
ECE171A: Linear Control System Theory
Lecture 5: Test Signals and Steady-state Error

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu
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Feedback Control System Performance Measures

I Advantage of feedback control systems: the ability to adjust the
transient and steady-state response

I To design and analyze feedback control systems we must define and
measure their transient and steady-state performance

I The response of the system to specific test input signals is evaluated
according to several performance criteria:
I Rise time
I Percent overshoot
I Settling time
I Steady-state error
I Sensitivity to disturbance and noise
I Sensitivity to parameter variations
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Test Signals

I The response of a system to specific input signals, called test signals,
allows us to study the transient and stead-state response of the system

I Test signals:

Test Signal r(t) R(s)

Impulse r(t) = δ(t) =

{
∞, t = 0,

0, t 6= 0
R(s) = 1

Step r(t) = H(t) =
∫ t
−∞ δ(s)ds =

{
1, t ≥ 0,

0, t < 0
R(s) = 1

s

Ramp r(t) = tH(t) =

{
t, t ≥ 0,

0, t < 0
R(s) = 1

s2

Parabola r(t) = t2

2 H(t) =

{
t2

2 , t ≥ 0,

0, t < 0
R(s) = 1

s3

I Other test signals may be used: sine wave, square wave, periodic pulse
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Test Signal Example

I Consider an open-loop system with gain G (s):

Y (s) = G (s)R(s) G (s) =
9

s + 10

I The impulse response is obtained with R(s) = 1 and reveals the gain:

Y (s) = G (s)

I Transient impulse response:

y(t) = L−1 {Y (s)} = L−1 {G (s)} = 9e−10t

I Steady-state impulse response:

lim
t→∞

x(t) = 0
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Test Signal Example
I Consider an open-loop system with gain G (s):

Y (s) = G (s)R(s) G (s) =
9

s + 10

I The step response is obtained with R(s) = 1
s :

Y (s) =
G (s)

s
=

9

s(s + 10)

I Transient step response:

y(t) = L−1 {Y (s)} = 0.9(1− e−10t)

I Steady-state step response:

lim
t→∞

y(t) = lim
s→0

sY (s) = 0.9

I Error signal: e(t) = r(t)− y(t)

I Steady-state step error:

lim
t→∞

e(t) = lim
s→0

sE (s) = lim
s→0

s + 1

s + 10
= 0.1
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Steady-state Error

I Consider a unity-feedback (follow-up) system with control gain F (s) and
process gain G (s)

I Since the forward-path gain F (s)G (s) is a rational function, it can be
expressed as:

F (s)G (s) = k
(s − z1) · · · (s − zm)

sq(s − pq+1) · · · (s − pn)

where 0 ≤ q ≤ n explicitly denotes the number of poles equal to zero:

p1 = p2 = · · · = pq = 0

6



Steady-state Error

I We will examine the steady-state error of the unity-feedback system to
test signals of the form r(t) = td

d! for t ≥ 0, such as step (d = 0), ramp
(d = 1), parabola (d = 2), etc.

I Consider the error signal e(t) = r(t)− y(t) with Laplace transform:

E (s) = R(s)− Y (s) = R(s)− F (s)G (s)E (s)

I The reference-to-error transfer function is:

E (s) =
1

1 + F (s)G (s)
R(s)

I The steady-state error with reference input R(s) = 1
sd+1 can be obtained

by the final value theorem:

lim
t→∞

e(t) = lim
s→0

sE (s) = lim
s→0

1

(1 + F (s)G (s))sd
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Position Error Coefficient

I Unit step response: when r(t) is a unit step such that d = 0 and
R(s) = 1/s, the steady state error is:

lim
t→∞

e(t) = lim
s→0

1

1 + F (s)G (s)
=

1

1 + Kp

I Position Error Coefficient: Kp = lims→0 F (s)G (s)

I Example: if a steady-state error to a unit step of at most 10% is
desired, then we need to choose the control gain F (s) such that Kp ≥ 9
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Velocity Error Coefficient

I Ramp response: when r(t) is a ramp such that d = 1 and
R(s) = 1/s2, the steady-state error is:

lim
t→∞

e(t) = lim
s→0

1

(1 + F (s)G (s))s
=

1

Kv

I Velocity Error Coefficient: Kv = lims→0 sF (s)G (s)

