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Second-order System Control Design

R(s) + E(s) U(s) Y(s)
F(s) G(s)

» Consider a unity-feedback control system with a second-order plant:

- s24a;s+ag

G(s)

» How should the controller F(s) be designed to ensure that the system is
stable and its step response has zero steady-state error?



Proportional (P) Control

> A proportional (P) controller uses a constant gain K:

U(s)
(5) E(S) P U(t) Pe(t)
» Closed-loop transfer function:

rioy V() _FI9)G(s) Kybo
" R(s) 1+ F(s)G(s) s2+ais+ (ao+ Kpbo)
» P control can accelerate the response of a second-order system by
changing the natural frequency w? = (ag + Kpbo)

» To ensure stability, we need a; > 0 and ap + K,bg > 0. P control can
stabilize only some systems because it adjusts one coefficient of the
characteristic equation.

» For ag # 0, F(s)G(s) has g = 0 poles at the origin (type 0 system).
The closed-loop system step response will have a constant finite
steady-state error.



Proportional-Integral (PI) Control

>

>

To achieve zero steady-state step error, we need a type 1 system.
To add a pole at the origin in F(s)G(s), introduce an integrator in F(s)

A proportional-integral (Pl) controller uses a proportional gain K,
and an integral gain K;:

U(s) Ki

F(s) = Eg) Kyt u(t) = Kye(t) + K,-/O e(r)dr

Closed-loop transfer function:

Y(s) _ _F(s)G(s) _ bo(Kps + Ki)
R(s) 1+ F(s)G(s) s3+ a1s2+ (ao + Kybo)s + Kibo

T(s) =

We achieved the steady-state error specification but the closed-loop
system might still be unstable if a; <0



Proportional-Integral-Derivative (PID) Control

> A proportional-integral-derivative (PID) controller uses a
proportional gain Kp, an integral gain Kj, and a derivative gain Ky:

U(s)
E(s)

» Closed-loop transfer function:

F(s) =

Ki ‘ .
Ko Kys u(t) = Koe() K [ e(r)dr+Kaé(t)
0

T(s) = Y(s)  F(s)G(s) bo(Kps + Ki + Kas?)
~ R(s) 1+ F(s)G(s) s34+ (a1 + Kabo)s?+ (a0 + Kpbo)s + Kibo

» The coefficients of the characteristic polynomial can be set arbitrarily
via an appropriate choice of K, Kj, Ky

» PID control can guarantee stability, good transient behavior, and zero
steady-state step error for a second-order plant



PID Control Example

>

>

Consider the plant G(s) = m

Design a controller F(s) to achieve step response with zero steady-state
error and place the closed-loop system poles at —5, —6, —7

PID controller: F(s) = gés; Kp + F+ Kgs

Closed-loop transfer function:

T(s) = Y(s)  F(s)G(s) Kgs? + Kps + K;
Y TRG) T 1+F(5)G(s) B+ (Kg—3)s2+ (K, — 1)s + K;

Vieta's formulas:
(=5)+(—6)+(-7) = —(Kyg — 3) = Ky =21
(=5)(=6) + (-5)(-7) +(-6)(-7) = (K, —1) =  K,=108
(=5)(—6)(=7) = (-1)*K; = K; =210



PID Control Gain Tuning

» PID tuning: the process of determining satisfactory PID control gains
» Manual PID tuning
> Ziegler-Nichols method (see Dorf-Bishop Ch. 7.6)

» Manual PID tuning:

> Set Ki=Ky=0

> Increase K, slowly until the output of the closed-loop system oscillates on
the verge of instability

» Reduce K, to achieve quarter amplitude decay of the closed-loop
response, i.e., the amplitude should be one-fourth of the maximum value
during the oscillatory period

» Increase K; and K, to achieve the desired response

Table 7.4 Effect of Increasing the PID Gains K, Kp, and K, on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
Increasing Kp Increases Minimal impact Decreases
Increasing K; Increases Increases Zero steady-state error
Increasing K, Decreases Decreases No impact




PID Control: Implementation Issues

>

| 2

PID control is easy to implement by tuning the knobs K, K;, K4
Derivative control requires differentiation of the error signal:

e(t) —e(t—1)

é(t) ~

In practice, the error signal is measured and contains high-frequency
noise, which should not be differentiated

The derivative term Kys is implemented in conjunction with a low-pass

filter H(s) = Tfs—lﬂ for small 7¢

PID control with high-frequency noise attenuation:

F(S) _ U(S) _ K,' KdS

E(s) P+s Trs+1

u(t) = Kpe(t) + K,-/Ot e(T)dT + Kqér(t)

Trér(t) = —er(t) + e(t)



PID Control: Implementation Issues

» Discrete-time PID control:
> sampling interval: 7
» filter time constant: 7¢

» sampled error: e[k] = e(kTs)

> filtered error: ef[k] = Z=e[k] + (1 - ;—) er[k — 1]

Tf

er[k]—ef[k—1]

Ts

> derivative error: eq[k] =
> integral error: e[k] = e[k — 1] + 7se[k — 1]
> control: ulk] = Kpe[k] + Kiei[k] + Kaeq[k]



