
ECE171A: Linear Control System Theory
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Feedback Control System with Disturbance and Noise

I Reference input: R(s)

I Output signal: Y (s)

I Feedback signal: B(s)

I Measured error: Ê (s)

I Controller gain: F (s)

I Process gain: G (s)

I Process disturbance: D(s)

I Sensor noise: N(s)

I Feedback gain: H(s)

I Loop gain: L(s) = −F (s)G (s)H(s)
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Output and Error Signals

I Measured error: Ê (s) = R(s)− B(s) = R(s)− H(s)Y (s)− H(s)N(s)

I Output signal: Y (s) = G (s)F (s)Ê (s) + G (s)D(s)

I Total response:

Y (s) =
G (s)F (s)

1 + G (s)F (s)H(s)︸ ︷︷ ︸
input effect

R(s) +
G (s)

1 + G (s)F (s)H(s)︸ ︷︷ ︸
disturbance effect

D(s)− G (s)F (s)H(s)

1 + G (s)F (s)H(s)︸ ︷︷ ︸
noise effect

N(s)

I True error: E (s) = R(s)− H(s)Y (s)

E (s) =
1

1− L(s)
R(s)− H(s)G (s)

1− L(s)
D(s)− H(s)L(s)

1− L(s)
N(s)
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Noise Sensitivity

I Noise sensitivity: S(s) = 1
1−L(s)

I Complementary sensitivity: C (s) = 1− S(s) = −L(s)
1−L(s)

I Error: E (s) = S(s)R(s)− S(s)H(s)G (s)D(s) + C (s)H(s)N(s)

I To minimize the error, we should design the control gain F (s) so that
both S(s) and C (s) are small

I Since S(s) + C (s) = 1, we cannot make both simultaneously small

I In practice:
I the measurement noise N(σ + jω) is associated with high frequencies ω
I the disturbances D(σ + jω) are associated with low frequencies ω
I design 1− L(σ + jω) to be large at low frequencies and small at high

frequencies ω
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Parameter Sensitivity

I Feedback control is useful for disturbance rejection and noise attenuation

I Feedback control is also useful for reducing the sensitivity to parameter
variations in the process G (s)

I To consider parameter sensitivity, let D(s) = N(s) = 0 in the transfer
function:

T (s) =
Y (s)

R(s)
=

G (s)F (s)

1 + G (s)F (s)H(s)

I Suppose that the process G (s) undergoes a change ∆G (s) so that the
true model is G (s) + ∆G (s)

I What is the change ∆T (s) in the overall transfer function T (s)?
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Parameter Sensitivity

I Since T (s) and G (s) might have different units, parameter sensitivity is
defined as a percentage change in T (s) over percentage change in G (s)

I Parameter sensitivity is the ratio of the incremental change in the
system transfer function to the incremental change in the process
transfer function:

ST
G (s) =

dT (s)

dG (s)

G (s)

T (s)
≈ ∆T (s)/T (s)

∆G (s)/G (s)

I Ideally, the parameter sensitivity should be small to allow robustness to
changes in G (s)

I Conversely, the gain of elements with high sensitivity should be
estimated well because minor mismatch might have a significant effect
on the overall system transfer function. These are the system elements
we should really be careful about.
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Return Difference

I Hendrik Bode was interested in measuring the effect
of feedback on a specific element in a closed-loop
control system

I Bode defined return difference as an impulse input
(1 in the s-domain) at an element minus the loop
transfer function L(s) back to the element

I To find the return difference:
I open the feedback loop immediately prior to the element of interest

I compute the transfer function L(s) = A2(s)
A1(s) from the element input (A1)

back to the cut connection (A2)

I the return difference is ρ(s) = 1− L(s)
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Return Difference Example 1

I To find the return difference with respect to G (s), cut the loop
immediately prior to G (s)

I Compute the loop gain: L(s) = A2(s)
A1(s) = −G (s)H(s)F (s)

I Return difference: ρG (s) = 1− L(s) = 1 + G (s)H(s)F (s)
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Return Difference Example 2

I To find the return difference with respect to Gb(s), cut the loop
immediately prior to Gb(s)

I Compute the loop gain via Mason’s formula:

L(s) =
G1(s)∆1(s)

∆(s)
=
−H(s)Ga(s)Gb(s)

1− H(s)Ga(s)Gc(s)

I Return difference:

ρGb
(s) = 1− L(s) = 1 +

H(s)Ga(s)Gb(s)

1− H(s)Ga(s)Gc(s)
=

1 + H(s)Ga(s)(Gb(s)− Gc(s))

1− H(s)Ga(s)Gc(s)
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Return Difference Example 3

I To find the return difference with respect to G2(s), cut the loop
immediately prior to G2(s)

I Compute the loop gain via Mason’s formula:

L(s) =
−G2(s)H1(s)G1(s)− G2(s)G3(s)H2(s)− G2(s)G3(s)H3(s)G1(s) + G2(s)H1(s)G4(s)H2(s)

1 + G4(s)H3(s)

I Return difference: ρG2(s) = 1− L(s)
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Parameter Sensitivity
I How is parameter sensitivity related to return difference?

I For a control system with a single feedback loop, parameter sensitivity
SG (s) is equal to the inverse of the return difference ρG (s):

SG (s) =
dT (s)

dG (s)

G (s)

T (s)
=

d

dG (s)

(
G (s)F (s)

1 + G (s)F (s)H(s)

)
G (s)

T (s)

=
F (s)

(1 + G (s)F (s)H(s))2

G (s)

T (s)
=

1

1 + G (s)F (s)H(s)

=
1

1− L(s)
=

1

ρG (s)
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Canonical Feedback Control Architecture

I Transfer function:

T (s) =
Y (s)

R(s)
= T4(s) +

T1(s)G (s)T3(s)

1− G (s)T2(s)

I Sensitivity of T (s) with respect to G (s):

dT

dG
= T1T3

(
1

1− GT2
+

GT2

(1− GT2)2

)
=

T1T3

(1− GT2)2

ST
G =

G

T

dT

dG
=

G (1− GT2)

T4(1− GT2) + T1T3G

T1T3

(1− GT2)2

=
GT1T3

T4(1− GT2)2 + T1T3G (1− GT2)
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Canonical Feedback Control Architecture

I Transfer function:

T (s) =
Y (s)

R(s)
= T4(s) +

T1(s)G (s)T3(s)

1− G (s)T2(s)

I Sensitivity of T (s) with respect to G (s):

ST
G (s) =

G (s)T1(s)T3(s)

T4(s)(1− G (s)T2(s))2 + T1(s)T3(s)G (s)(1− G (s)T2(s))

I Note that G (s) does not affect T4(s) in the transfer function. Consider
only the portion that G (s) affects:

T ′(s) =
T1(s)G (s)T3(s)

1− G (s)T2(s)

I Letting T4(s) = 0 in ST
G (s) shows that ST ′

G (s) is the inverse of the
return difference:

ST ′
G (s) =

1

1− G (s)T2(s)
=

1

ρT
′
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Example: Feedback OpAmp Sensitivity
I Consider a feedback amplifier with input voltage

R(s), feedforward gain k , feedback gain β, and
output voltage Y (s)

I Transfer function: T (s) = Y (s)
R(s) = k

1−kβ

I Return difference: ρk = 1− kβ

I Sensitivity wrt k : ST
k = 1

1−kβ

I Sensitivity wrt β: ST
β = β

T
dT
dβ = β(1−kβ)

k
k2

(1−βk)2 = kβ
1−kβ

I Example design specification: the sensitivity with respect to k at s = 0
has to be less than 1%.

I When k ≈ 103 and β ≈ −0.1, then ST
k ≈ 0 and ST

β ≈ −1.

