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Feedback Control System Performance Measures

» Advantage of feedback control systems: the ability to adjust the
transient and steady-state response

» To design and analyze feedback control systems we must define and
measure their transient and steady-state performance

» The response of the system to specific test input signals is evaluated
according to several performance criteria:
> Rise time
» Percent overshoot
> Settling time
» Steady-state error
» Sensitivity to disturbance and noise
P Sensitivity to parameter variations



Test Signals

» The response of a system to specific input signals, called test signals,
allows us to study the transient and stead-state response of the system

» Test signals:

Test Signal | r(t) R(s)
Impulse | r(t) = d(t) = {E:)’ z ; g’ R(s) =1
Step | r(t)=H(t)= ['_d(s)ds = {é :ig R(s) = ¢
Ramp | r(t) = tH(t) = é: : i 8’ R(s)=%
Parabola | r(t) = %ZH(t) = {E’ Z i g’ R(s) =3

» Other test signals may be used: sine wave, square wave, periodic pulse
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Test Signal Example

» Consider an open-loop system with gain G(s):

9
s+ 10

Y(s) = G(s)R(s) G(s) =
» The impulse response is obtained with R(s) = 1 and reveals the gain:
Y(s) = G(s)
» Transient impulse response:
y(£) = LY ()} = L7H{G(s)} = 9710
» Steady-state impulse response:

lim x(t) =0

t—o0



Test Signal Example

» Consider an open-loop system with gain G(s):

9
Y(5) = G(s)R(s) ()= 35
> The step response is obtained with R(s) = 1:
B G(s) B 9
Y(s) = s s(s+10)

> Transient step response:
y(t) = £7H{Y(s)} = 0.9(1 — e 10%)
> Steady-state step response:
tll[go y(t) = sh—% sY(s) =0.9

Error signal: e(t) = r(t) — y(t)

v

v

Steady-state step error:

Jim, e(t) = lim sE(s) = Iim 276 =




Steady-state Error

R(s) Y
O)— F) G(s) ©

A 4

» Consider a unity-feedback (follow-up) system with control gain F(s) and
process gain G(s)

» Since the forward-path gain F(s)G(s) is a rational function, it can be
expressed as:
(s—z1)---(s = zm)

95— par1)- (5 — pn)

where 0 < g < n explicitly denotes the number of poles equal to zero:

F(s)G(s) =k

pL=p2=--=pg=0



Steady-state Error

» We will examine the steady—statg error of the unity-feedback system to
test signals of the form r(t) = %7 for t > 0, such as step (d = 0), ramp
(d = 1), parabola (d = 2), etc.

» Consider the error signal e(t) = r(t) — y(t) with Laplace transform:
E(s) = R(s) — Y(s) = R(s) — F(s)G(s)E(s)

» The reference-to-error transfer function is:
E(s) =~ —R(s)
1+ F(s)G(s)

» The steady-state error with reference input R(s) = sd% can be obtained
by the final value theorem:

. . . 1
Jim, e(t) = lim sE(s) = m A Fis16 ()57




Position Error Coefficient

» Unit step response: when r(t) is a unit step such that d = 0 and
R(s) = 1/s, the steady state error is:
1 1

li =l =
Am, e(t) = im Fs)6(s) ~ 14 K,

» Position Error Coefficient: K, = lims_,o F(s)G(s)

» Example: if a steady-state error to a unit step of at most 10% is
desired, then we need to choose the control gain F(s) such that K, > 9



Velocity Error Coefficient

» Ramp response: when r(t) is a ramp such that d =1 and
R(s) = 1/s?, the steady-state error is:

N 1 I
dm () = Im G Fsees K,

» Velocity Error Coefficient: K, = lims_,o sF(s)G(s)

» Example: if a steady-state error to a ramp input of at most 1% is
desired, then we need to choose the control gain F(s) such that
K, > 100



