ECE171A: Linear Control System Theory Lecture 10: Nyquist Stability

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

Outline

Nyquist's Idea

Principle of the Argument

Nyquist Stability Criterion

Outline

Nyquist's Idea

Principle of the Argument

Nyquist Stability Criterion

Stability of Feedback Systems

- Consider a feedback control system with open-loop transfer function $G(s)$ (controller and plant) and closed-loop transfer function:

$$
T(s)=\frac{G(s)}{1+G(s)}
$$

- Testing BIBO stability using the poles of $T(s)$ requires knowledge of $G(s)$ and gives little guidance for control design, i.e., how should the controller be modified to make an unstable system stable?
- Given a Bode plot of $G(s)$, we aim to understand the stability of $T(s)$

Nyquist's Idea

- Harry Nyquist made important contributions to control theory (stability of feedback systems), electronics (thermal noise), and communication theory (telegraph)
- Nyquist proposed an idea to determine the stability of a closed-loop system by investigating how sinusoidal signal propagate around the feedback loop

H. Nyquist
- Similar to return difference, break the feedback loop and ask whether a signal injected at $A_{1}(s)$ has the same or smaller magnitude when it reaches $A_{2}(s)$
- Nyquist's idea allows reasoning about closed-loop stability based on the frequency response of the open-loop transfer function

Nyquist's Idea

- Suppose that a sinusoid of frequency ω is injected at $A_{1}(s)$. In steady state, the signal at $A_{2}(s)$ will be a sinusoid with the same frequency ω, magnitude $|G(j \omega)|$, and phase $180^{\circ}+\angle G(j \omega)$
- Critical point: the signals at $A_{1}(s)$ and $A_{2}(s)$ are identical if:

$$
|G(j \omega)|=1 \quad \text { and } \quad \angle G(j \omega)=-180^{\circ} \quad \Leftrightarrow \quad G(j \omega)=-1
$$

- Nyquist's idea: Let ω_{p} be such that $\angle G\left(j \omega_{p}\right)=-180^{\circ}$. A feedback control system is stable if $\left|G\left(j \omega_{p}\right)\right|<1$ since the signal at $A_{2}(s)$ will have smaller amplitude than the injected signal at $A_{1}(s)$.

Open-loop Poles vs Closed-loop Poles

- Open-loop transfer function: $G(s)=\frac{b(s)}{a(s)}$
- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{b(s)}{a(s)+b(s)}$
- Let $\Delta(s)=1+G(s)$
- The closed-loop poles are the zeros of $\Delta(s)$
- The open-loop poles are the poles of $\Delta(s)$:

$$
\Delta(s)=1+G(s)=1+\frac{b(s)}{a(s)}=\frac{a(s)+b(s)}{a(s)}
$$

Outline

Nyquist's Idea

Principle of the Argument

Nyquist Stability Criterion

Contours in the Complex Plane

- Nyquist's stability criterion utilizes a contour C in the complex plane to relate the locations of the open-loop poles and the closed-loop poles
- A contour C is a piecewise smooth path in the complex plane
- A contour C is closed if it starts and ends at the same point
- A contour C is simple if it does not cross itself at any point
- A parametrization $z(t) \in \mathbb{C}$ of a contour has direction indicated by increasing the parameter $t \in \mathbb{R}$

- Cauchy's Principle of the Argument: relates the arguments (phases) of the zeros and poles of $G(s)$ inside a contour C to the shape of $G(C)$
- $G(C)$ is a new closed contour obtained by evaluating $G(s)$ at all s on C

Open-loop Transfer Function

- Consider a control system with open-loop transfer function:

$$
G(s)=\kappa \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)}
$$

- At each $s, G(s)$ is a complex number with magnitude and phase:

$$
|G(s)|=|\kappa| \frac{\prod_{i=1}^{m}\left|s-z_{i}\right|}{\prod_{i=1}^{n}\left|s-p_{i}\right|} \quad \angle G(s)=\measuredangle \kappa+\sum_{i=1}^{m} \not\left(s-z_{i}\right)-\sum_{i=1}^{n} \not\left\langle\left(s-p_{i}\right)\right.
$$

- Graphical evaluation of the magnitude and phase:
$-\left|s-z_{i}\right|$ is the length of the vector from z_{i} to s
$-\left|s-p_{i}\right|$ is the length of the vector from p_{i} to s
$-\angle\left(s-z_{i}\right)$ is the angle from the real axis to the vector from z_{i} to s
- $\angle\left(s-p_{i}\right)$ is the angle from the real axis to the vector from p_{i} to s

