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Feedback Control System with Disturbance and Noise
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Reference input: R(s) » Process gain: G(s)
Output signal: Y (s) » Process disturbance: D(s)
Feedback signal: B(s) » Sensor noise: N(s)

» Feedback gain: H(s)

>

Loop gain: L(s) = —F(s)G(s)H(s)

Measured error: E(s
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Controller gain: F(s



Output and Error Signals

> Measured error: E(s) = R(s) — B(s) = R(s) — H(s)Y(s) — H(s)N(s)
» Output signal: Y(s) = G(s)F(s)E(s) + G(s)D(s)

» Total response:

_ G(s)F(s) G(s) G(s)F(s)H(s)
Y6 = 15 60roAE) O T T e rene P T Tx e FeHE) M)
input effect disturbance effect noise effect
» True error: E(s) = R(s) — H(s)Y(s)
1 H(s)G H(s)L
E(s) = 15y R(6) — 1y D) = TN



Noise Sensitivity

> Noise sensitivity: S(s) = 1,1(5)

—L(s)
1-L(s)

» Complementary sensitivity: C(s) =1 — S(s) =
» Error: E(s) = S(s)R(s) — S(s)H(s)G(s)D(s) + C(s)H(s)N(s)

» To minimize the error, we should design the control gain F(s) so that
both S(s) and C(s) are small

» Since S(s) + C(s) = 1, we cannot make both simultaneously small

v

In practice:
> the measurement noise N(o + jw) is associated with high frequencies w
> the disturbances D(o + jw) are associated with low frequencies w
> design 1 — L(0 + jw) to be large at low frequencies and small at high
frequencies w



Parameter Sensitivity

» Feedback control is useful for disturbance rejection and noise attenuation

» Feedback control is also useful for reducing the sensitivity to parameter
variations in the process G(s)

» To consider parameter sensitivity, let D(s) = N(s) = 0 in the transfer

function:
Y(s) G(s)F(s)

T(s) = R(s) _ 1+ G(s)F(s)H(s)

» Suppose that the process G(s) undergoes a change AG(s) so that the
true model is G(s) + AG(s)

» What is the change AT (s) in the overall transfer function T(s)?



Parameter Sensitivity

» Since T(s) and G(s) might have different units, parameter sensitivity is
defined as a percentage change in T(s) over percentage change in G(s)

» Parameter sensitivity is the ratio of the incremental change in the
system transfer function to the incremental change in the process
transfer function:

ST(s) _ dT(s) G(s) N AT(s)/T(s
¢ dG(s) T(s) | AG(s)/G(s

~— [ —

» ldeally, the parameter sensitivity should be small to allow robustness to
changes in G(s)

» Conversely, the gain of elements with high sensitivity should be
estimated well because minor mismatch might have a significant effect
on the overall system transfer function. These are the system elements
we should really be careful about.



Return Difference

» Hendrik Bode was interested in measuring the effect
of feedback on a specific element in a closed-loop
control system

» Bode defined return difference as an impulse input
(1 in the s-domain) at an element minus the loop
transfer function L(s) back to the element

» To find the return difference:
» open the feedback loop immediately prior to the element of interest

> compute the transfer function L(s) = 2?8 from the element input (A;)

back to the cut connection (A;)

> the return difference is p(s) =1 — L(s)



Return Difference Example 1
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» To find the return difference with respect to G(s), cut the loop

immediately prior to G(s)

» Compute the loop gain: L(s) =




Return Difference Example 2

Ay(s) Ay(s
e B K T

» To find the return difference with respect to Gp(s), cut the loop
immediately prior to Gp(s)

» Compute the loop gain via Mason's formula:

L(s) = Gi(s)Aq(s) _ —H(s)Ga(s)Gp(s)
Als) 1 — H(s)Gy(s)Ge(s)

» Return difference:

