
ECE171A: Linear Control System Theory
Lecture 3: System Modeling

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu
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Block Diagram
I Block diagram: a graphical representation of a control system

I Block: represents the input-output relationship of a system element
using its transfer function

I To represent a multi-element system, the blocks are interconnected

I Summing point: adds/subtracts two or more input signals
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Block Diagram Transformations

I A block diagram can be simplified using equivalent transformations

I Parallel connection: if two or more elements are connected in parallel,
the total transfer function is the sum of the individual transfer functions:

I Series connection: if two or more elements are connected in series, the
total transfer function is the product of the individual transfer functions:
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Feedback Control System without Disturbances

I Forward Path Transfer Function (FPTF): Y (s)
E(s) = G (s)

I Error: E (s) = R(s) − B(s) = R(s) − H(s)Y (s)

I Closed-Loop Transfer Function:

Y (s)

R(s)
=

FPTF

1 ± (FPTF)(Feedback TF)
=

G (s)

1 ± G (s)H(s)
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Block Diagram Reduction Example

I Consider a multi-loop feedback control system:

I Apply equivalent transformations to eliminate the feedback loops and
obtain the system transfer function Y (s)

R(s)
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Block Diagram Reduction Example
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Signal Flow Graph
I Signal Flow Graph (SFG): a graphical representation of a control

system, consisting of nodes connected by directed branches

I Node: a junction point representing a signal variable as the sum of all
signals entering the node

I Branch: a directed line connecting two nodes with associated transfer
function

I Path: continuous succession of branches traversed in the same direction

I Forward Path: starts at an input node, ends at an output node, and no
node is traversed more than once

I Path Gain: the product of all branch gains along the path

I Loop: a closed path that starts and ends at the same node and no node
is traversed more than once

I Non-touching Loops: loops that do not contain common nodes

8



Feedback Control System

(a) Block Diagram

(b) Signal Flow Graph
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Mason’s Gain Formula

I A method for reducing an SFG to a single transfer function

I The transfer function T ij(s) from input Xi (s) to any variable Xj(s) is:

T ij(s) =
Xj(s)

Xi (s)
=

∑
k P

ij
k (s)∆ij

k (s)

∆(s)

where:
I ∆(s): graph determinant
I P ij

k (s): gain of the k-th forward path between Xi (s) and Xj(s)
I ∆ij

k (s): graph determinant with the loops touching the k-th forward path
between Xi (s) and Xj(s) removed

I The transfer function T nj(s) from non-input Xn(s) to variable Xj(s) is:

T nj(s) =
Xj(s)

Xn(s)
=

Xj(s)/Xi (s)

Xn(s)/Xi (s)
=

T ij(s)

T in(s)
=

∑
k P

ij
k (s)∆ij

k (s)∑
k P

in
k (s)∆in

k (s)
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Mason’s Gain Formula

I Ln(s): gain of the n-th loop

I ∆(s): graph determinant

∆(s) = 1 −
∑

(individual loop gains)

+
∑∏

(gains of all 2 non-touching loop combinations)

−
∑∏

(gains of all 3 non-touching loop combinations)

+ · · ·

= 1 −
∑
n

Ln(s) +
∑
n,m

nontouching

Ln(s)Lm(s) −
∑
n,m,p

nontouching

Ln(s)Lm(s)Lp(s) + · · ·

I ∆ij
k (s): graph determinant with the loops touching the k-th forward

path between Xi (s) and Xj(s) removed
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Mason’s Gain Formula Example 1

I Determine the transfer function Y (s)
R(s) using Mason’s gain formula

I Forward paths from R(s) to Y (s):

P1(s) = G1(s)G2(s)G3(s)G4(s)

P2(s) = G5(s)G6(s)G7(s)G8(s)

I Loop gains:

L1(s) = G2(s)H2(s), L2(s) = H3(s)G3(s),

L3(s) = G6(s)H6(s), L4(s) = G7(s)H7(s)
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Mason’s Gain Formula Example 1

I Determinant:

∆(s) = 1 − (L1(s) + L2(s) + L3(s) + L4(s))

+ (L1(s)L3(s) + L1(s)L4(s) + L2(s)L3(s) + L2(s)L4(s))

I Cofactor of path 1:

∆1(s) = 1 − (L3(s) + L4(s))

I Cofactor of path 2:

∆2(s) = 1 − (L1(s) + L2(s))

I Transfer function:

T (s) =
P1(s)∆1(s) + P2(s)∆2(s)

∆(s)
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Mason’s Gain Formula Example 1

I The transfer function can also be obtained using block diagram
transformations:

T (s) = G1(s)

(
G2(s)

1 − G2(s)H2(s)

)(
G3(s)

1 − G3(s)H3(s)

)
G4(s)

+ G5(s)

(
G6(s)

1 − G6(s)H6(s)

)(
G7(s)

1 − G7(s)H7(s)

)
G8(s)

= G1(s)G2(s)G3(s)G4(s)
∆1(s)

∆(s)
+ G5(s)G6(s)G7(s)G8(s)

∆2(s)

∆(s)
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Mason’s Gain Formula Example 2

I Determine the transfer function Y (s)
R(s) using Mason’s gain formula

I Forward paths from R(s) to Y (s):

P1(s) = G1(s)G2(s)G3(s)G4(s)G5(s)G6(s)

P2(s) = G1(s)G2(s)G7(s)G6(s)

P3(s) = G1(s)G2(s)G3(s)G4(s)G8(s)
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Mason’s Gain Formula Example 2

I Loop gains:

L1(s) = −G2(s)G3(s)G4(s)G5(s)H2(s), L2(s) = −G5(s)G6(s)H1(s),

L3(s) = −G8(s)H1(s), L4(s) = −G7(s)H2(s)G2(s)

L5(s) = −G4(s)H4(s), L6(s) = −G1(s)G2(s)G3(s)G4(s)G5(s)G6(s)H3(s)

L7(s) = −G1(s)G2(s)G7(s)G6(s)H3(s), L8(s) = −G1(s)G2(s)G3(s)G4(s)G8(s)H3(s)
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Mason’s Gain Formula Example 2

I Cofactors: ∆1(s) = ∆3(s) = 1 and ∆2(s) = 1 − L5(s)

I Determinant: L5 does not touch L4 or L7 and L3 does not touch L4:

∆(s) = 1 − (L1(s) + L2(s) + L3(s) + L4(s) + L5(s) + L6(s) + L7(s) + L8(s))

+ (L5(s)L4(s) + L5(s)L7(s) + L3(s)L4(s))

I Transfer function:

T (s) =
P1(s) + P2(s)∆2(s) + P3(s)

∆(s)
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Mason’s Gain Formula Example 3

I Consider a ladder circuit with one energy storage element

I Determine the transfer function from V1(s) to V3(s)

I The current and voltage equations are:

I1(s) =
1

R
(V1(s) − V2(s)) I2(s) =

1

R
(V2(s) − V3(s))

V2(s) = R(I1(s) − I2(s)) V3(s) =
1

Cs
I2(s)
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Mason’s Gain Formula Example 3

I Admittance: G = 1
R

I Impedence: Z (s) = 1
Cs
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Mason’s Gain Formula Example 3

I Forward path: P1(s) = GRGZ (s) = GZ (s) = 1
RCs

I Loops: L1(s) = −GR = −1, L2(s) = −GR = −1, L3(s) = −GZ (s)

I Cofactor: all loops touch the forward path: ∆1(s) = 1

I Determinant: loops L1(s) and L3(s) are non-touching:

∆(s) = 1 − (L1(s) + L2(s) + L3(s)) + L1(s)L3(s) = 3 + 2GZ (s)

I Transfer function:

T (s) =
V3(s)

V1(s)
=

P1(s)

∆(s)
=

GZ (s)

3 + 2GZ (s)
=

1/(3RC )

s + 2/(3RC ) 20



Mason’s Gain Formula Example 3

I Determine the transfer function from I1(s) to I2(s)