Evaluating $G(s)$ along a Contour

- Let C be a simple closed clockwise contour C in the complex plane
- Evaluating $G(s)$ at all points on C produces a new closed contour $G(C)$
- Assumption: C does not pass through the origin or any of the poles or zeros of $G(s)$ (otherwise $/ G(s)$ is undefined)
- A zero z_{i} outside the contour C :
- As s moves around the contour C, the vector $s-z_{i}$ swings up and down but not all the way around
- The net change in $\angle\left(s-z_{i}\right)$ is 0
- A zero z_{i} inside the contour C :
- As s moves around the contour C, the vector $s-z_{i}$ turns all the way around
- The net change in $\angle\left(s-z_{i}\right)$ is -360°
- A pole p_{i} outside the contour C : the net change in $\angle\left(s-p_{i}\right)$ is 0
- A pole p_{i} inside the contour C : the net change in $/\left(s-p_{i}\right)$ is -360°

Evaluating $G(s)$ along a Contour

Principle of the Argument

- Let Z and P be the number of zeros and poles of $G(s)$ inside C
- As s moves around $C, \angle G(s)$ undergoes a net change of $-(Z-P) 360^{\circ}$
- A net change of -360° means that the vector from 0 to $G(s)$ swings clockwise around the origin one full rotation
- A net change of $-(Z-P) 360^{\circ}$ means that the vector from 0 to $G(s)$ must encircle the origin in clockwise direction $(Z-P)$ times

Cauchy's Principle of the Argument

Consider a transfer function $G(s)$ and a simple closed clockwise contour C. Let Z and P be the number of zeros and poles of $G(s)$ inside C. Then, the contour generated by evaluating $G(s)$ along C will encircle the origin in a clockwise direction $Z-P$ times.

Winding Number

- To determine the number of encirclements of a point s by a contour Γ :

1. Fix a pin at s pointing out of the page
2. Attach a string from the pin to the contour Γ
3. Let the end of the string attached to Γ traverse the contour

- The winding number $n(\Gamma, s)$ of Γ about s is equal to the number of times the string winds up on the pin when Γ is traversed:

$$
n(\Gamma, s)=\frac{1}{2 \pi j} \oint_{\Gamma} \frac{1}{s-z} d z
$$

Principle of the Argument: Example

- Pole-zero map for $G(s)=\frac{10(s+1)}{(s+2)\left(s^{2}+1\right)(s+6)}$

Pole-Zero Map

Principle of the Argument: Example

- A circle contour C centered at the origin with radius 0.5 (green)
- The contour may be parameterized by $z(t)=0.5 e^{-j t}$ for $t \in[0,2 \pi]$
- The contour C is mapped by $G(s)$ to a new contour (from blue to red), e.g., parameterized by $G(z(t))$ for $t \in[0,2 \pi]$

Figure: The origin is encircled 0 times clockwise

Principle of the Argument: Example

- A circle contour C centered at $(-1,0)$ with radius 1 (red)
- The contour C is mapped by $G(s)$ to a new contour (from blue to red)

Figure: The origin is encircled 1 time clockwise

Principle of the Argument: Example

- A circle contour C centered at the origin with radius 1.5 (magenta)
- The contour C is mapped by $G(s)$ to a new contour (from blue to red)

Figure: The origin is encircled 1 time counterclockwise

Outline

Nyquist's Idea

Principle of the Argument

Nyquist Stability Criterion

Open-loop Poles vs Closed-loop Poles

- Open-loop transfer function: $G(s)=\frac{b(s)}{a(s)}$
- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{b(s)}{a(s)+b(s)}$
- Let $\Delta(s)=1+G(s)$
- The closed-loop poles are the zeros of $\Delta(s)$
- The open-loop poles are the poles of $\Delta(s)$:

$$
\Delta(s)=1+G(s)=1+\frac{b(s)}{a(s)}=\frac{a(s)+b(s)}{a(s)}
$$

Nyquist Contour

- To determine how many closed-loop poles lie in the closed right half-plane, we apply the Principle of the Argument to $\Delta(s)$
- Define a clockwise contour C that covers the closed right half-plane

Nyquist Contour

- The Nyquist contour is made up of three parts:
- Contour C_{1} : points $s=j \omega$ on the positive imaginary axis, as ω ranges from 0 to ∞
- Contour C_{2} : points $s=r e^{j \theta}$ on a semi-circle as $r \rightarrow \infty$ and θ ranges from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
- Contour C_{3} : points $s=j \omega$ on the negative imaginary axis, as ω ranges from $-\infty$ to 0