I Example: if a steady-state error to a ramp input of at most 1% is
desired, then we need to choose the control gain F (s) such that
Kv ≥ 100
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Acceleration Error Coefficient

I Parabolic response: when r(t) is a parabola such that d = 2 and
R(s) = 1/s3, the steady-state error is:

lim
t→∞

e(t) = lim
s→0

1

(1 + F (s)G (s))s2
=

1

Ka

I Acceleration Error Coefficient: Ka = lims→0 s
2F (s)G (s)

I Example: if a steady-state error to a parabola input of at most 5% is
desired, then we need to choose the control gain F (s) such that Ka ≥ 20
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Steady-state Error
I When r(t) = td/d! and R(s) = 1/sd+1, the steady-state error is:

lim
t→∞

e(t) = lim
s→0

sE (s) = lim
s→0

1

(1 + F (s)G (s))sd

I The error is determined by the term:

sdF (s)G (s) = k
sd(s − z1) · · · (s − zm)

sq(s − pq+1) · · · (s − pn)

I Three cases are possible, assuming that the control system is stable (all
poles of sE (s) are in the open left-half plane):

I If d < q, then sdF (s)G (s) will contain a term sq−d in the denominator
and sE (s) will contain q − d zeros at the origin. Hence, lims→0 sE (s) = 0
and zero steady-state error will be achieved.

I If d = q, then sE (s) will contain no zeros at the origin and a constant
finite steady-state error will be achieved.

I If d > q, then sE (s) will have d − q poles at the origin. Hence,
lims→0 sE (s) =∞ and an infinite steady-state error will be achieved.
In other words, the system output will not track the reference input at all.11



Control System Type

I The results on the previous slide indicate that the number q of poles at
the origin in F (s)G (s) determines the type of reference inputs that the
closed-loop system is able to track

I The number q of poles at the origin in F (s)G (s) is called system type

I A system of type q can track polynomial reference signals of degree q or
less to within a constant finite steady-state error

I During control design, the controller gain F (s) can be chosen to achieve
a certain number of poles at the origin if the process G (s) does not have
the required number of poles to track a desired reference signal

I It appears that having more integrators (1/s) in F (s)G (s) is better since
it allow tracking higher-order reference signals. However, the larger q is,
the harder it is to stabilize the system since integrators slow the
response down.
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Steady-state Error with Disturbance

I Consider the unity-feedback system with distance
I The disturbance-to-error transfer function is:

E (s)

D(s)
=

−G (s)

1 + F (s)G (s)

I The steady-state error by the final value theorem is:

lim
t→∞

e(t) = lim
s→0

sE (s) = lim
s→0

−sG (s)

1 + F (s)G (s)

I The control gain F (s) should be designed as large as possible to
minimize the effect of the disturbance 13



Example: Mobile Robot Heading Angle Control

I Consider a heading-angle steering control system for a mobile robot:

Heading dynamics: G (s) =
K

τs + 1
Control gain: Gc(s) = K1 +

K2

s

I What is the steady-state error of the closed-loop system for a step input
and a ramp input?
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Example: Mobile Robot Heading Angle Control
I If K2 = 0:

I the forward path gain is: Gc(s)G (s) = KK1

τ(s+1/τ)
I the system is type 0 with position error coefficient:

Kp = lim
s→0

Gc(s)G (s) = KK1

I the steady-state error for a step input is:

lim
t→∞

e(t) =
1

1 + Kp
=

1

1 + KK1

I If K2 > 0:
I the forward path gain is: Gc(s)G (s) = KK1(s+K2/K1)

τs(s+1/τ)
I the system is type 1 with velocity error coefficient:

Kv = lim
s→0

sGc(s)G (s) = KK2

I the steady-state error for a ramp input is:

lim
t→∞

e(t) =
1

Kv
=

1

KK2
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Example: Mobile Robot Heading Angle Control

I Transient response of the heading-angle steering control system to a
triangular wave reference input

I The response shows the effect of the non-zero steady-state error
ess = 1/(KK2)
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