H(s)Ga(s)Gb(s) 1+ H(s)Ga(s)(Gh(s) — Gc(s))
pe(s) =1-L(s) =1+ 1= H(s)Ga(s)ch(s) - i H(s)Ga(bs)GC s)




Return Difference Example 3

D

H,(s) Lr

» To find the return difference with respect to Gy(s), cut the loop
immediately prior to Gy(s)

» Compute the loop gain via Mason's formula:

L(s) = —G(s)Hi(5)Gi(s) — Ga(5)Gs(s)Ha(s) — Ga(s) G3(s)Ha(s) Gi(s) + Ga(s)Hi(s)Ga(s)Ha(s)
n 1+ Ga(s)Hs(s)

» Return difference: pg,(s) =1 — L(s)
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Parameter Sensitivity

» How is parameter sensitivity related to return difference?

R(s) t E(s) Y(s)

F(s) G(s)

H(s)

» For a control system with a single feedback loop, parameter sensitivity
Sc(s) is equal to the inverse of the return difference pg(s):
_dT(s)G(s)  d G(s)F(s) G(s)
S6(s) = dG(s) T(s) dG(s) (1 + G(s)F(s)H(s)> T(s)
F(s) G(s) _ 1
(1 +1 G(S)F(S){'/(S))2 T(s) 1+ G(s)F(s)H(s)
T1-Ls)  pals)
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Canonical Feedback Control Architecture

Alternative Path

Ta(s)

» Transfer function:
Y(s) (5)G(s)Ts(s) ™

.
T() = Ris) = O+ TGy 7o)

> Sensitivity of T(s) with respect to G(s):

dT 1 GT> TiTs
P (1 ey AL G GT2)2> T (1-GTL)?
or_ GdT _ G(1—GT>) T1Ts
C T TdG T4(1-GT)+ ThT3G (1 — GTo)?
GT1Ts

T4(1 — GT2)2 + T1 T3G(1 — GT2)
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Canonical Feedback Control Architecture

» Transfer function:
T(s) = R((sg Ta(s) +

(S)G(S) Ts(s)
G(s)Ta(s)

» Sensitivity of T(s) with respect to G(s):

Ta(s)(1 = G(s) Ta(s))? + Tl( ) 3(s ) (s)(1 = G(s) Ta(s))
> Note that G(s) does not affect T4(s) in the transfer function. Consider
only the portion that G(s) affects:
T1(s)G(s) T3(s)
T'(s) =
&)= TG Tals)
> Letting T4(s) = 0 in S (s) shows that SI'(s) is the inverse of the
return difference:

1 1
—G(s)Ta(s) — pL'(s) 13

SGI(S) =1



Example: Feedback OpAmp Sensitivity

» Consider a feedback amp||f|er with input voltage . . ve)
R(s), feedforward gain k, feedback gain 3, and U
output voltage Y(s) £

» Transfer function: T(s) = ;g)) = _Lkﬁ

» Return difference: py =1 — kf3

‘ L

> Sensitivity wrt k: S| =

[ay

—k

™

_ B=kB) K> _ kB

» Sensitivity wrt 3: SﬁT = g kK (1-pkZ — 1-kp

E‘ﬂ

» Example design specification: the sensitivity with respect to k at s =0
has to be less than 1%.

» When k ~ 10° and f ~ —0.1, then S/ ~ 0 and 5] ~

» When designing an OpAmp, the forward gain k can be arbitrary but we
need to be careful with the design of 5 because it affects the response

almost one-to-one.
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Open-loop vs Closed-loop Response

R . () T Vs

-> K
i F(s) = K, G(s) = — +2 T

Bs)

H(S) = K3

» Open-loop response:
Ki K>

Y(s) = F(s)G(s)R(s) = s+ 1

R(s)
» Closed-loop response:

F(s)G(s) R(s) = KiKa
1+ H(s)F(s)G(s) C 75+ 1+ KiKaKs

Y(s) = R(s)
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Transient Response

» The transient response of a system is the response before the output
settles at its final value