Nyquist Plot

- A Nyquist plot evaluates $\Delta(s)=1+G(s)$ over the Nyquist contour C
- Contour $\Delta(C)$ is obtained by shifting contour $G(C)$ by one unit to the right

$$
\text { Nyquist contour } C \Rightarrow \text { Nyquist plot } G(C)
$$

- The contour $G(C)$ is obtained by combining $G\left(C_{1}\right), G\left(C_{2}\right)$, and $G\left(C_{3}\right)$:
- Contour C_{1} :
- plot $G(j \omega)$ for $\omega \in(0, \infty)$ in the complex plane
- equivalent to a polar plot for $G(s)$
- Contour C_{2} :
- plot $G\left(r e^{j \theta}\right)$ for $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$
- as $r \rightarrow \infty, s=r e^{j \theta}$ dominates every factor it appears in
- if $G(s)$ is strictly proper, then $G\left(r e^{j \theta}\right) \rightarrow 0$
- if $G(s)$ is not strictly proper, then $G\left(r e^{j \theta}\right) \rightarrow$ const
- Contour C_{3} :
- plot $G(j \omega)$ for $\omega \in(-\infty, 0)$ in the complex plane
- $G(-j b)$ is the complex conjugate of $G(j b)$
- $G(-j b)$ and $G(j b)$ have the same magnitude but opposite phases
- $G\left(C_{3}\right)$ is a reflected version of $G\left(C_{1}\right)$ about the real axis

Nyquist Plot: Example 1

- Draw a Nyquist plot of $G(s)=\frac{s+1}{s+10}$
- Contour $C_{1}: s=j \omega$ with $\omega \in(0, \infty)$:
- $\omega=0$ and $\omega \rightarrow \infty$:

$$
G(j 0)=\frac{1}{10} \angle 0^{\circ} \quad G(j \infty)=1 \angle 0^{\circ}
$$

- for $0<\omega<\infty$:

$$
|G(j \omega)|=\frac{1}{10} \frac{\sqrt{1+\omega^{2}}}{\sqrt{1+(\omega / 10)^{2}}} \quad \angle G(j \omega)=\tan ^{-1}(\omega)-\tan ^{-1}(\omega / 10)
$$

- Contour $C_{2}: s=r e^{j \theta}$ with $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$
\lim _{r \rightarrow \infty} G\left(r e^{j \theta}\right)=\lim _{r \rightarrow \infty} \frac{r e^{j \theta}+1}{r e^{j \theta}+10}=1 \angle 0^{\circ}
$$

- Contour $C_{3}: s=j \omega$ with $\omega \in(-\infty, 0)$:
- $G\left(C_{3}\right)$ is a reflection (complex conjugate) of $G\left(C_{1}\right)$ about the real axis

Nyquist Plot: Example 1

- Nyquist plot of $G(s)=\frac{s+1}{s+10}$
- Type 0 system as on Slide 56 of Lecture 9 with $\lim _{r \rightarrow \infty} G\left(r e^{j \theta}\right)=1$

Nyquist Plot: Example 2

- Draw a Nyquist plot of $G(s)=\frac{\kappa}{\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}=\frac{100}{(1+s)(1+5 / 10)}$
- Contour $C_{1}: G(j 0)=\kappa / 0^{\circ}, G(j \infty)=0 \angle-180^{\circ}$
- Contour $C_{2}: \lim _{r \rightarrow \infty} G\left(r e^{j \theta}\right)=0$

(a)

(b)

Nyquist Plot: Poles on the Imaginary Axis

- The Principle of the Argument assumes C does not pass through zeros or poles of $\Delta(s)$
- There might be poles of $G(s)$ on the imaginary axis, which are poles of $\Delta(s)$
- The Nyquist contour needs to be modified to take a small detour around poles of $G(s)$ on the imaginary axis
- Contour C_{4} : avoid poles of $G(s)$ at origin:
- plot $G\left(\epsilon e^{j \theta}\right)$ for $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

- If $G(s)$ has other poles p on the imaginary axis, more contours need to be introduced. Substitute $s=p+\epsilon e^{j \theta}$ into $G(s)$ and examine what happens as $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Nyquist Plot: Example 3