Acceleration Error Coefficient

» Parabolic response: when r(t) is a parabola such that d =2 and
R(s) = 1/s3, the steady-state error is:
1 1

dm e(t) = I G Feees? ~ K

» Acceleration Error Coefficient: K, = lims_,o s?>F(s)G(s)

» Example: if a steady-state error to a parabola input of at most 5% is
desired, then we need to choose the control gain F(s) such that K, > 20
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Steady-state Error
» When r(t) = t7/d! and R(s) = 1/s9*1, the steady-state error is:

. . ) 1
Jim, e(t) = lim sE(s) = Im i Fey6 ()59

» The error is determined by the term:

dis — 7). (s —
SUF(5)G(s) = k(s =) (5 2m)
s9(s — pg+1) -+ (s — pn)
» Three cases are possible, assuming that the control system is stable (all
poles of sE(s) are in the open left-half plane):

> If d < g, then s9F(s)G(s) will contain a term s9=¢ in the denominator
and sE(s) will contain g — d zeros at the origin. Hence, lim;_,o sE(s) =0
and zero steady-state error will be achieved.

» If d = g, then sE(s) will contain no zeros at the origin and a constant
finite steady-state error will be achieved.

> If d > q, then sE(s) will have d — g poles at the origin. Hence,
lims_0 SE(s) = oo and an infinite steady-state error will be achieved.
In other words, the system output will not track the reference input at af}



Control System Type

» The results on the previous slide indicate that the number g of poles at
the origin in F(s)G(s) determines the type of reference inputs that the
closed-loop system is able to track

» The number g of poles at the origin in F(s)G(s) is called system type

» A system of type g can track polynomial reference signals of degree g or
less to within a constant finite steady-state error

» During control design, the controller gain F(s) can be chosen to achieve
a certain number of poles at the origin if the process G(s) does not have
the required number of poles to track a desired reference signal

» It appears that having more integrators (1/s) in F(s)G(s) is better since
it allow tracking higher-order reference signals. However, the larger q is,
the harder it is to stabilize the system since integrators slow the
response down.
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Steady-state Error with Disturbance
D(s)

R(s) - E(s) L X3 Y(s)
F(s) G(s)

» Consider the unity-feedback system with distance
» The disturbance-to-error transfer function is:

E(s) _ —G(s)

D(s) 1+ F(s)G(s)
» The steady-state error by the final value theorem is:

. . . —sG(s)
Jm, e(t) = lim sE(s) = Im T F 6 (e

» The control gain F(s) should be designed as large as possible to
minimize the effect of the disturbance
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Example: Mobile Robot Heading Angle Control

Controller Vehicle dynamics
R(s) i K Y(s)
Desired G.(s) > G(s)= > Actual
; Ts+1 ;
heading angle - heading angle

» Consider a heading-angle steering control system for a mobile robot:

K K:
p—— Control gain: G¢(s) = K1 + ?2

Heading dynamics: G(s) =

» What is the steady-state error of the closed-loop system for a step input
and a ramp input?
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Example: Mobile Robot Heading Angle Control

> If Kb =0:
> the forward path gain is: G.(s)G(s) = T(sﬁ'?/ﬂ
P the system is type 0 with position error coefficient:

Ky, = lim G.(s)G(s) = KKy
s—0

P> the steady-state error for a step input is:

lim e(t) = — — —°
oo T TEK, T 14 KK,
> If K >0:
2 [ _ KKi(st+Ka/Ki)
> the forward path gain is: G.(s)G(s) = Gy

P the system is type 1 with velocity error coefficient:
K, = lim sG.(s)G(s) = KK>
s—0

P the steady-state error for a ramp input is:

lim e(t) = LR
t—00 K, KK
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Example: Mobile Robot Heading Angle Control

¥
A Input
_— Output

SS

» Transient response of the heading-angle steering control system to a
triangular wave reference input

» The response shows the effect of the non-zero steady-state error
ess = 1/(KK>)
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