» The transient response is an important characteristic that must be
adjusted until it is satisfactory, e.g., to prevent oscillations

» Open-loop response with R(s) = 1/s using partial fraction expansion
and inverse Laplace transform:

K1 K: Ki K- K1 K
ST A 1A T 1Ko Kike | _ iy
y(t) =L {5(7'5—1— 1)} £ { s 5—1—1/7‘} Kika(l—e )

» Closed-loop response with R(s) = 1/s:

y(t) = £ KiKa __ KiK (1 B e—(1+K1K2K3)t/T)
S(TS+1+K1K2K3) 14+ KiKaKs
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Transient Response

» System parameters: 7 = 10, K3 =1
» Open-loop design: K1Kx =1

» Closed-loop design: Ki K> = 100

Step Response
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Transient Response

» The closed-loop system responds 100 times faster than the open-loop
system (open-loop pole: 1/7 = 0.1 vs closed-loop pole:
KiKxKsz/T = 10)

» The closed-loop system requires a large control gain Ki (e.g., powerful
motor)

» The open-loop sensitivity to a variation in K is: 1
» The closed-loop sensitivity to a variation in K3 is:

S _dT(s) Ko s+1/7
k(s) = g T(s) s+ (1+ KiKaKs)/T

» Using the values 7 = 10, K3 = 1, K1 K> = 100, we have
Sk,(s) = 551106_11- At low frequency, e.g., s = 0+ /1, |Sk,(s)| =~ 0.1.
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Steady-state Response

>

vV v.v Y

The steady-state response of a system is the response after the output
settles at its final value

Error: E(s) = R(s) — H(s)Y(s)
Open-loop error: Eq(s) = (1 — H(s)Fo(s)G(s))R(s)
Closed-loop error: E.(s) = WR(S)
Steady-state time-domain error via the Final Value Theorem:
Ay, (1) = [ £ (o)
Open-loop steady-state error with R(s) = 1/s:
Jim eo(t) = (1 — H(0)Fo(0)G(0))

Closed-loop steady-state error with R(s) = 1/s:
lim ec(t) = =
tsoo 14 H(0)F.(0)G(0)
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Advantages of Closed-loop Control

» By calibrating the control gain F,(0), we can make the open-loop
steady-state error zero.

» What is the advantage of closed-loop control?

» During system operation it is inevitable that the parameters of G(0) will
change, making the open-loop steady-state error non-zero.

» In contrast, the closed-loop system monitors the system response and
actively reduces the steady-state error even when G(0) is changing.

» The advantage of closed-loop control is that it reduces the
steady-state error resulting from parameter changes and calibration
errors.
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Advantages of Closed-loop Control

| 2

For example, consider the same parameters as before: H(0) = K3 =1,
Fo(0)G(0) =1, F-(0)G(0) = 100

If the parameters are accurate:
lim eo(t) = 0 lim ec(t) = —
im e = Im e =
t—oo t—oo © 101

If there is a 10% error in the parameters, e.g., F/(0)G’(0) = 0.9,
F!(0)G'(0) = 90:

1
. / _ . / _
t|l>r20 e (t)=0.1 tll)rgo e (t) = o1
The precent change from the calibrated setting is:
|eo(oo) B eé(OO)| % 100% — 10% |eC(OO) — et/:(oo)|
|r(o0)] |r(0)]

where r(o00) = 1 is the steady-state value of the step reference input

%x100% = 0.11%
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Disadvantages of Closed-loop Control

» Increased system complexity: a sensing component is necessary,
which also introduced sensor noise

» Loss of gain: the forward gain in a closed-loop system is smaller by a
facjcor of m than the forward gain c.>f. an open-loop system.
This is exactly the factor that reduces the sensitivity of the system to
parameter variations and distrubances. Usually the gain in robustness

from closed-loop control significantly outweights the loss of gain.

» Potential for instability: the introduction of closed-loop control may
lead to system instability, even if the open-loop system is stable
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