I Instead of re-drawing the signal flow graph, we can use:

I2(s)

I1(s)
=

I2(s)/V1(s)

I1(s)/V1(s)
=

G

G (2 + GZ (s))
=

1

2 + GZ (s)
=

s

2s + 1/(RC )

I One forward path from V1(s) to I2(s) with gain GRG = G and cofactor 1

I One forward path from V1(s) to I1(s) with gain G and cofactor
1 − (L2(s) + L3(s)) = 2 + GZ (s)
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Mason’s Gain Formula Example 4

I Determine the transfer function from R(s) to C (s)
I Forward paths:

P1(s) = G1(s)G2(s)G3(s) P2(s) = G4(s)

I Loops:

L1(s) = −G1(s)G2(s)H1(s) L2(s) = −G2(s)G3(s)H2(s)

L3(s) = −G1(s)G2(s)G3(s)H3(s) L4(s) = −G4(s)H3(s)

L5(s) = G2(s)H1(s)G4(s)H2(s)
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Mason’s Gain Formula Example 4

I Cofactors: both forward paths touch all loops: ∆1(s) = ∆2(s) = 1

I Determinant: all loop pairs are touching:

∆(s) = 1 − (L1(s) + L2(s) + L3(s) + L4(s) + L5(s))

I Transfer function:

T (s) =
C (s)

R(s)
=

P1(s) + P2(s)

∆(s)
=

G1(s)G2(s)G3(s) + G4(s)

∆(s)
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MATLAB Polynomial Functions
I Consider:

p(s) = (s − 11.6219)(s + 0.3110 + 2.6704j)(s + 0.3110 − 2.6704j)

I poly: convert roots to polynomial coefficients:

1 r = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

a = poly(r) = [1.0, -11.0, 0.0, -84.0]

I polyval: evaluate a polynomial, e.g., p(1 − 2j):

polyval(a, 1-2i) = -62 + 46i

I roots: find polynomial roots:

1 roots(a) = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

I conv: expand the product of two polynomials, e.g., (3s2 + 2s + 1)(s + 4):

1 conv([3, 2, 1], [1, 4]) = [3, 14, 9, 4]
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MATLAB Control System Functions
I SYS = tf(NUM,DEN): creates a continuous-time transfer function SYS

with numerator NUM and denominator DEN:

1 dcmotor = tf(200,[1 1]);

I SYS = series(SYS1,SYS2): series connection of SYS1 and SYS2:

1 fwdsys = series(tf(200,[1 1]), tf(1,[1 8]));

I SYS = parallel(SYS1,SYS2): parallel connection of SYS1 and SYS2

1 fwdsys = parallel(tf(200,[1 1]), tf(1,[1 8]));

I SYS = feedback(SYS1, SYS2, sign): feedback connection of SYS1 and
SYS2:

1 fbksys = feedback(series(tf(200,[1 1]), tf(1,[1 8])),tf(1,[0.25 1]))
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MATLAB Control System Functions

I SYS = zpk(Z,P,K) creates a continuous-time zero-pole-gain (zpk) model
SYS with zeros Z, poles P, and gains K:

1 dcmotor = zpk([],[-1],200);

fbksys = zpk([-4],[-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i],8);

I P = pole(SYS) returns the poles P of SYS:

sp = pole(fbksys) = [-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i]

I [Z,G] = zero(SYS) computes the zeros Z and gain G of SYS:

1 [sz,k] = zero(fbksys) = [-4, 8]

I pzmap(SYS): computes and plots the poles and zeros of SYS

1 pzmap(fbksys)
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MATLAB Control System Functions

I Y = step(SYS,T): computes the step response Y of SYS at times T

1 t = 0:0.01:5;

step(fbksys,t);

I Y = impulse(SYS, T): computes the impulse response Y of SYS at
times T

t = 0:0.01:5;

2 impulse(fbksys,t);

I Y = lsim(SYS,U,T): computes the output response Y of SYS with input
U at times T

[u,t] = gensig(’square’,4,10,0.1);

2 lsim(fbksys,u,t);
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