ECE171A: Linear Control System Theory Lecture 3: System Modeling

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Block Diagram

- Block diagram: a graphical representation of a control system
- Block: represents the input-output relationship of a system element using its transfer function

- To represent a multi-element system, the blocks are interconnected
- Summing point: adds/subtracts two or more input signals

Block Diagram Transformations

- A block diagram can be simplified using equivalent transformations
- Parallel connection: if two or more elements are connected in parallel, the total transfer function is the sum of the individual transfer functions:

$$
\xrightarrow{X(s)} \xrightarrow{F(s)+G(s)} \xrightarrow{Y(s)}
$$

- Series connection: if two or more elements are connected in series, the total transfer function is the product of the individual transfer functions:

Table 2.5 Block Diagram Transformations

Feedback Control System without Disturbances

- Forward Path Transfer Function (FPTF): $\frac{Y(s)}{E(s)}=G(s)$
- Error: $E(s)=R(s)-B(s)=R(s)-H(s) Y(s)$
- Closed-Loop Transfer Function:

$$
\frac{Y(s)}{R(s)}=\frac{\text { FPTF }}{1 \pm(\text { FPTF })(\text { Feedback TF })}=\frac{G(s)}{1 \pm G(s) H(s)}
$$

Block Diagram Reduction Example

- Consider a multi-loop feedback control system:

- Apply equivalent transformations to eliminate the feedback loops and obtain the system transfer function $\frac{Y(s)}{R(s)}$

Block Diagram Reduction Example

(a)

(b)

Signal Flow Graph

- Signal Flow Graph (SFG): a graphical representation of a control system, consisting of nodes connected by directed branches
- Node: a junction point representing a signal variable as the sum of all signals entering the node
- Branch: a directed line connecting two nodes with associated transfer function
- Path: continuous succession of branches traversed in the same direction
- Forward Path: starts at an input node, ends at an output node, and no node is traversed more than once
- Path Gain: the product of all branch gains along the path
- Loop: a closed path that starts and ends at the same node and no node is traversed more than once
- Non-touching Loops: loops that do not contain common nodes

Feedback Control System

(a) Block Diagram

(b) Signal Flow Graph

Mason's Gain Formula

- A method for reducing an SFG to a single transfer function
- The transfer function $T^{i j}(s)$ from input $X_{i}(s)$ to any variable $X_{j}(s)$ is:

$$
T^{i j}(s)=\frac{X_{j}(s)}{X_{i}(s)}=\frac{\sum_{k} P_{k}^{i j}(s) \Delta_{k}^{i j}(s)}{\Delta(s)}
$$

where:

- $\Delta(s)$: graph determinant
- $P_{k}^{i j}(s)$: gain of the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$
- $\Delta_{k}^{i j}(s)$: graph determinant with the loops touching the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$ removed
- The transfer function $T^{n j}(s)$ from non-input $X_{n}(s)$ to variable $X_{j}(s)$ is:

$$
T^{n j}(s)=\frac{X_{j}(s)}{X_{n}(s)}=\frac{X_{j}(s) / X_{i}(s)}{X_{n}(s) / X_{i}(s)}=\frac{T^{i j}(s)}{T^{i n}(s)}=\frac{\sum_{k} P_{k}^{i j}(s) \Delta_{k}^{i j}(s)}{\sum_{k} P_{k}^{i n}(s) \Delta_{k}^{i n}(s)}
$$

Mason's Gain Formula

- $L_{n}(s)$: gain of the n-th loop
- $\Delta(s)$: graph determinant

$$
\begin{aligned}
\Delta(s)=1 & -\sum(\text { individual loop gains }) \\
& +\sum \prod(\text { gains of all } 2 \text { non-touching loop combinations) } \\
& -\sum \prod(\text { gains of all } 3 \text { non-touching loop combinations) } \\
& +\cdots \\
=1 & -\sum_{n} L_{n}(s)+\sum_{\substack{n, m \\
\text { nontouching }}} L_{n}(s) L_{m}(s)-\sum_{\substack{n, m, p \\
\text { nontouching }}} L_{n}(s) L_{m}(s) L_{p}(s)+\cdots
\end{aligned}
$$

