
ECE171A: Linear Control System Theory
Lecture 7: Stability

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu
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Chenfeng Wu: chw357@ucsd.edu
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Observations about Impulse Response

I Let T (s) = Y (s)
R(s) be the transfer function of a control system with input

R(s) and output Y (s)

I The system response to an impulse input R(s) = 1 is Y (s) = T (s)

I In the time domain, the response y(t) may be obtained by computing a
partial fraction expansion of T (s) and applying an inverse Laplace
transform

I A pole p of T (s) with residue r appears as an exponential term rept in
the time-domain response y(t)

I If the transfer function contains poles in the open right half-plane
(ORHP), then the response y(t) will go to infinity

I If all poles of the transfer function are in the open left half-plane
(OLHP), then the response y(t) will settle to a steady-state value
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Bounded Input Bounded Output

I A signal f (t) is bounded if there exists some constant M such that
|f (t)| ≤ M for all t

I We would like to ensure that the response y(t) of a control system is
bounded, if we provide a bounded reference input r(t)

I A reference input r(t) with rational function Laplace transform R(s) is
bounded if and only if:
I the poles pi of R(s) satisfy Re(pi ) ≤ 0 for all i ,
I all poles with Re(pi ) = 0 are of multiplicity 1 (simple roots).

I Similarly, the response y(t) with rational function Laplace transform
Y (s) is bounded if and only if Y (s) has no right half-plane poles or
repeated poles on the imaginary axis.
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BIBO Stability

I A system is bounded-input bounded-output (BIBO) stable if every
bounded input leads to a bounded output

I A system is unstable if there is at least one bounded input that
produces an unbounded output

BIBO Stability of LTI Systems

A linear time-invariant system with transfer function T (s) is:

I stable, if all poles of T (s) are in the open left half-plane in the s
domain,

I marginally stable, if all poles of T (s) are in the closed left half-plane in
the s domain and all poles with zero real part are simple roots (of
multiplicity 1),

I unstable, otherwise.

4



No Pole-Zero Cancellations

I Consider a linear time-invariant system with transfer function:

T (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + a0

I The system is BIBO stable if all poles of T (s) are in the OLHP

I No pole-zero cancellations: common poles and zeros in T (s) should
not be cancelled before checking stability!

I A cancelled pole will not show up in the input response but will appear
in the natural response (when the initial conditions are non-zero) or due
to additional inputs (e.g., disturbances)
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Pole-Zero Cancellation Example

I Consider the transfer function:

T (s) =
Y (s)

U(s)
=

s − 1

s2 + 2s − 3
=

s − 1

(s + 3)(s − 1)

I If we cancel the common pole and zero, T (s) = 1/(s + 3) and we might
erroneously conclude that the system is BIBO stable since the pole
p1 = −3 is in the OLHP

I The ODE description of the system is:

ÿ(t) + 2ẏ(t)− 3y(t) = u̇(t)− u(t)

I If the initial conditions y(0), ẏ(0) are not zero, then the Laplace
transform will be:

s2Y (s)− sy(0)− ẏ(0) + 2sY (s)− 2y(0)− 3Y (s) = sU(s)− U(s)
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Pole-Zero Cancellation Example

I Total response with non-zero initial conditions:

Y (s) =
s − 1

s2 + 2s − 3︸ ︷︷ ︸
T (s)

U(s) +
s + 2

s2 + 2s − 3
y(0) +

1

s2 + 2s − 3
ẏ(0)

I Step response for U(s) = 1/s with non-zero initial conditions:

y(t) =
1

3
(1− e−3t)︸ ︷︷ ︸

forced response

+
y(0)

4
(3et + e−3t)︸ ︷︷ ︸

natural response

+
ẏ(0)

4
(et − e−3t)︸ ︷︷ ︸

natural response

I Even if the input is bounded, when y(0) or ẏ(0) are non-zero, the terms
3y(0)
4 et and ẏ(0)

4 et are unbounded and the system is not BIBO stable
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Determining BIBO Stability