- Draw a Nyquist plot of a type 1 system: $G(s)=\frac{\kappa}{s(1+\tau s)}$
- Since there is a pole at the origin, we need to use a modified Nyquist contour

(a)

(b)

Nyquist Plot: Example 3

- Contour $C_{1}: s=j \omega$ with $\omega \in(0, \infty)$: polar plot as on Slide 58 of Lecture 9:

$$
G\left(j 0^{+}\right)=\infty \angle-90^{\circ}
$$

$$
G(j \infty)=\lim _{\omega \rightarrow \infty} \frac{\kappa}{j \omega(1+j \omega \tau)}=\lim _{\omega \rightarrow \infty}\left|\frac{\kappa}{\tau \omega^{2}}\right| \angle-90^{\circ}-\tan ^{-1}(\omega \tau)=0 \angle-180^{\circ}
$$

- Contour $C_{2}: s=r e^{j \theta}$ with $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$
\lim _{r \rightarrow \infty} G\left(r e^{j \theta}\right)=\lim _{r \rightarrow \infty}\left|\frac{\kappa}{\tau r^{2}}\right| e^{-2 j \theta}=0 \angle-2 \theta
$$

- The phase of $G(s)$ changes from -180° at $\omega=\infty$ to 180° at $\omega=-\infty$
- Contour $C_{3}: s=j \omega$ with $\omega \in(-\infty, 0)$:
- $G\left(C_{3}\right)$ is a reflection (complex conjugate) of $G\left(C_{1}\right)$ about the real axis
- Contour $C_{4}: s=\epsilon e^{j \theta}$ with $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\lim _{\epsilon \rightarrow 0} G\left(\epsilon e^{j \theta}\right)=\lim _{\epsilon \rightarrow 0} \frac{\kappa}{\epsilon e^{j \theta}\left(1+\tau \epsilon e^{j \theta}\right)} \xlongequal{\frac{1}{1+\epsilon} \approx 1-\epsilon}-\kappa \tau+\lim _{\epsilon \rightarrow 0} \frac{\kappa}{\epsilon} e^{-j \theta}=\infty /-\theta
$$

- $G\left(\epsilon e^{j \theta}\right)$ approaches an asymptote at $-\kappa \tau$ as $\epsilon \rightarrow 0$
- The phase of $G(s)$ changes from 90° at $\omega=0^{-}$to -90° at $\omega=0^{+}$

Nyquist Plot: Example 4

- Draw a Nyquist plot of a type 1 system: $G(s)=\frac{\kappa}{s\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}$
- Contour $C_{4}: s=\epsilon e^{j \theta}$ with $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:
- C_{4} maps into a semicircle with infinite radius as in Example 3:

$$
G(j 0)=\infty \angle-\theta
$$

- Contour $C_{2}: s=r e^{j \theta}$ with $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:
- C_{2} maps into a point at 0 with phase $\angle-3 \theta$
- Contour $C_{1}: s=j \omega$ with $\omega \in(0, \infty)$: polar plot as on Slide 59 of Lecture 9:

$$
G(j \infty)=0 /-270^{\circ}
$$

- Contour $C_{3}: G\left(C_{3}\right)$ is a reflection of $G\left(C_{1}\right)$ about the real axis

Nyquist Plot: Example 4

- Contour C_{1} with $\omega \in(0, \infty)$:

$$
\begin{aligned}
G(j \omega) & =\frac{\kappa}{j \omega\left(1+j \omega \tau_{1}\right)\left(1+j \omega \tau_{2}\right)}=\frac{-\kappa\left(\tau_{1}+\tau_{2}\right)-j \kappa\left(1-\omega^{2} \tau_{1} \tau_{2}\right) \omega}{1+\omega^{2}\left(\tau_{1}^{2}+\tau_{2}^{2}\right)+\omega^{4} \tau_{1}^{2} \tau_{2}^{2}} \\
& =\frac{\kappa}{\sqrt{\omega^{4}\left(\tau_{1}+\tau_{2}\right)^{2}+\omega^{2}\left(1-\omega^{2} \tau_{1} \tau_{2}\right)^{2}}} /-90^{\circ}-\tan ^{-1}\left(\omega \tau_{1}\right)-\tan ^{-1}\left(\omega \tau_{2}\right)
\end{aligned}
$$

