
ECE171A: Linear Control System Theory
Lecture 9: PID Control

Instructor:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistant:
Chenfeng Wu: chw357@ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:chw357@ucsd.edu


Second-order System Control Design

I Consider a unity-feedback control system with a second-order plant:

G (s) =
b0

s2 + a1s + a0

I How should the controller F (s) be designed to ensure that the system is
stable and its step response has zero steady-state error?
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Proportional (P) Control
I A proportional (P) controller uses a constant gain Kp:

F (s) =
U(s)

E (s)
= Kp u(t) = Kpe(t)

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

F (s)G (s)

1 + F (s)G (s)
=

Kpb0
s2 + a1s + (a0 + Kpb0)

I P control can accelerate the response of a second-order system by
changing the natural frequency ω2

n = (a0 + Kpb0)

I To ensure stability, we need a1 > 0 and a0 + Kpb0 > 0. P control can
stabilize only some systems because it adjusts one coefficient of the
characteristic equation.

I For a0 6= 0, F (s)G (s) has q = 0 poles at the origin (type 0 system).
The closed-loop system step response will have a constant finite
steady-state error.
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Proportional-Integral (PI) Control

I To achieve zero steady-state step error, we need a type 1 system.

I To add a pole at the origin in F (s)G (s), introduce an integrator in F (s)

I A proportional-integral (PI) controller uses a proportional gain Kp

and an integral gain Ki :

F (s) =
U(s)

E (s)
= Kp +

Ki

s
u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

F (s)G (s)

1 + F (s)G (s)
=

b0(Kps + Ki )

s3 + a1s2 + (a0 + Kpb0)s + Kib0

I We achieved the steady-state error specification but the closed-loop
system might still be unstable if a1 < 0
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Proportional-Integral-Derivative (PID) Control

I A proportional-integral-derivative (PID) controller uses a
proportional gain Kp, an integral gain Ki , and a derivative gain Kd :

F (s) =
U(s)

E (s)
= Kp+

Ki

s
+Kds u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ+Kd ė(t)

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

F (s)G (s)

1 + F (s)G (s)
=

b0(Kps + Ki + Kds
2)

s3 + (a1 + Kdb0)s2 + (a0 + Kpb0)s + Kib0

I The coefficients of the characteristic polynomial can be set arbitrarily
via an appropriate choice of Kp, Ki , Kd

I PID control can guarantee stability, good transient behavior, and zero
steady-state step error for a second-order plant
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PID Control Example

I Consider the plant G (s) = 1
s2−3s−1

I Design a controller F (s) to achieve step response with zero steady-state
error and place the closed-loop system poles at −5, −6, −7

I PID controller: F (s) = U(s)
E(s) = Kp + Ki

s + Kds

I Closed-loop transfer function:

T (s) =
Y (s)

R(s)
=

F (s)G (s)

1 + F (s)G (s)
=

Kds
2 + Kps + Ki

s3 + (Kd − 3)s2 + (Kp − 1)s + Ki

I Vieta’s formulas:

(−5) + (−6) + (−7) = −(Kd − 3) ⇒ Kd = 21

(−5)(−6) + (−5)(−7) + (−6)(−7) = (Kp − 1) ⇒ Kp = 108

(−5)(−6)(−7) = (−1)3Ki ⇒ Ki = 210
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PID Control Gain Tuning
I PID tuning: the process of determining satisfactory PID control gains

I Manual PID tuning
I Ziegler-Nichols method (see Dorf-Bishop Ch. 7.6)

I Manual PID tuning:
I Set Ki = Kd = 0
I Increase Kp slowly until the output of the closed-loop system oscillates on

the verge of instability
I Reduce Kp to achieve quarter amplitude decay of the closed-loop

response, i.e., the amplitude should be one-fourth of the maximum value
during the oscillatory period

I Increase Ki and Kd to achieve the desired response
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PID Control: Implementation Issues

I PID control is easy to implement by tuning the knobs Kp, Ki , Kd

I Derivative control requires differentiation of the error signal:

ė(t) ≈ e(t)− e(t − τ)

τ

I In practice, the error signal is measured and contains high-frequency
noise, which should not be differentiated

I The derivative term Kds is implemented in conjunction with a low-pass
filter H(s) = 1

τf s+1 for small τf

I PID control with high-frequency noise attenuation:

F (s) =
U(s)

E (s)
= Kp +

Ki

s
+

Kds

τf s + 1
u(t) = Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kd ėf (t)

τf ėf (t) = −ef (t) + e(t)
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PID Control: Implementation Issues

I Discrete-time PID control:
I sampling interval: τs

I filter time constant: τf

I sampled error: e[k] = e(kτs)