I A control system with transfer function

T (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + a0

is BIBO stable if all poles are in the OLHP

I Computing the poles might not always be easy or necessary, e.g.,
high-order or symbolic characteristic polynomial a(s)

I Whether the poles are in the OLHP can be verified from the polynomial
coefficients rather than from the actual pole values

I Vieta’s formulas relate the coefficients of a polynomial to its roots
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Vieta’s Formulas

I Consider the characteristic polynomial with roots p1, . . ., pn:

a(s) = ans
n + . . .+ a1s + a0 = an(s − p1) · · · (s − pn)

I Vieta’s formulas relate the coefficients ai to the roots pi :

n∑
i=1

pi = −an−1

an

n∏
i=1

pi = (−1)n
a0
an

∑
1≤i1<i2<···<ik≤n

k∏
j=1

pij = (−1)k
an−k

an

I Examples for n = 2 and n = 3:

a2(s − p1)(s − p2) = a2s
2−a2(p1 + p2)︸ ︷︷ ︸

a1

s + a2p1p2︸ ︷︷ ︸
a0

a3(s − p1)(s − p2)(s − p3) = a3s
3−a3(p1 + p2 + p3)︸ ︷︷ ︸

a2

s2

+ a3(p1p2 + p1p3 + p2p3)︸ ︷︷ ︸
a1

s −a3p1p2p3︸ ︷︷ ︸
a0
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Necessary Condition for BIBO Stability

I If all poles p1, . . . , pn are in the OLHP, then all characteristic polynomial
coefficients a0, . . . , an have the same sign and are non-zero

I This requirement is necessary but not sufficient

I If the necessary condition is not satisfied, then the system is BIBO
unstable

I If the necessary condition is satisfied, additional information is needed to
decide if the system is BIBO stable

Necessary Condition for BIBO Stability of LTI Systems

If all poles of the transfer function T (s) = b(s)/a(s) of an LTI system are in
the open left half-plane in the s domain, then all coefficients of the
characteristic polynomial a(s) will be non-zero and have the same sign.
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Necessary Condition for BIBO Stability Example

I Consider an LTI system with transfer function T (s) = b(s)/a(s) and
characteristic polynomial a(s) shown below. Is this system BIBO stable?

I a(s) = s3 − 2s2 + s + 1

I a(s) = s4 + s2 + s + 1

I a(s) = s3 + 2s2 + 2s + 1

I a(s) = s3 + 2s2 + s + 12
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Necessary and Sufficient Condition for BIBO Stability

I In the 1870s-1890s, Edward Routh and Adolf Hurwitz
independently developed a method for determining the
locations in the s plane but not the actual values of the
roots of a polynomial with constant real coefficients

I Characteristic polynomial:

a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s + a0

I The Routh-Hurwitz method constructs a table with
n + 1 rows from the coefficients ai of an n-th degree
polynomial a(s) and relates the number of sign changes
in the first column of the table to the number of roots
in the closed right half-plane

E. Routh

A. Hurwitz
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Routh Table
I a(s) = ans

n + an−1s
n−1 + · · ·+ a2s

2 + a1s + a0

sn an an−2 an−4 · · · a0

sn−1 an−1 an−3 an−5 · · · 0

sn−2 bn−1 = −

∣∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣∣
an−1

bn−3 = −

∣∣∣∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣∣∣∣
an−1

bn−5 · · · 0

sn−3 cn−1 = −

∣∣∣∣∣∣∣∣
an−1 an−3

bn−1 bn−3

∣∣∣∣∣∣∣∣
bn−1

cn−3 = −

∣∣∣∣∣∣∣∣
an−1 an−5

bn−1 bn−5

∣∣∣∣∣∣∣∣
bn−1

cn−5 · · · 0
...

...
...