PID Control: Implementation Issues

> Derivative kick: if the reference r(t) changes suddenly, the derivative
component may become very large

» Note that for constant r(t), é(t) = —y(t)

» Derivative on measurement: use —y/(t) instead of é(t) to avoid
derivative kick

Ko \
R(s) E(s)| [0 U ] Y
H(S) — Kd S /
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Inverted Pendulum Example

» Consider an inverted pendulum mounted
on a motorized cart

» Objective: control the cart force to
balance the inverted pendulum in an
upright position

» Popular example in control theory and
reinforcement learning

» Nonlinear system that is unstable without
control

m,I
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Inverted Pendulum: Parameters

>

>

Cart mass: M = 0.5 kg
Pendulum mass: m = 0.2 kg

Cart friction coefficient: b= 0.1 N/m/sec
m, I

Length to pendulum center of mass:
1
{=03m A

Pendulum moment of inertia: F
| =0.006 kg m? 7 M

Cart input force: F S O _ _O _
Cart position: x

Pendulum angle: 6
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Inverted Pendulum: System Model

» Horizontal direction force balance for the

cart:
Mx + bx+ N =F

» Horizontal direction force balance for the ,lP
pendulum: mg
. . N { N
N = mx + mff cos§ — mlH? sin 6 *
F B friction
» Force balance perpendicular to the P - b
pendulum:

O OlL_,.

P sin 8+ N cos §—mg sin @ = ml6+mx cos 0
» Torque balance about the pendulum centroid:
—Plsing — Nlcost = 10
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Inverted Pendulum: System Model

» Eliminating the reaction force N and the normal force P and denoting
the input force F by u, we get the cart-pole equations of motion:

(M + m)X 4 bx + mlf cos§ — ml6?sin = u
(I + m?)0 + mglsin = —mli cos §

» Since our control techniques apply to linear time-invariant systems only,
we need to linearize the equations of motion

» Linearize about the upright pendulum position 7 and assume that the
pendulum remains within a small neighborhood: 8 =7+ ¢

» Small angle approximation:
cosf = cos(m + ¢) ~ —1 sinf =sin(m+ ¢) ~ —¢ 02 = $* ~ 0
» Linearized equations of motion:
(M + m)% + bx — mlp = u
(I + ml?) — mglep = mex
14



Inverted Pendulum: Transfer Function

» Laplace transform of the equations of motion with zero initial conditions:

(M + m)s®>X(s) + bsX(s) — mls*®(s) = U(s)
(I + mf?)s?>d(s) — mgld(s) = mls®X(s)

» Eliminating X(s) leads to:

(M + m) <’ +m’2’€2 - S%) $2(s) + b (’ +m’;£2 - S%) sb(s) — mls2d(s) = U(s)

» Pendulum transfer function with g = (M + m)(I + mf?) — (m¢)?:

d(s) mis?
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Inverted Pendulum: PID Control

» Design a controller C(s) to maintain the pendulum vertically upward
when the cart input F is subjected to a 1-Nsec impulse disturbance D(s)

» Design specifications:

» Settling time of less than 5 seconds
» Maximum pendulum deviation from the vertical position of 0.05 rad

R(s)=0

+

E(s)

)

C(s)

D(s)

+

+

G(s)

d(s)
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Inverted Pendulum: PID Control
» Pendulum transfer function with g = (M + m)(/ + mé?) — (m¢)?:

G(s) = d(s) mis?
~U(s)  gs*+ b(I + me2)s3 — (M 4 m)mgls? — bmgls
M=0.5; m=0.2; b=20.1; T =0.006;
g=9.8; 1 =0.3; q = Mm)*(I+m*1"2)-(m*1)"2;
s = tf(’s’);
G = (m*¥1*s72)/(gq*s"4 + bx(I + m*x172)*s"3 - (M + m)*m*g*l*s~2 —bxm*g*l*s);

> PID control design: C(s) = K, + K% + Kgs

Kp = 100; Ki = 1; Kd = 1;
C = pid(Xp,Ki,Kd);

» Closed-loop transfer function from D(s) to ®(s):
o(s) _ _ G(s)

T() = Bs) = 15 C(5)6(9)

T = feedback(G,C);




Inverted Pendulum: PID Control

t£=0:0.01:10;

impulse(T,t)

axis([0, 2.5, -0.2, 0.2]);

title({’Response of Pendulum Position to an Impulse Disturbance’;’under
PID Control: Kp = 100, Ki = 1, Kd = 1°});

Response of Pendulum Position to an Impulse Disturbance

under PID Control: Kp = 100, Ki =1, Kd = 1 » Settling time: 1.64 sec
meets the specifications
(no additional integral
o control is needed)

» Peak response: 0.2 rad
exceeds the requirement
of 0.05 rad (the overshoot
can be reduced by
increasing the derivative

1 5 ; 26 control gain)

Time (seconds)

Amplitude
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nverted Pendulum: PID Control

t=0:0.01:10;

impulse(T,t)

axis([0, 2.5, -0.2, 0.2]);

title({’Response of Pendulum Position to an Impulse Disturbance’;’under
PID Control: Kp = 100, Ki = 1, Kd = 20°});

