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Feedback Control System Performance Measures

I Advantage of feedback control systems: the ability to adjust the
transient and steady-state response

I To design and analyze feedback control systems we must define and
measure their transient and steady-state performance

I The response of the system to specific test input signals is evaluated
according to several performance criteria:
I Rise time
I Percent overshoot
I Settling time
I Steady-state error
I Sensitivity to disturbance and noise
I Sensitivity to parameter variations
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Follow-up Second-order System

I Consider a unity feedback (follow-up) second-order system

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

G (s)

1 + G (s)
=

ω2
n

s2 + 2ζωns + ω2
n

with natural frequency ωn and damping ratio ζ
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Second-order System Poles

I Transfer function: T (s) =
Y (s)

R(s)
=

G (s)

1 + G (s)
=

ω2
n

s2 + 2ζωns + ω2
n

I Transfer function poles:

p = −ζωn ± ωn

√
ζ2 − 1

Response Damping ratio Poles

Underdamped ζ < 1 −ζωn ± jωn

√
1− ζ2

Critically damped ζ = 1 −ωn,−ωn

Overdamped ζ > 1 −ζωn ± ωn

√
ζ2 − 1

I The natural frequency ωn and damping ratio ζ of a pole p can be
obtained as:

ωn = |p| ζ = − cos( p)
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Second-order System Step Response

5



Second-order System Step Response

I If the poles are complex, the step response has oscillations and overshoot

I As the poles move toward the real axis, maintaining a fixed distance
from the origin (ζ increasing for fixed ωn), the oscillations and overshoot
decrease

I If ωn increases, the poles move further left in the left half plane and the
oscillations reduce faster

I If all poles are on the negative real axis, there are no oscillations or
overshoot

I If there is a pole in the open right half plane, then the step response
contains a term that goes to ∞
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Underdamped Second-order System Impulse Response

I Consider the underdamped and critically damped cases (0 ≤ ζ ≤ 1)

I The impulse response is obtained with R(s) = 1 and reveals the transfer
function:

Y (s) =
G (s)

1 + G (s)
=

ω2
n

s2 + 2ζωns + ω2
n

=
ω2
n

(s + α)2 + ω2
d

where we introduced the terms:
I damping constant: α = ζωn

I damped frequency: ωd = ωn

√
1− ζ2

I Transient impulse response:

y(t) = L−1 {Y (s)} =
ωn√

1− ζ2
e−ζωnt sin(ωn

√
1− ζ2t)

=

(
α2

ωd
+ ωd

)
e−αt sin(ωd t)
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Underdamped Second-order System Impulse Response

I As the damping ζ decreases, the poles approach the imaginary axis and
the response becomes increasingly oscillatory
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Underdamped Second-order System Step Response

I The step response is obtained with R(s) = 1
s :

Y (s) =
G (s)

s(1 + G (s))
=

ω2
n

s(s2 + 2ζωns + ω2
n)

I Transient step response with θ = cos−1(ζ):

y(t) = L−1 {Y (s)} = 1− 1√
1− ζ2

e−ζωnt sin(ωn

√
1− ζ2t + θ)

= 1− e−αt
(

cos(ωd t) +
α

ωd
sin(ωd t)

)
I The derivative of the step response is equal to the impulse response:

d

dt
y(t) =

(
α2

ωd
+ ωd

)
e−αt sin(ωd t)
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Underdamped Second-order System Step Response

I As the damping ζ decreases, the poles approach the imaginary axis and
the response becomes increasingly oscillatory
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Step Response Performance Measures
I Standard performance measures are defined in terms of the step

response of the closed-loop system

I Rise time tr : time for the system step response y(t) to go from δ% to
1− δ% of the steady-state value

I Peak time tp: time at which the system step response y(t) achieves its
maximum value (defined only for underdamped systems)

I Percent overshoot: the max value of the system step response, y(tp),
expressed as a percentage of the steady-state value, y(∞) = lim

t→∞
y(t):

percent overshoot =
y(tp)− y(∞)

y(∞)
× 100%

I Settling time ts : the time required for the step response to settle
within δ% of the steady-state value, i.e., for all t ≥ ts :

|y(t)− y(∞)| ≤ δ

100
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Underdamped Second-order System Step Response
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Underdamped Second-order System Rise Time

I Rise time: an exact expression for tr is challenging to obtain.

I The best linear fit to the 10%-to-90% rise time is accurate for
0.3 < ζ < 0.8:

tr ≈
2.16ζ + 0.6

ωn

(a) Rise time (b) Effect of ωn for ζ = 0.2 (c) Effect of ζ for ωn = 5
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Underdamped Second-order System Peak Time

I Peak time: obtained by setting the derivative of the response to zero
and solving for t:

0 =

(
α2

ωd
+ ωd

)
e−αt sin(ωd t) ⇒ t =

kπ

ωd
, k = 0, 1, 2, . . .