... · · ·
...

s0 a0 0 0 · · · 0

I Any row can be multiplied by a positive constant without changing the
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Routh Table (n = 6)

I a(s) = a6s
6 + a5s

5 + a4s
4 + a3s

3 + a2s
2 + a1s + a0

s6 a6 a4 a2 a0

s5 a5 a3 a1 0

s4 b5 = − 1
a5

∣∣∣∣∣a6 a4

a5 a3

∣∣∣∣∣ b3 = − 1
a5

∣∣∣∣∣a6 a2

a5 a1

∣∣∣∣∣ b1 = a0 0

s3 c5 = − 1
b5

∣∣∣∣∣a5 a3

b5 b3

∣∣∣∣∣ c3 = − 1
b5

∣∣∣∣∣a5 a1

b5 b1

∣∣∣∣∣ 0 0

s2 d5 = − 1
c5

∣∣∣∣∣b5 b3

c5 c3

∣∣∣∣∣ d3 = a0 0 0

s1 e5 = − 1
d5

∣∣∣∣∣c5 c3

d5 d3

∣∣∣∣∣ 0 0 0

s0 a0 0 0 0
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Routh-Hurwitz BIBO Stability Criterion

I The Routh-Hurwitz criterion is a necessary and sufficient criterion for
BIBO stability of linear time-invariant systems

Necessary and Sufficient Condition for BIBO Stability of LTI Systems

Consider a Routh table constructed from the characteristic polynomial a(s)
of an LTI system with transfer function T (s) = b(s)/a(s). The number of
sign changes in the first column of the Routh table is equal to the number of
roots of a(s) in the closed right half-plane. The system is BIBO stable if and
only if there are no sign changes in the first column of the Routh table.

I There are two special cases related to the Routh table:
1. The first element of a row is 0 but some of the other elements are not

I Solution: replace the 0 with an arbitrary small ε

2. All elements of a row are 0
I Solution: replace the zero row with the coefficients of dA(s)

ds
, where A(s) is

an auxiliary polynomial with coefficients from the row just above the zero
row
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Routh-Hurwitz Auxiliary Polynomial

I The Routh table associated with polynomial a(s)
contains an all zero row when a(s) has roots located
symmetrically about the origin, e.g.,:

(s + σ)(s − σ) or (s + jω)(s − jω)

I This special case is resolved using an auxiliary
polynomial A(s) with coefficients obtained from the
row that precedes the zero row in the Routh table

I The roots of the auxiliary polynomial A(s) satisfy the
original characteristic equation (a(s) = 0) and are
located symmetrically about the origin

I Since the auxiliary polynomial roots are symmetric
about the origin, the system is either unstable or
marginally stable but cannot be stable
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Routh-Hurwitz Stability: Second-order System

I Consider the characteristic polynomial of a second-order system:

a(s) = as2 + bs + c

I The Routh table is:

s2 a c

s1 b 0

s0 − 1
b (0− bc) = c 0

I A necessary and sufficient condition for BIBO stability of a second-order
system is that all coefficients of the characteristic polynomial are
non-zero and have the same sign.

17



Routh-Hurwitz Stability: Third-order System

I Consider the characteristic polynomial of a third-order system:

a(s) = a3s
3 + a2s

2 + a1s + a0

I The Routh table is:

s3 a3 a1

s2 a2 a0

s1 − 1
a2

(a3a0 − a1a2) 0

s0 a0 0

I A necessary and sufficient condition for BIBO stability of a third-order
system is that all coefficients of the characteristic polynomial are
non-zero, have the same sign, and a1a2 > a0a3.

I If a1a2 = a0a3, one pair of roots lies on the imaginary axis in the s plane
and the system is marginally stable. This results in an all zero row in the
Routh table.
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Routh-Hurwitz Stability: Higher-order System
I Consider the characteristic polynomial of a fifth-order system:

a(s) = s5 + s4 + 10s3 + 72s2 + 152s + 240

I The Routh table is:

s5 1 10 152

s4 1 72 240

s3 −62 −88 0

s2 70.6 240 0

s1 122.6 0 0

s0 240 0 0

I Since there are two sign changes in the first column, there are two roots
in the right half-plane and the system is unstable