Nyquist Plot: Example 5

- Draw a Nyquist plot of a type 2 system: $G(s)=\frac{\kappa}{s^{2}(1+\tau s)}$
- Two poles at the origin \Rightarrow need to use a modified Nyquist contour
- Magnitude and phase:

$$
G(j \omega)=\frac{\kappa}{(j \omega)^{2}(1+j \omega \tau)}=\frac{|\kappa|}{\sqrt{\omega^{4}+\omega^{6} \tau^{2}}} /-180^{\circ}-\tan ^{-1}(\omega \tau)
$$

- Contour $C_{1}: s=j \omega$ with $\omega \in(0, \infty)$:

$$
\begin{aligned}
G\left(j 0^{+}\right) & =\infty \angle-180^{\circ} \\
G(j \infty) & =\lim _{\omega \rightarrow \infty} \frac{\kappa}{(j \omega)^{2}(1+j \omega \tau)}=\lim _{\omega \rightarrow \infty}\left|\frac{\kappa}{\tau \omega^{3}}\right| \angle-180^{\circ}-\tan ^{-1}(\omega \tau) \\
& =0 \angle-270^{\circ}
\end{aligned}
$$

- Contour $C_{3}: s=j \omega$ with $\omega \in(-\infty, 0)$:
- $G\left(C_{3}\right)$ is a reflection (complex conjugate) of $G\left(C_{1}\right)$ about the real axis

Nyquist Plot: Example 5

- Magnitude and phase:

$$
G(j \omega)=\frac{\kappa}{(j \omega)^{2}(1+j \omega \tau)}=\frac{|\kappa|}{\sqrt{\omega^{4}+\omega^{6} \tau^{2}}} /-180^{\circ}-\tan ^{-1}(\omega \tau)
$$

- Contour $C_{2}: s=r e^{j \theta}$ with $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$:

$$
\lim _{r \rightarrow \infty} G(s)=\lim _{r \rightarrow \infty} \frac{\kappa}{\tau s^{3}}=\lim _{r \rightarrow \infty}\left|\frac{\kappa}{\tau r^{3}}\right| e^{-3 j \theta}=0 /-3 \theta
$$

- The phase of $G(s)$ changes from -270° at $\omega=\infty$ to 270° at $\omega=-\infty$
- Contour $C_{4}: s=\epsilon e^{j \theta}$ with $\epsilon \rightarrow 0$ and $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$$
\lim _{\epsilon \rightarrow 0} G(s)=\lim _{\epsilon \rightarrow 0} \frac{\kappa}{s^{2}}=\lim _{\epsilon \rightarrow 0} \frac{\kappa}{\epsilon^{2}} e^{-2 j \theta}=\infty /-2 \theta
$$

- The phase of $G(s)$ changes from 180° at $\omega=0^{-}$to -180° at $\omega=0^{+}$

Nyquist Plot: Example 5

- Nyquist plot of a type 2 system: $G(s)=\frac{\kappa}{s^{2}(1+\tau s)}=\frac{1}{s^{2}(s+1)}$
- Caution: Matlab's nyquistplot does not generate $G\left(C_{4}\right)$

Nyquist Plot: Example 5

- Nyquist plot of a type 2 system: $G(s)=\frac{\kappa}{s^{2}(1+\tau s)}$

Nyquist Plot: Example 6

- Draw a Nyquist plot of $G(s)=\frac{1}{(s+a)^{3}}$

$$
G(j \omega)=\frac{1}{(j \omega+a)^{3}}=\frac{(a-j \omega)^{3}}{\left(a^{2}+\omega^{2}\right)^{3}}=\frac{a^{3}-3 a \omega^{2}}{\left(a^{2}+\omega^{2}\right)^{3}}+j \frac{\omega^{3}-3 a^{2} \omega}{\left(a^{2}+\omega^{2}\right)^{3}}
$$

- Contour $C_{1}: s=j \omega$ with $\omega \in(0, \infty)$:

$$
G(j 0)=\frac{1}{a^{3}} \angle 0^{\circ}, \quad G(j \infty)=0 \angle-270^{\circ}
$$

- Contour $C_{2}: s=r e^{j \theta}$ with $r \rightarrow \infty$ and θ from $\frac{\pi}{2}$ to $-\frac{\pi}{2}$.

$$
G\left(r e^{j \theta}\right)=\frac{1}{\left(r e^{j \theta}+a\right)^{3}} \rightarrow 0 \angle-3 \theta
$$

- Contour C_{3} : a reflection (complex conjugate) of $G\left(C_{1}\right)$ about the real axis

Nyquist Plot: Example 6

- Draw a Nyquist plot of $G(s)=\frac{1}{(s+0.6)^{3}}$

Figure 10.5: Nyquist plot for a third-order transfer function $L(s)$. The Nyquist plot consists of a trace of the loop transfer function $L(s)=1 /(s+a)^{3}$ with $a=0.6$. The solid line represents the portion of the transfer function along the positive imaginary axis, and the dashed line the negative imaginary axis. The outer arc of the Nyquist contour Γ maps to the origin.