I When designing an OpAmp, the forward gain k can be arbitrary but we
need to be careful with the design of β because it affects the response
almost one-to-one.
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Open-loop vs Closed-loop Response

I Open-loop response:

Y (s) = F (s)G (s)R(s) =
K1K2

τs + 1
R(s)

I Closed-loop response:

Y (s) =
F (s)G (s)

1 + H(s)F (s)G (s)
R(s) =

K1K2

τs + 1 + K1K2K3
R(s)

15



Transient Response

I The transient response of a system is the response before the output
settles at its final value

I The transient response is an important characteristic that must be
adjusted until it is satisfactory, e.g., to prevent oscillations

I Open-loop response with R(s) = 1/s using partial fraction expansion
and inverse Laplace transform:

y(t) = L−1

{
K1K2

s(τs + 1)

}
= L−1

{
K1K2

s
− K1K2

s + 1/τ

}
= K1K2(1−e−t/τ )

I Closed-loop response with R(s) = 1/s:

y(t) = L−1

{
K1K2

s(τs + 1 + K1K2K3)

}
=

K1K2

1 + K1K2K3

(
1− e−(1+K1K2K3)t/τ

)

16



Transient Response

I System parameters: τ = 10, K3 = 1

I Open-loop design: K1K2 = 1

I Closed-loop design: K1K2 = 100
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Transient Response

I The closed-loop system responds 100 times faster than the open-loop
system (open-loop pole: 1/τ = 0.1 vs closed-loop pole:
K1K2K3/τ = 10)

I The closed-loop system requires a large control gain K1 (e.g., powerful
motor)

I The open-loop sensitivity to a variation in K2 is: 1

I The closed-loop sensitivity to a variation in K2 is:

SK2(s) =
dT (s)

dK2

K2

T (s)
=

s + 1/τ

s + (1 + K1K2K3)/τ

I Using the values τ = 10, K3 = 1, K1K2 = 100, we have
SK2(s) = s+0.1

s+10.1 . At low frequency, e.g., s = 0 + j1, |SK2(s)| ≈ 0.1.

18



Steady-state Response
I The steady-state response of a system is the response after the output

settles at its final value

I Error: E (s) = R(s)− H(s)Y (s)

I Open-loop error: Eo(s) = (1− H(s)Fo(s)G (s))R(s)

I Closed-loop error: Ec(s) = 1
1+H(s)Fc (s)G(s)R(s)

I Steady-state time-domain error via the Final Value Theorem:

lim
t→∞

e(t) = lim
s→0

sE (s)

I Open-loop steady-state error with R(s) = 1/s:

lim
t→∞

eo(t) = (1− H(0)Fo(0)G (0))

I Closed-loop steady-state error with R(s) = 1/s:

lim
t→∞

ec(t) =
1

1 + H(0)Fc(0)G (0)
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Advantages of Closed-loop Control

I By calibrating the control gain Fo(0), we can make the open-loop
steady-state error zero.

I What is the advantage of closed-loop control?

I During system operation it is inevitable that the parameters of G (0) will
change, making the open-loop steady-state error non-zero.

I In contrast, the closed-loop system monitors the system response and
actively reduces the steady-state error even when G (0) is changing.

I The advantage of closed-loop control is that it reduces the
steady-state error resulting from parameter changes and calibration
errors.
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Advantages of Closed-loop Control

I For example, consider the same parameters as before: H(0) = K3 = 1,
Fo(0)G (0) = 1, Fc(0)G (0) = 100

I If the parameters are accurate:

lim
t→∞

eo(t) = 0 lim
t→∞

ec(t) =
1

101

I If there is a 10% error in the parameters, e.g., F ′o(0)G ′(0) = 0.9,
F ′c(0)G ′(0) = 90:

lim
t→∞

e ′o(t) = 0.1 lim
t→∞

e ′c(t) =
1

91

I The precent change from the calibrated setting is:

|eo(∞)− e ′o(∞)|
|r(∞)|

×100% = 10%
|ec(∞)− e ′c(∞)|

|r(∞)|
×100% = 0.11%

where r(∞) = 1 is the steady-state value of the step reference input
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Disadvantages of Closed-loop Control

I Increased system complexity: a sensing component is necessary,
which also introduced sensor noise

I Loss of gain: the forward gain in a closed-loop system is smaller by a
factor of 1

1+H(s)F (s)G(s) than the forward gain of an open-loop system.
This is exactly the factor that reduces the sensitivity of the system to
parameter variations and distrubances. Usually the gain in robustness
from closed-loop control significantly outweights the loss of gain.

I Potential for instability: the introduction of closed-loop control may
lead to system instability, even if the open-loop system is stable

22