I filtered error: ef [k] = τs
τf
e[k] +

(
1− τs

τf

)
ef [k − 1]

I derivative error: ed [k] = ef [k]−ef [k−1]
τs

I integral error: ei [k] = ei [k − 1] + τse[k − 1]

I control: u[k] = Kpe[k] + Kiei [k] + Kded [k]

9



PID Control: Implementation Issues

I Derivative kick: if the reference r(t) changes suddenly, the derivative
component may become very large

I Note that for constant r(t), ė(t) = −ẏ(t)

I Derivative on measurement: use −ẏ(t) instead of ė(t) to avoid
derivative kick

+ Ki
1

s

Kp

Kd sH(s)

+ G (s)
R(s) E (s) U(s) Y (s)

− −
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Inverted Pendulum Example

I Consider an inverted pendulum mounted
on a motorized cart

I Objective: control the cart force to
balance the inverted pendulum in an
upright position

I Popular example in control theory and
reinforcement learning

I Nonlinear system that is unstable without
control
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Inverted Pendulum: Parameters

I Cart mass: M = 0.5 kg

I Pendulum mass: m = 0.2 kg

I Cart friction coefficient: b = 0.1 N/m/sec

I Length to pendulum center of mass:
` = 0.3 m

I Pendulum moment of inertia:
I = 0.006 kg m2

I Cart input force: F

I Cart position: x

I Pendulum angle: θ
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Inverted Pendulum: System Model

I Horizontal direction force balance for the
cart:

Mẍ + bẋ + N = F

I Horizontal direction force balance for the
pendulum:

N = mẍ + m`θ̈ cos θ −m`θ̇2 sin θ

I Force balance perpendicular to the
pendulum:

P sin θ+N cos θ−mg sin θ = m`θ̈+mẍ cos θ

I Torque balance about the pendulum centroid:

−P` sin θ − N` cos θ = I θ̈
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Inverted Pendulum: System Model
I Eliminating the reaction force N and the normal force P and denoting

the input force F by u, we get the cart-pole equations of motion:

(M + m)ẍ + bẋ + m`θ̈ cos θ −m`θ̇2 sin θ = u

(I + m`2)θ̈ + mg` sin θ = −m`ẍ cos θ

I Since our control techniques apply to linear time-invariant systems only,
we need to linearize the equations of motion

I Linearize about the upright pendulum position π and assume that the
pendulum remains within a small neighborhood: θ = π + φ

I Small angle approximation:

cos θ = cos(π + φ) ≈ −1 sin θ = sin(π + φ) ≈ −φ θ̇2 = φ̇2 ≈ 0

I Linearized equations of motion:

(M + m)ẍ + bẋ −m`φ̈ = u

(I + m`2)φ̈−mg`φ = m`ẍ
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Inverted Pendulum: Transfer Function

I Laplace transform of the equations of motion with zero initial conditions:

(M + m)s2X (s) + bsX (s)−m`s2Φ(s) = U(s)

(I + m`2)s2Φ(s)−mg`Φ(s) = m`s2X (s)

I Eliminating X (s) leads to:

(M + m)

(
I + m`2

m`
− g

s2

)
s2Φ(s) + b

(
I + m`2

m`
− g

s2

)
sΦ(s)−m`s2Φ(s) = U(s)

I Pendulum transfer function with q = (M + m)(I + m`2)− (m`)2:

G (s) =
Φ(s)

U(s)
=

m`s2

qs4 + b(I + m`2)s3 − (M + m)mg`s2 − bmgls
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Inverted Pendulum: PID Control

I Design a controller C (s) to maintain the pendulum vertically upward
when the cart input F is subjected to a 1-Nsec impulse disturbance D(s)

I Design specifications:
I Settling time of less than 5 seconds
I Maximum pendulum deviation from the vertical position of 0.05 rad
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Inverted Pendulum: PID Control
I Pendulum transfer function with q = (M + m)(I + m`2)− (m`)2:

G (s) =
Φ(s)

U(s)
=

m`s2

qs4 + b(I + m`2)s3 − (M + m)mg`s2 − bmgls

1 M = 0.5; m = 0.2; b = 0.1; I = 0.006;

2 g = 9.8; l = 0.3; q = (M+m)*(I+m*l^2)-(m*l)^2;

3 s = tf(’s’);

4 G = (m*l*s^2)/(q*s^4 + b*(I + m*l^2)*s^3 -(M + m)*m*g*l*s^2 -b*m*g*l*s);

I PID control design: C (s) = Kp + Ki
1
s + Kds

1 Kp = 100; Ki = 1; Kd = 1;

2 C = pid(Kp,Ki,Kd);

I Closed-loop transfer function from D(s) to Φ(s):