Nyquist Plot: Example 7

- Draw a Nyquist plot of $G(s)=\frac{s(s+1)}{(s+10)^{2}}$

Nyquist's Stability Criterion

- Consider the stability of the closed-loop transfer function:

$$
T(s)=\frac{G(s)}{1+G(s)}=\frac{G(s)}{\Delta(s)}
$$

- Open-loop poles: the poles of $\Delta(s)$ are the poles of $G(s)$
- Closed-loop poles: the zeros of $\Delta(s)$ are the poles of $T(s)$
- Principle of the Argument applied to $\Delta(s)=1+G(s)$:
- Let C be a Nyquist contour
- Let P be the number of poles of $\Delta(s)$ (open-loop poles) inside C
- Let Z be the number of zeros of $\Delta(s)$ (closed-loop poles) inside C
- Then, $\Delta(C)$ encircles the origin in clockwise direction $N=Z-P$ times

Nyquist's Stability Criterion

- From the Principle of the Argument applied to $\Delta(s)$, the number of closed-loop poles in the closed right half-plane is:

$$
Z=N+P
$$

where:

- N : the clockwise encirclements of the origin by $\Delta(C)$ correspond to the clockwise encirclements of $-1+j 0$ by $G(C)$ and can be determined from a Nyquist plot of $G(s)$
- P : the number of poles of $\Delta(s)$ inside C corresponds to the number of poles of $G(s)$ inside C and can be determined from $G(s)$ or its Bode plot

Nyquist's Stability Criterion

Consider a unity feedback control system with open-loop transfer function $G(s)$. Let C be a Nyquist contour. The system is stable if and only if the number of counterclockwise encirclements of $-1+j 0$ by $G(C)$ is equal to the number of poles of $G(s)$ inside C.

Nyquist Stability: Example 4

- Determine the closed-loop stability of $G(s)=\frac{\kappa}{s\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)}=\frac{\kappa}{s(1+s)^{2}}$
- $G\left(C_{1}\right)$ crosses the real axis when:

$$
\begin{aligned}
G(j \omega) & =\frac{-\kappa\left(\tau_{1}+\tau_{2}\right)-j \kappa\left(1-\omega^{2} \tau_{1} \tau_{2}\right) \omega}{1+\omega^{2}\left(\tau_{1}^{2}+\tau_{2}^{2}\right)+\omega^{4} \tau_{1}^{2} \tau_{2}^{2}}=\alpha+j 0 \\
& \Rightarrow \omega=\frac{1}{\sqrt{\tau_{1} \tau_{2}}} \quad \alpha=-\frac{\kappa \tau_{1} \tau_{2}}{\tau_{1}+\tau_{2}}
\end{aligned}
$$

- The system is stable when $\alpha=-\frac{\kappa \tau_{1} \tau_{2}}{\tau_{1}+\tau_{2}} \geq-1$

(a)

(b)

(c)

Nyquist Plot: Example 8

- Open-loop transfer function: $G(s)=\frac{1}{s+1}$
- Number of closed-loop poles in CRHP: $Z=N+P=0$

- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{1}{s+2}$

Nyquist Plot: Example 9

- Open-loop transfer function: $G(s)=\frac{1}{(s+1)^{2}}$
- Number of closed-loop poles in CRHP: $Z=N+P=0$

- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{1}{s^{2}+2 s+2}$

Nyquist Plot: Example 10

- Open-loop transfer function: $G(s)=\frac{1}{s(s+1)}$
- Number of closed-loop poles in CRHP: $Z=N+P=0$

- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{1}{s^{2}+s+1}$

Nyquist Plot: Example 11

- Open-loop transfer function: $G(s)=\frac{1}{s(s+1)(s+0.5)}$
- Number of closed-loop poles in CRHP: $Z=N+P=2$

Nyquist Diagram

- Closed-loop transfer function: $T(s)=\frac{G(s)}{1+G(s)}=\frac{1}{s^{3}+1.5 s^{2}+0.5 s+1}$
- Closed-loop poles: $p_{1,2}=0.0416 \pm j 0.7937$ and $p_{3}=-1.5832$