I The maximum overshoot occurs at the first peak:

tp =
π

ωd
=

π

ωn

√
1− ζ2

I The max value of the system step response is:

y(tp) = 1 + e
−α π

ωd
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Underdamped Second-order System Percent Overshoot
I Percent overshoot: since y(∞) = limt→∞ y(t) = 1:

percent overshoot =
y(tp)− y(∞)

y(∞)
× 100% = e

−α π
ωd × 100%

I There is a trade-off between swiftness of response and percent overshoot
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Underdamped Second-order System Settling Time

I Underdamped second-order system step response:

y(t) = 1− e−αt
(

cos(ωd t) +
α

ωd
sin(ωd t)

)
I Settling time: since the cosine and sine terms oscillate, approximate

the time required for the step response to settle within δ% of the
steady-state value by calculating the time at which the exponential term
e−αt becomes equal to δ/100:

e−αts ≈ δ

100
⇒ ts ≈ −

1

α
ln

δ

100

I For δ = 2%, the settling time is: ts ≈
4

α
=

4

ζωn
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Underdamped Second-order System Performance Measures
I It is desirable to achieve small tr , small percent overshoot, and small ts

I As ωn increases with fixed ζ, tr decreases, tp decreases, the percent
overshoot stays the same, and ts decreases

I As ζ increases with fixed ωn, tr stays the same, tp increases, the percent
overshoot decreases, and ts decreases

I If desired upper bounds are given:

tr ≤ t̄r tp ≤ t̄p p.o. ≤ ¯p.o. ts ≤ t̄s

we can obtain constraints for ζ and ωn, which determine valid regions for
the transfer function poles −ζωn ± jωn

√
1− ζ2 in the complex plane:

2.16ζ + 0.6

ωn
≤ t̄r

ζ√
1− ζ2

π ≥ − ln
¯p.o.

100

π

ωn

√
1− ζ2

≤ t̄p
4

ζωn
≤ t̄s
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Effect of Additional Poles or Zeros

I So far we analyzed the step response of an underdamped second-order
system with transfer function:

T (s) =
ω2
n

s2 + 2ζωns + ω2
n

I What happens if the transfer function contains zeros or additional poles?
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Effect of Poles on the Step Response

I From the partial fraction expansion of the transfer function, we know
that a pole p contributes a term of the form ept

I If any pole is in the right half-plane (Re(p) > 0), then the step response
will go to infinity (unstable system)

I If any pole is far left in the left half-plane (Re(p)� 0), then its
contribution to the step response dies out quickly

I If the poles can be divided into a set that is close to the origin, and
another set that is far away, then the poles that are close to the origin
are called dominant poles. The exponential terms in the step response
of the dominant poles determine the overall system response.

I Adding a left half-plane pole to the transfer function makes the response
slower because an additional exponential term must die out before the
system reaches its final value
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Introducing a Pole in a Second-order System
I Introduce a pole s = −1/γ in the transfer function:

Tγ(s) =
ω2
n

(s2 + 2ζωns + ω2
n)(γs + 1)

I If |1/γ| ≥ 10|ζωn|, then Tγ(s) can be approximated by T (s) since the
contribution of the new pole to the step response is dominated by the
original two poles
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Introducing a Zero in a Second-order System
I Introduce a zero s = −a in the transfer function:

Ta(s) =
(1a s + 1)ω2

n

s2 + 2ζωns + ω2
n

I The reason for writing (1a s + 1) instead of s + a is to maintain a
steady-state value of 1

I The new transfer function can be decomposed as:

Ta(s) =
ω2
n

s2 + 2ζωns + ω2
n

+
s

a

ω2
n

s2 + 2ζωns + ω2
n

= T (s) +
s

a
T (s)

I The response of the third order system to a step R(s) = 1/s is:

Ya(s) =
(
T (s) +

s

a
T (s)

) 1

s
= Y (s) +

s

a
Y (s)

ya(t) = y(t) +
1

a
ẏ(t)

where Y (s) and y(t) are the s- and t-domain step response of the
original second-order system
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Introducing a Zero in a Second-order System
I Step response of a system with transfer function Ta(s) =

( 1
a
s+1)ω2

n

s2+2ζωns+ω2
n

and ζ = 0.45

I As a increases, the zero moves farther into the left half-plane and the
step response of Ta(s) approaches that of the second-order system T (s)
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Introducing a Zero in a Second-order System
I We can see from the step-response of Ta(s) that adding a zero in the

left half-plane makes the step response faster:
I the rise time decreases
I the peak time decreases
I the overshoot increases
I the settling time does not change

