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Block Diagram

» Block diagram: a graphical representation of a control system

» Block: represents the input-output relationship of a system element

using its transfer function
U(s)

Y(s)

B — G(S) —_—

» To represent a multi-element system, the blocks are interconnected

» Summing point: adds/subtracts two or more input signals
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Block Diagram Transformations

» A block diagram can be simplified using equivalent transformations

» Parallel connection: if two or more elements are connected in parallel,
the total transfer function is the sum of the individual transfer functions:

—.-—.X(S) F(s)+G(s)| L

» Series connection: if two or more elements are connected in series, the
total transfer function is the product of the individual transfer functions:

X(S) Y(S) X5) I F(s)G(s) ¥(s)




Table 2.5 Block Diagram Transformations
Transformation Original Diagram Equivalent Diagram

1. Combining blocks in cascade

% X

or

N

Moving a summing point
behind a block

w

. Moving a pickoff point
ahead of a block

ks

Moving a pickoff point
behind a block

w

. Moving a summing point
ahead of a block

*

Eliminating a feedback loop




Feedback Control System without Disturbances

R(s) 4 E(s) Y(s)

G(s)

B(s)

H(s)

» Forward Path Transfer Function (FPTF): E((j)) = G(s)

» Error: E(s) = R(s) — B(s) = R(s) — H(s)Y(s)
» Closed-Loop Transfer Function:

Y(s) FPTF G(s)

R(s) 1+ (FPTF)(Feedback TF) 14 G(s)H(s)



Block Diagram Reduction Example

» Consider a multi-loop feedback control system:

R(s)

Tt

» Apply equivalent transformations to eliminate the feedback loops and
; o Y(s)
obtain the system transfer function R



Block Diagram Reduction Example
Gy
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Signal Flow Graph

| 2
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Signal Flow Graph (SFG): a graphical representation of a control
system, consisting of nodes connected by directed branches

Node: a junction point representing a signal variable as the sum of all
signals entering the node

Branch: a directed line connecting two nodes with associated transfer
function

» Path: continuous succession of branches traversed in the same direction

» Forward Path: starts at an input node, ends at an output node, and no

node is traversed more than once

Path Gain: the product of all branch gains along the path

» Loop: a closed path that starts and ends at the same node and no node

is traversed more than once

Non-touching Loops: loops that do not contain common nodes



Feedback Control System

B(s)
(b) Signal Flow Graph



Mason's Gain Formula
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A method for reducing an SFG to a single transfer function

The transfer function T¥(s) from input X;(s) to any variable X;(s) is:

rigs) = Xi() _ T PeS)A(S)

Xi(s) A(s)

where:
> A(s): graph determinant
> P,’;j(s): gain of the k-th forward path between X;(s) and X;(s)
> AZ(S)Z graph determinant with the loops touching the k-th forward path
between X;(s) and Xj(s) removed

The transfer function T"(s) from non-input X,(s) to variable X;(s) is:

Prigsy = X(8) _ Xils)/Xils) _ Ti(s) _ 3o PU(S)AL(S)
Xa(s) ~ Xal)/Xi(s) T T(s) T 4 PP(s)AR(s)
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Mason's Gain Formula

» L,(s): gain of the n-th loop
» A(s): graph determinant
A(s)=1- Z(individual loop gains)
+ Z H(gains of all 2 non-touching loop combinations)
— Z H(gains of all 3 non-touching loop combinations)

=1=) Lo(s)+ > La(s)Lm(s) = D> La(s)Lm(s)Lp(s) + -+

n,m,p
nontouching nontouching

> AZ(S): graph determinant with the loops touching the k-th forward
path between Xi(s) and X;(s) removed
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Mason's Gain Formula Example 1

> Determine the transfer function (%) using Mason's gain formula

R(s)
» Forward paths from R(s) to Y(s):

P1(s) = Gi(s)Ga(s)Gs(s)Ga(s)
Py(s) = Gs(s)Ge(s)Gr(s)Gs(s)

» Loop gains:

Ll(S) = G2(S)H2(S), LQ(S) = H3(S)G3(S),
L3(S) = G@(S)Hﬁ(s), L4(S) = G7(S)H7(S)
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Mason's Gain Formula Example 1

» Determinant:

A(S) = 1= (Li(5) + La(5) + La(5) + La(5))
+ (L1(s)Ls(s) + Li(s)La(s) + La(s)L3(s) + La(s)La(s))

» Cofactor of path 1:

Ai(s) =1 = (Ls(s) + La(s))
» Cofactor of path 2:

Aa(s) = 1 = (La(s) + La(s))

» Transfer function:

P1(s)A1(s) + Pa(s)Aa(s)

T(s) = A(5)
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Mason's Gain Formula Example 1

» The transfer function can also be obtained using block diagram
transformations:

7= 60 (—eamm) (Tegme) O

Ge(s) Gr(s)
+ 60 (=gtome) (e &
1

= G1(8)Ga)Ga() Ga(9) T2 + () Gol9) Gy(s)Gs(s)AAz((ss))

A(s)
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Mason's Gain Formula Example 2

G(s)

Gy(s)

Rs) O

—H(s)

Y(s)

» Determine the transfer function R(s) using Mason's gain formula

» Forward paths from R(s) to Y(s):
P1(s) = Gi(s)Gz(s) Ga(s) Ga(s) Gs(s) Ge(s)

FE(S)ZZ Cﬁ(S)Cb(S)CH(S)C%(S)
P3(s) = G1(s)Ga(s) Gs(s) Ga(s) Gs(s)
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Mason's Gain Formula Example 2

» Loop gains:

L1(s) = —Go(s) G3(s) Ga(s) Gs(s)Ha(s),  La(s) = —Gs(s)Ge(s)Ha(s),

Ls(s) = —Gs(s)Ha(s), La(s) = —Gr(s)Hz(s) Ga(s)
Ls(s) = —Ga(s)Ha(s), Le(s) = —Gi(s) Ga(s) Gs(s) Ga(s) Gs(5) Ge(s) Ha(s)
L7(s) = —Gi(s) Ga(s) Gr(s) Gs(s) Ha(s), Lg(s) = —Gi(s) Ga(s) G3(s) Ga(s) Gg(s)Hs(s)
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Mason's Gain Formula Example 2

Gy(s)

Rs) O

—H;(s)

» Cofactors: Aj(s) = As(s) =1 and Ay(s) =1 — Ls(s)
» Determinant: Ls does not touch L4 or L7 and L3 does not touch Ly:
A(s) =1 — (Li(s) + La(s) + Ls(s) + La(s) + Ls(s) + Le(s) + Lz(s) + Ls(s))
+ (Ls(s)La(s) + Ls(s)L7(s) + L3(s)La(s))
» Transfer function:

T(s) = Pi(s) + Pz(SA)é)z(S) + Ps(s)
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Mason's Gain Formula Example 3

R R
o AAAY AAAY 0
+ — + — +
11(5) 12(5) 1
Vi(s) Vols) <R C 1~ Vi®
° s °

(@)

» Consider a ladder circuit with one energy storage element
» Determine the transfer function from V;(s) to V3(s)

» The current and voltage equations are:
1
h(s) = 5(Vi(s) = Va(s)) h(s) = E(V2( s) —

Va(s) = R(h(s) — h(s)) Vs(s) = & (s)



Mason's Gain Formula Example 3

¢ L
Vi(s) O

Li(s)=—GR=-1 La(s) =— GZ(s)

Lys)=—GR=-1

(b)

—> Vs(s)
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» Admittance: G = % » Impedence: Z(s) = %
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Mason's Gain Formula Example 3

(b)

Forward path: Pi(s) = GRGZ(s) = GZ(s) = g
Loops: Li(s) = —GR = —1, Ly(s) = —GR = —1, L3(s) = —GZ(s)
Cofactor: all loops touch the forward path: A;(s) =1

Determinant: loops L;(s) and L3(s) are non-touching:
A(s) = 1 — (Li(s) + La(s) + La(s)) + Li(s)Ls(s) = 3+ 2GZ(s)
Transfer function:
Vi3(s) Pi(s)  GZ(s) 1/(3RC)
Vi(s)  A(s)  3+4+2GZ(s) s+2/(3RC) 20
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Mason's Gain Formula Example 3

¢ " z9

(b)

» Determine the transfer function from /1(s) to h(s)