Amplitude

Response of Pendulum Position to an Impulse Disturbance
under PID Control: Kp = 100, Ki = 1, Kd = 20

Time (seconds)

0.15 |- 4
ot r - 7 - -
ek anpiuce 00442 > Settling time: 0.844 sec
| Attime (seconds): 0.04 i . .
BN meets the specifications
O\ \\ ‘
i System: T
ol 1Senhngﬂme[secunds):0.344 | » Peak response: 0044 rad
| meets the specifications
01 i -
015 | : b
0.2 L L L L 1
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Inverted Pendulum: Root Locus with Proportional Control

_1)

Imaginary Axis (seconds

>
10

8

-10 5 1

Positive root locus for the inverted pendulum plant G(s)

Inverted Pendulum Root Locureb(Proportional Control)

064 05 034 016 |
1076 : | » One branch entirely in the
' right half-plane
0.86 :
| 7‘ > Need to add a pole at the
e origin (integrator) to
f0.985 /2 cancel the plant zero at
j the origin
o \2 » This will produce two
094 l closed-loop poles in the
\ right half-plane that we
- : can then draw to the
e left-half plane to stabilize
064 05 034 016 | the closed-loop system
Ry

Real Axis (seconds . ) 20



Inverted Pendulum: Root Locus with Integral Control

.1)

Imaginary Axis (seconds

» Positive root locus for integral control of the inverted pendulum %G(s)

10

8t

Inverted Pendulum Root L%us (Integral Control)

0.64
0.76

0.86 "
0.94

70985

05 034 0.6
8

6

L0.985
0.94
L0.86 "

[-0.76
0.64

n
8

05 034 016

5 7 ‘0(;

Real Axis (seconds

Bl
)

» We need to draw the two
branches to the left-half

plane to stabilize the
closed-loop system

» Adding a zeros to the
controller will pull the
branches to the left
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Inverted Pendulum: Root Locus Manipulation

1 _ m{s? .
» Poles and zeros of <G(s) = T Tm)s— (M1m)mgls*—bmgl?

Z1 = 2p = 0
pr=p>=0, p3=-0.143, ps=-5.604 ps=5.565

> Suppose we introduce a zero to the controller: (5_7523)6(5)

. _ . 3 <.
» There will be 5 — 3 = 2 asymptotes with angles 7, =F and centroid:

L 0.182
o =7 (~5.604 +5.565 — 0.143 — z3) = _%

» We cannot have z3 in the right half-plane so the best we can do to pull
the root locus branches is to have z3 = 0 so that o« = —0.1.

» The real parts of the two poles —(w, & jwp+/1 — (2 will approach
ar~—0.1las K — o0

» This design is insufficient to meet the settling time specification:

44
Cwn 0.1 22

ts ~



Inverted Pendulum: Root Locus Manipulation

» Adding a single zero to the controller is not sufficient to pull the root
locus branches far enough to the left

» Add two zeros between p3 = —0.143 and ps = —5.604 to pull the root
locus branches towards them, leaving a single asymptote at —m

» Let z3 = —3 and z; = —4 and consider the controller:
3 4 1
C(s) = (s—i—)s(s—l—) :7+12§+5

» Note that KC(s) is a PID controller:

K,=7TK Ki=12K Ky=1K

23



Inverted Pendulum: Root Locus with PID Control

» Positive root locus for PID control of the inverted pendulum:

-
)

Imaginary Axis (seconds

-10

Inverted Pendulum Roogbocus (PID Control)

(s+3)(s+4)

S

064 05
5076

6 Fo.ge

[094

2

0.34" 0.16

[0.985 [ \
0 T &
System: untitled1
" Gain: 19.8 2
Pole: -3.52 - 0.721i
_ Damping: 0.98

Overshoot (%): 0

Frequency (rad/s): 3.6

g [pu-00

0.76

0.64 0.5
L

0.34. 0.16

-10

-5

i

Real Axis (seconds i )

10

G(s)

» To achieve t; <5 sec, we need
the real parts of the dominant
closed-loop poles to be less than
—4/5=-0.8

» To ensure that p.o. < 5%, we
also need sufficient damping for
the dominant closed-loop poles

» Placing the dominant poles near
the real axis increases the
damping ratio ¢

» Choose K ~ 20
24



Inverted Pendulum: PID Control

T = feedback(G,20*(s+3)*(s+4)/s);

t=0:0.01:10;

impulse(T,t);

title({’Impulse Disturbance Response of Pendulum Angle’; ’under PID
Control: Kp = 140, Ki = 240, Kd = 20°});

Amplitude

Impulse Disturbance Response of Pendulum Angle
under PID Control: Kp = 140, Ki = 240, Kd = 20

02 T T T
0.15 -
041 - b - -
S e > Settling time: 1.580 sec
0.05 - At time (seconds): 0.03 i . .
N meets the specifications
{
| System: T
el iSeﬁlmgllme(seconds)'155 | » Peak resp0nse: 0043 rad
meets the specifications
ol 1 |
0.15 [ | i
-0.2 L L L : L
0 05 1 5 2 25

Time (seconds)
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