- $\Delta_{k}^{i j}(s)$: graph determinant with the loops touching the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$ removed

Mason's Gain Formula Example 1

(a)

(b)

- Determine the transfer function $\frac{Y(s)}{R(s)}$ using Mason's gain formula
- Forward paths from $R(s)$ to $Y(s)$:

$$
\begin{aligned}
& P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) \\
& P_{2}(s)=G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)
\end{aligned}
$$

- Loop gains:

$$
\begin{array}{ll}
L_{1}(s)=G_{2}(s) H_{2}(s), & L_{2}(s)=H_{3}(s) G_{3}(s), \\
L_{3}(s)=G_{6}(s) H_{6}(s), & L_{4}(s)=G_{7}(s) H_{7}(s)
\end{array}
$$

Mason's Gain Formula Example 1

- Determinant:

$$
\begin{aligned}
\Delta(s)=1 & -\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)\right) \\
& +\left(L_{1}(s) L_{3}(s)+L_{1}(s) L_{4}(s)+L_{2}(s) L_{3}(s)+L_{2}(s) L_{4}(s)\right)
\end{aligned}
$$

- Cofactor of path 1 :

$$
\Delta_{1}(s)=1-\left(L_{3}(s)+L_{4}(s)\right)
$$

- Cofactor of path 2:

$$
\Delta_{2}(s)=1-\left(L_{1}(s)+L_{2}(s)\right)
$$

- Transfer function:

$$
T(s)=\frac{P_{1}(s) \Delta_{1}(s)+P_{2}(s) \Delta_{2}(s)}{\Delta(s)}
$$

Mason's Gain Formula Example 1

(a)

(b)

- The transfer function can also be obtained using block diagram transformations:

$$
\begin{aligned}
T(s)= & G_{1}(s)\left(\frac{G_{2}(s)}{1-G_{2}(s) H_{2}(s)}\right)\left(\frac{G_{3}(s)}{1-G_{3}(s) H_{3}(s)}\right) G_{4}(s) \\
& +G_{5}(s)\left(\frac{G_{6}(s)}{1-G_{6}(s) H_{6}(s)}\right)\left(\frac{G_{7}(s)}{1-G_{7}(s) H_{7}(s)}\right) G_{8}(s) \\
= & G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) \frac{\Delta_{1}(s)}{\Delta(s)}+G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s) \frac{\Delta_{2}(s)}{\Delta(s)}
\end{aligned}
$$

Mason's Gain Formula Example 2

Caswight E2017 Pearson Education, Al kigtes Reservei

- Determine the transfer function $\frac{Y(s)}{R(s)}$ using Mason's gain formula
- Forward paths from $R(s)$ to $Y(s)$:

$$
\begin{aligned}
& P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) \\
& P_{2}(s)=G_{1}(s) G_{2}(s) G_{7}(s) G_{6}(s) \\
& P_{3}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{8}(s)
\end{aligned}
$$

Mason's Gain Formula Example 2

Casyight 52017 Pesmen Education, Al Rights Beerved

- Loop gains:

$$
\begin{array}{ll}
L_{1}(s)=-G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) H_{2}(s), & L_{2}(s)=-G_{5}(s) G_{6}(s) H_{1}(s) \\
L_{3}(s)=-G_{8}(s) H_{1}(s), & L_{4}(s)=-G_{7}(s) H_{2}(s) G_{2}(s) \\
L_{5}(s)=-G_{4}(s) H_{4}(s), & L_{6}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) H_{3}(s) \\
L_{7}(s)=-G_{1}(s) G_{2}(s) G_{7}(s) G_{6}(s) H_{3}(s), & L_{8}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{8}(s) H_{3}(s)
\end{array}
$$

