(s% + 2Lw,s + wp)

8 sl
s[(s +a)* + ?]
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Transfer Function
» Consider the LTI ODE with zero initial conditions:

aoy —I—Za,dl —bor +Zbdl

» Laplace transform:
aY(s +Za,s Y(s) = byR(s +stR

» Transfer function: ratio of the Laplace transform of the state variable
to the Laplace transform of the input variable with zero initial conditions:

) YO _ )
R(s)  a(s)
where a(s) = 3.7 a;s’ and b(s) = Y774 bis'
» The transfer function of this LTI ODE is a strictly proper rational
function
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System Total Response

» Superposition: the general solution y(t) of a nonhomogeneous linear
ODE can be obtained as the sum of one particular solution y,(t) and
the general solution y,(t) to the associated homogeneous ODE:

y(t) = yu(t) + yp(t)

» The complete response of an LTI ODE system consist of a natural
response (determined by the initial conditions) plus a forced response
(determined by the input):

s) = ° ﬁ s
Y(s) 3t 49Fe

natural response  forced response

(9]
—
~

O

~—

0 ‘
—~~

{

> If the reference input R(s) is a rational function, then the output Y(s)
is also a rational function
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Spring-Mass-Damper Example

» Consider the spring-mass-damper system:

y(e) | ()

M
dt? dt

+ ky(t) = r(t)

» Laplace transform:

M(s?Y (s) = sy(0) — y(0)) + b(sY (s) — y(0)) + kY (s) = R(s)

» Natural response (set r(t) = 0):

» Transfer function (set y(0) = y(0) = 0):

_Y(s) _ 1
T()=Ris) = M2 bs 1 &
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Spring-Mass-Damper Example
» Consider the natural response with k/M =2 and b/M = 3:

Vo) £+ IO) +3(0) _ (s +3)y(0) +5(0)

s2+3s+2 (s+1)(s+2)
_ 2y(0) +y(0) _ y(0) +y(0)
s+1 s+ 2

» Poles: py = —1and pp = -2

» Zeros: z; = —% —
» Residues:
_ (s +3)y(0) + y(0) = (s +3)y(0) + y(0)
(s+2) s (s+1) |
= 2y(0) + y(0) = —y(0) — 7(0)
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Spring-Mass-Damper Pole-Zero Map

> Let the initial conditions of the spring-mass-damper system be y(0) =1
and y(0) =0

» The poles and zeros are:

-3 -2 -1 0
p1:_17 p2:_2) 21 =-3
X =pole
O=zero
» The residues are: A
jo
rn = (5 + 3) = s;+3
(s+2)|c—4 —_— )
-3 -2 5=—1 0
= (s+3) _ 4
(s+1)|—_» 6172
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Spring-Mass-Damper Response

» The time-domain response of the spring-mass-damper system can be
obtained using an inverse Laplace transform:

y(t) — E_I{Y(S)} — £—1 {2)’(2)—:_1)/(0)} _£—1 {Y(Ozig(o)}

= (2y(0) +y(0)) ™" — (y(0) + y(0)) e~
» The steady-state response can be obtained via the Final Value Thm:

lim y(t) = limsY(s) =0

t—o0 s—0
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Second-order ODE System

» The spring-mass-damper system is an example of a second-order ODE:

1 d?y(t) | 2¢ dy(t)
il = t) =
w2 dt? + wp dt (1) =0

with natural frequency w, = \/k/M and damping ratio
¢ = b/(2v/kM)

» The s-domain response is:

(s +2Cws)y(0) + y(0)
Y(s)= s2 + 2Cwps + w2

» Characteristic equation a(s) = s% + 2Cw,s + w2 =0
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Second-order System Poles

» The system response is determined by the poles:
> Overdamped (¢ > 1): the poles are real:

plzfgwn*wn\/éifl p2:7§wn+wn\/<271
> Critically damped (¢ = 1): the poles are repeated and real:
P1= P2 = —Wn

> Underdamped (¢ < 1): the poles are complex:

pl:*Cwnfjwn\/]-74.2 p2 = —Cwn +jwn\/17<.2
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Spring-Mass-Damper Locus of Roots

jo (=0 \j‘”
ST ————— — ] soal1 — 2 jw,
1 >:<\\ J®, 1 g §<1 n
6 =coss i \n e increasing/ ”
| \ §
} N >1 >1
1 o g
2w, {w, 0 / 0
I (=1
I
I
I
L O —jo1-2

» s-domain plot of the poles (x)

) » For constant w,, as ( varies, the
and zeros (o) of Y(s) with

i complex conjugate roots follow
y(0) =0 a circular locus

» The poles and zeros can be expressed either in Euclidean coordinates or
Polar coordinates (e.g., magnitude w, and angle 6§ = cos~1(¢))
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Spring-Mass-Damper Response

» The time domain response can be obtained by determining the residues
and applying an inverse Laplace transform:
» Overdamped (¢ > 1):

Y(t) = ne?* + ryelt

where p; = —Cw, —wp/C2 — 1, pp = —Cwn + wpy/C2 =1,
TR

> Critically damped (¢ = 1):

» Underdamped (¢ < 1):

y(t) = e=Cwnt <c1 cos(wny/1 — C%t) + csin(w mﬂ)

— — Y(0)+<Cwny(0)
where ¢; = y(0) and ¢ = ﬁ
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Spring-Mass-Damper Response with y(0) =0

¥(®
A

Yo Overdamped case

» Time

- Underdamped case

s
+“e=€wnt envelope
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