I The roots of a(s) are:

a(s) = (s + 3)(s + 1± j
√

3)(s − 2± j4)
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Routh-Hurwitz Stability: Special Case 1

I Consider the polynomial:

a(s) = s5 + 2s4 + 2s3 + 4s2 + 11s + 10

I The Routh table is:

s5 1 2 11

s4 2 4 10

s3 ���
ε

0 6 0

s2 c4 = 1
ε (4ε− 12) 10 0

s1 d4 = 1
c4

(6c4 − 10ε) 0 0

s0 10 0 0

I For 0 < ε� 1, we see that c4 < 0 and d4 > 0

I Since there are two sign changes in the first column, there are two roots
in the right half-plane and the system is unstable
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Routh-Hurwitz Stability: Special Case 1

I Consider the polynomial:

a(s) = s4 + s3 + 2s2 + 2s + 3

I The Routh table is:

s4 1 2 3

s3 1 2 0

s2 ���
ε

0 3 0

s1 2− 3
ε 0 0

s0 3 0 0

I For 0 < ε� 1, we see that 2− 3
ε < 0

I Since there are two sign changes in the first column, there are two roots
in the right half-plane and the system is unstable
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Routh-Hurwitz Stability: Special Case 2

I Consider the polynomial:

a(s) = s3 + 2s2 + 4s + 8

I The Routh table is:

s3 1 4

s2 2 8

s1 0 0

s0 8 0

I There is an all-zero row at s1

I The auxiliary polynomial is: A(s) = 2s2 + 8 = 2(s + j2)(s − j2)

I There are two roots on the jω-axis and the system is marginally stable
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Routh-Hurwitz Stability: Special Case 2
I Consider the polynomial:

a(s) = s5 + s4 + 2s3 + 2s2 + s + 1

I The Routh table is:

s5 1 2 1

s4 1 2 1

s3 0 0 0

s2 1 1 0

s1 0 0 0

s0 1 0 0

I There is an all-zero row at s3 and s1

I The auxiliary polynomial at the s3 row is:

A(s) = s4 + 2s2 + 1 = (s2 + 1)2 = (s + j)(s − j)(s + j)(s − j)

I There are repeated roots on the jω-axis and the system is unstable
23



Routh-Hurwitz Stability: Special Case 2
I Consider the polynomial:

a(s) = s5 + 4s4 + 8s3 + 8s2 + 7s + 4

I The Routh table is:

s5 1 8 7

s4 4 8 4

s3 6 6 0

s2 4 4 0

s1 ���
8

0 0 0

s0 4 0 0

I There is an all-zero row at s1 with auxiliary polynomial

A(s) = 4s2 + 4 = 4(s2 + 1) = 4(s + j)(s − j)

I There are two roots on the jω-axis and the system is marginally stable
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Routh-Hurwitz Stability: Parametric System

I The Routh-Hurwitz stability criterion can be used to determine the
range of system parameters for which the system is stable

I Transfer function: T (s) = K
s3+8s2+9s+(K−18)

I Characteristic polynomial: a(s) = s3 + 8s2 + 9s + (K − 18)
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Routh-Hurwitz Stability: Parametric System

I Characteristic polynomial: a(s) = s3 + 8s2 + 9s + (K − 18)

I The Routh table is:

s3 1 9

s2 8 (K − 18)

s1 90−K
8 0

s0 (K − 18) 0

I There will be no sign changes in the first column of the Routh table if
(90− K ) > 0 and (K − 18) > 0

I The system is BIBO stable if and only if 18 < K < 90
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Relative Stability

I Even if all poles of a transfer function
have negative real parts, it might be
necessary to check their relative
distances to the imaginary axis

I For example, r2 is relatively more
stable than r1 and r̂1

I All roots of a(s) have real parts less than σ if and only if all roots of
ā(s) = a(s + σ) are in the open left half-plane

I Use the Routh-Hurwitz criterion on ā(s) to check whether all roots of
a(s) lie to the left of σ
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