» Instead of re-drawing the signal flow graph, we can use:
h(s)  h(s)/Vi(s) G 1 s

h(s)  h(s)/Vi(s) G+ GZ(s)) 2+ GZ(s) 2s+1/(RC)
» One forward path from Vi(s) to k(s) with gain GRG = G and cofactor 1

» One forward path from V;i(s) to /1(s) with gain G and cofactor
1~ (La(s) + La(s)) = 2+ GZ(s)
21



Mason's Gain Formula Example 4

> C(s)

» Determine the transfer function from R(s) to C(s)
» Forward paths:

Pi(s) = Gi(s)Ga(s)Gs(s)  Pa(s) = Ga(s)

» Loops:
Li(s) = —Gi(s) Ga(s)Ha(s) Lo(s) = —Ga(s) Gs(s)Ha(s)
L3(s) = —Gi(s) Ga(s) Gz(s)Ha(s) La(s) = —Ga(s)Hs(s)

Ls(s) = Ga(s)Hu(s)Ga(s)Ha(s)
22



Mason's Gain Formula Example 4

H,(s) <

» Cofactors: both forward paths touch all loops: A;(s) = As(s) =1
» Determinant: all loop pairs are touching:

A(s) =1 — (Li(s) + La(s) + L3(s) + La(s) + Ls(s))
» Transfer function:

T(s) = C(s) _ Pus) + Pa(s) _ Gi(s)Ga(s)Gs(s) + Ga(s)
R(s) A(s) A(s)




MATLAB Polynomial Functions

» Consider:

1

» polyval: evaluate a polynomial, e.g., p(1 — 2j):

p(s) = (s — 11.6219)(s + 0.3110 + 2.6704/)(s + 0.3110 — 2.6704/)

» poly: convert roots to polynomial coefficients:

r
a

[11.6219, -0.3110-2.6704i, -0.3110+2.6704i]
poly(r) = [1.0, -11.0, 0.0, -84.0]

polyval(a, 1-2i) = -62 + 46i

» roots: find polynomial roots:

1

roots(a) = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

» conv: expand the product of two polynomials, e.g., (3s% +2s+1)(s +4):

conv([3, 2, 1],

[1, 41) = [3, 14, 9, 4]
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MATLAB Control System Functions

>

=

-

| 2

1

>

-

SYS = tf(NUM,DEN): creates a continuous-time transfer function SYS
with numerator NUM and denominator DEN:

dcmotor = t£(200,[1 11);

SYS = series(SYS1,SYS2): series connection of SYS1 and SYS2:

fudsys = series(t£(200,[1 11), t£(1,[1 81));

SYS = parallel(SYS1,5YS2): parallel connection of SYS1 and SYS2

fudsys = parallel(tf(200,[1 11), t£f(1,[1 81));

SYS = feedback(SYS1, SYS2, sign): feedback connection of SYS1 and
SYS2:

fbksys = feedback(series(tf(200,[1 11), t£(1,[1 8])),t£(1,[0.25 11))
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MATLAB Control System Functions

» SYS = zpk(Z,P,K) creates a continuous-time zero-pole-gain (zpk) model
SYS with zeros Z, poles P, and gains K:

1| demotor = zpk([],[-1],200);
fbksys = Zpk([—4],[—8.8426, -2.0787 + 1.70781i, -2.0787 -1.7078i],8);

» P = pole(SYS) returns the poles P of SYS:

sp = pole(fbksys) = [-8.8426, -2.0787 + 1.7078i, -2.0787 -1.70781i]

» [Z,G] = zero(SYS) computes the zeros Z and gain G of SYS:

[sz,k] = zero(fbksys) = [-4, 8]

» pzmap(SYS): computes and plots the poles and zeros of SYS

pzmap (fbksys)

26



MATLAB Control System Functions

>

1

>

N

>

N

Y = step(SYS, T): computes the step response Y of SYS at times T

t = 0:0.01:5;
step(fbksys,t);

Y = impulse(SYS, T): computes the impulse response Y of SYS at
times T

t = 0:0.01:5;
impulse (fbksys,t) ;

Y = Isim(SYS,U,T): computes the output response Y of SYS with input
U at times T

[u,t] = gensig(’square’,4,10,0.1);
lsim(fbksys,u,t);
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