I If the zero is added in the right half-plane (i.e., a < 0), then ẏ(t) is
subtracted from y(t) to produce ya(t). The response is slower and can
go decrease before before rising to its steady state value (undershoot).
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Dominant Pole-Zero Approximation

I If a high-order system has a cluster of poles and zeros that are much
closer (e.g., 5 times or more) to the origin than the remaining poles and
zeros, then the system can be approximated by a lower order system
with only those dominant poles and zeros

I Example: if a� ζωn > 0 and 1/γ � ζωn > 0, then:

Ta,γ(s) =
ω2
n(1a s + 1)

(s2 + 2ζωns + ω2
n)(γs + 1)

≈ T (s) =
ω2
n

s2 + 2ζωns + ω2
n
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Example: Dorf-Bishop Problem AP5.1

I Consider a control system with transfer function:

T (s) =
Y (s)

R(s)
=

108(s + 3)

(s + 9)(s2 + 8s + 36)

(a) Determine the steady-state error for a unit step input.

(b) Assume that the complex poles are dominant. Determine the percent
overshoot and the settling time to within 2% of the steady-state value.

(c) Plot the actual system response and compare it with the estimates of part
(b).
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Example AP5.1: Part (a)

I The error is:

E (s) = R(s)− Y (s) = R(s)− T (s)R(s) = (1− T (s))R(s)

I The steady-state error for input R(s) = 1/s is:

lim
t→∞

e(t) = lim
s→0

sE (s) = lim
s→0

(1− T (s))

= lim
s→0

(
1− 108(s + 3)

(s + 9)(s2 + 8s + 36)

)
= 1− 108(3)

9(36)
= 0
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Example AP5.1: Part (b)

I Assuming that the complex poles are dominant:

T (s) =
36( s3 + 1)

(s + 9)(s2 + 8s + 36)
≈ 36

s2 + 8s + 36

I The second-order system approximation has natural frequency ωn = 6
and damping ratio ζ = 8

2ωn
= 2

3 .

I The percent overshoot is:

p.o. = 100 exp

(
− ζ√

1− ζ2
π

)
= 100 exp

(
− 2π√

5

)
≈ 6%

I The settling time to within 2% of the steady-state value is:

ts ≈
4

ζωn
= 1 second.

I The percent overshoot can also be determined approximately from
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Example AP5.1: Part (b)

I The percent overshoot can also be determined approximately from the
second-order system plots on Slide 10 and 15.
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Example AP5.1: Part (c)
I The step response of the original system is:

1 sys = tf([108 324],[1 17 108 324]);

characteristics = stepinfo(sys,

3 ’RiseTimeLimits’,[0.05,0.95],

’SettlingTimeThreshold’, 0.02);

5 stepplot(sys);

hold on;

7 plot([0,2],[characteristics.Peak,

characteristics.Peak],’b--’);

I The actual percent overshoot and settling time are:

p.o = 34.4% and ts = 1.18 second.

I The difference in the actual and estimated percent overshoot is due to
the term ( sa + 1) in the numerator, which does not satisfy the
requirement for an accurate dominant pole-zero approximation:

3 = a 6� ζωn = 4 29



s-Plane Root Location
I To understand the effect of the transfer function poles and zeros on the

system response in general, consider an abstract control system without
repeated poles

I Suppose that the step response achieves a unit steady-state value and
has partial fraction expansion:

Y (s) =
1

s
+
∑
i

Ai

s + σi
+
∑
k

Bks + Ck

s2 + 2αks + (α2
k + ω2

k)

where Ai , Bk , and Ck are some constants.

I The poles are real (s = −σi ) or complex conjugate pairs
(s = −αk ± jωk)

I The inverse Laplace transform of the step response is:

y(t) = 1 +
∑
i

Aie
−σi t +

∑
k

Dke
−αk t sin(ωkt + θk)

where Dk , θk depend on Bk , Ck , αk , and ωk
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s-Plane Root Location

I The response is composed of the steady-state value, exponential terms,
and damped sinusoidal terms

I The response achieves its steady-state value only if the real part of the
poles is in the left half of the s-plane, which ensures that the
exponential terms decay

I It is important to understand the effect of adding, deleting, or moving
poles and zeros of T (s) in the s-plane on the step and impulse response

I The poles of T (s) determine the particular response modes (exponential
terms) that will be present

I The zeros of T (s) establish the relative weights (Ai and Dk) of the
response modes. Moving a zero closer to a pole will reduce the weights of
the corresponding exponential term.
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s-Plane Root Location
I Impulse response of an abstract control system for various transfer

function pole locations in the s-plane
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