T (s) =
Φ(s)

D(s)
=

G (s)

1 + C (s)G (s)

1 T = feedback(G,C);
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Inverted Pendulum: PID Control
1 t=0:0.01:10;

2 impulse(T,t)

3 axis([0, 2.5, -0.2, 0.2]);

4 title({’Response of Pendulum Position to an Impulse Disturbance’;’under

PID Control: Kp = 100, Ki = 1, Kd = 1’});

I Settling time: 1.64 sec
meets the specifications
(no additional integral
control is needed)

I Peak response: 0.2 rad
exceeds the requirement
of 0.05 rad (the overshoot
can be reduced by
increasing the derivative
control gain)
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Inverted Pendulum: PID Control

1 t=0:0.01:10;

2 impulse(T,t)

3 axis([0, 2.5, -0.2, 0.2]);

4 title({’Response of Pendulum Position to an Impulse Disturbance’;’under

PID Control: Kp = 100, Ki = 1, Kd = 20’});
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System: T

Settling time (seconds): 0.844

System: T

Peak amplitude: 0.0442

At time (seconds): 0.04

I Settling time: 0.844 sec
meets the specifications

I Peak response: 0.044 rad
meets the specifications
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Inverted Pendulum: Root Locus with Proportional Control
I Positive root locus for the inverted pendulum plant G (s)
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I One branch entirely in the
right half-plane

I Need to add a pole at the
origin (integrator) to
cancel the plant zero at
the origin

I This will produce two
closed-loop poles in the
right half-plane that we
can then draw to the
left-half plane to stabilize
the closed-loop system
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Inverted Pendulum: Root Locus with Integral Control
I Positive root locus for integral control of the inverted pendulum 1

sG (s)
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) I We need to draw the two
branches to the left-half
plane to stabilize the
closed-loop system

I Adding a zeros to the
controller will pull the
branches to the left
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Inverted Pendulum: Root Locus Manipulation
I Poles and zeros of 1

sG (s) = m`s2

qs5+b(I+m`2)s4−(M+m)mg`s3−bmgls2
:

z1 = z2 = 0

p1 = p2 = 0, p3 = −0.143, p4 = −5.604 p5 = 5.565

I Suppose we introduce a zero to the controller: (s−z3)
s G (s)

I There will be 5− 3 = 2 asymptotes with angles π
2 , 3π

2 and centroid:

α =
1

2
(−5.604 + 5.565− 0.143− z3) = −0.182 + z3

2
I We cannot have z3 in the right half-plane so the best we can do to pull

the root locus branches is to have z3 ≈ 0 so that α ≈ −0.1.

I The real parts of the two poles −ζωn ± jωn

√
1− ζ2 will approach

α ≈ −0.1 as K →∞

I This design is insufficient to meet the settling time specification:

ts ≈
4

ζωn
≈ 4

0.1
= 40
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Inverted Pendulum: Root Locus Manipulation

I Adding a single zero to the controller is not sufficient to pull the root
locus branches far enough to the left

I Add two zeros between p3 = −0.143 and p4 = −5.604 to pull the root
locus branches towards them, leaving a single asymptote at −π

I Let z3 = −3 and z4 = −4 and consider the controller:

C (s) =
(s + 3)(s + 4)

s
= 7 + 12

1

s
+ s

I Note that KC (s) is a PID controller:

Kp = 7K Ki = 12K Kd = 1K

23



Inverted Pendulum: Root Locus with PID Control
I Positive root locus for PID control of the inverted pendulum:

(s + 3)(s + 4)

s
G (s)
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System: untitled1

Gain: 19.8

Pole: -3.52 - 0.721i

Damping: 0.98

Overshoot (%): 0

Frequency (rad/s): 3.6

I To achieve ts ≤ 5 sec, we need
the real parts of the dominant
closed-loop poles to be less than
−4/5 = −0.8

I To ensure that p.o. ≤ 5%, we
also need sufficient damping for
the dominant closed-loop poles

I Placing the dominant poles near
the real axis increases the
damping ratio ζ

I Choose K ≈ 20
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Inverted Pendulum: PID Control

1 T = feedback(G,20*(s+3)*(s+4)/s);

2 t=0:0.01:10;

3 impulse(T,t);

4 title({’Impulse Disturbance Response of Pendulum Angle’; ’under PID

Control: Kp = 140, Ki = 240, Kd = 20’});
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Peak amplitude: 0.0429

At time (seconds): 0.03

I Settling time: 1.580 sec
meets the specifications

I Peak response: 0.043 rad
meets the specifications
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