Mason's Gain Formula Example 2

- Cofactors: $\Delta_{1}(s)=\Delta_{3}(s)=1$ and $\Delta_{2}(s)=1-L_{5}(s)$
- Determinant: L_{5} does not touch L_{4} or L_{7} and L_{3} does not touch L_{4} :

$$
\begin{aligned}
\Delta(s)=1 & -\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)+L_{5}(s)+L_{6}(s)+L_{7}(s)+L_{8}(s)\right) \\
& +\left(L_{5}(s) L_{4}(s)+L_{5}(s) L_{7}(s)+L_{3}(s) L_{4}(s)\right)
\end{aligned}
$$

- Transfer function:

$$
T(s)=\frac{P_{1}(s)+P_{2}(s) \Delta_{2}(s)+P_{3}(s)}{\Delta(s)}
$$

Mason's Gain Formula Example 3

(a)

- Consider a ladder circuit with one energy storage element
- Determine the transfer function from $V_{1}(s)$ to $V_{3}(s)$
- The current and voltage equations are:

$$
\begin{aligned}
I_{1}(s) & =\frac{1}{R}\left(V_{1}(s)-V_{2}(s)\right) & I_{2}(s) & =\frac{1}{R}\left(V_{2}(s)-V_{3}(s)\right) \\
V_{2}(s) & =R\left(I_{1}(s)-I_{2}(s)\right) & V_{3}(s) & =\frac{1}{C s} I_{2}(s)
\end{aligned}
$$

Mason's Gain Formula Example 3

(b)

Copyright ©2017 Pearson Education, All Rights Reserved

(c)

Copyright ©2017 Pearson Education, All Rights Reserved

- Admittance: $G=\frac{1}{R}$
- Impedence: $Z(s)=\frac{1}{C s}$

Mason's Gain Formula Example 3

(b)

- Forward path: $P_{1}(s)=G R G Z(s)=G Z(s)=\frac{1}{R C s}$
- Loops: $L_{1}(s)=-G R=-1, L_{2}(s)=-G R=-1, L_{3}(s)=-G Z(s)$
- Cofactor: all loops touch the forward path: $\Delta_{1}(s)=1$
- Determinant: loops $L_{1}(s)$ and $L_{3}(s)$ are non-touching:

$$
\Delta(s)=1-\left(L_{1}(s)+L_{2}(s)+L_{3}(s)\right)+L_{1}(s) L_{3}(s)=3+2 G Z(s)
$$

- Transfer function:

$$
T(s)=\frac{V_{3}(s)}{V_{1}(s)}=\frac{P_{1}(s)}{\Delta(s)}=\frac{G Z(s)}{3+2 G Z(s)}=\frac{1 /(3 R C)}{s+2 /(3 R C)}
$$

Mason's Gain Formula Example 3

(b)

- Determine the transfer function from $I_{1}(s)$ to $I_{2}(s)$
- Instead of re-drawing the signal flow graph, we can use:

$$
\frac{I_{2}(s)}{I_{1}(s)}=\frac{I_{2}(s) / V_{1}(s)}{I_{1}(s) / V_{1}(s)}=\frac{G}{G(2+G Z(s))}=\frac{1}{2+G Z(s)}=\frac{s}{2 s+1 /(R C)}
$$

- One forward path from $V_{1}(s)$ to $I_{2}(s)$ with gain $G R G=G$ and cofactor 1
- One forward path from $V_{1}(s)$ to $I_{1}(s)$ with gain G and cofactor $1-\left(L_{2}(s)+L_{3}(s)\right)=2+G Z(s)$

Mason's Gain Formula Example 4

- Determine the transfer function from $R(s)$ to $C(s)$
- Forward paths:

$$
P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) \quad P_{2}(s)=G_{4}(s)
$$

- Loops:

$$
\begin{array}{ll}
L_{1}(s)=-G_{1}(s) G_{2}(s) H_{1}(s) & L_{2}(s)=-G_{2}(s) G_{3}(s) H_{2}(s) \\
L_{3}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) H_{3}(s) & L_{4}(s)=-G_{4}(s) H_{3}(s) \\
L_{5}(s)=G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) &
\end{array}
$$

Mason's Gain Formula Example 4

- Cofactors: both forward paths touch all loops: $\Delta_{1}(s)=\Delta_{2}(s)=1$
- Determinant: all loop pairs are touching:

$$
\Delta(s)=1-\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)+L_{5}(s)\right)
$$

- Transfer function:

$$
T(s)=\frac{C(s)}{R(s)}=\frac{P_{1}(s)+P_{2}(s)}{\Delta(s)}=\frac{G_{1}(s) G_{2}(s) G_{3}(s)+G_{4}(s)}{\Delta(s)}
$$

MATLAB Polynomial Functions

- Consider:

$$
p(s)=(s-11.6219)(s+0.3110+2.6704 j)(s+0.3110-2.6704 j)
$$

- poly: convert roots to polynomial coefficients:

```
r = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]
a = poly(r) = [1.0, -11.0, 0.0, -84.0]
```

- polyval: evaluate a polynomial, e.g., $p(1-2 j)$:

$$
\operatorname{polyval}(\mathrm{a}, 1-2 \mathrm{i})=-62+46 \mathrm{i}
$$

- roots: find polynomial roots:

```
roots(a) = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]
```

- conv: expand the product of two polynomials, e.g., $\left(3 s^{2}+2 s+1\right)(s+4)$: $\operatorname{conv}([3,2,1],[1,4])=[3,14,9,4]$

MATLAB Control System Functions

- $\operatorname{SYS}=\operatorname{tf}($ NUM,DEN $):$ creates a continuous-time transfer function SYS with numerator NUM and denominator DEN:

```
dcmotor = tf(200,[11 1]);
```

- SYS $=$ series(SYS1,SYS2): series connection of SYS1 and SYS2:
fwdsys = series(tf(200,[1 1]), tf(1,[18]));
- SYS = parallel(SYS1,SYS2): parallel connection of SYS1 and SYS2
fwdsys = parallel(tf(200,[11]), tf(1,[18]));
- SYS = feedback(SYS1, SYS2, sign): feedback connection of SYS1 and SYS2:
fbksys $=$ feedback(series(tf(200,[11]), tf(1,[1 8])),tf(1,[0.25 1]))

MATLAB Control System Functions

- SYS $=$ zpk (Z, P, K) creates a continuous-time zero-pole-gain (zpk) model SYS with zeros Z , poles P , and gains K :

```
dcmotor = zpk([],[-1],200);
fbksys = zpk([-4],[-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i],8);
```

- $P=$ pole(SYS) returns the poles P of SYS:

```
sp = pole(fbksys) = [-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i]
```

- $[Z, G]=$ zero(SYS) computes the zeros Z and gain G of SYS:

```
[sz,k] = zero(fbksys) = [-4, 8]
```

- pzmap(SYS): computes and plots the poles and zeros of SYS

```
pzmap(fbksys)
```


MATLAB Control System Functions

- $\mathrm{Y}=\operatorname{step}(\mathrm{SYS}, \mathrm{T})$: computes the step response Y of SYS at times T

$$
\begin{aligned}
& t=0: 0.01: 5 \\
& \text { step }(f \text { bksys, })
\end{aligned}
$$

- $\mathrm{Y}=$ impulse(SYS, T): computes the impulse response Y of SYS at times T

```
t = 0:0.01:5;
impulse(fbksys,t);
```

- $\mathrm{Y}=\operatorname{Isim}(\mathrm{SYS}, \mathrm{U}, \mathrm{T})$: computes the output response Y of SYS with input U at times T

```
[u,t] = gensig('square',4,10,0.1);
lsim(fbksys,u,t);
```

