ECE171A: Linear Control System Theory Lecture 11: Performance Measures

Nikolay Atanasov natanasov@ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Outline

Stability Margins

Frequency Domain Performance Specifications

Closed-loop Control from Open-loop Frequency Response

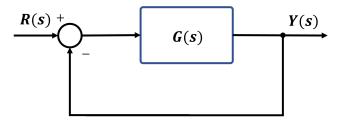
Outline

Stability Margins

Frequency Domain Performance Specifications

Closed-loop Control from Open-loop Frequency Response

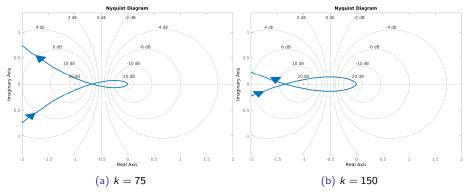
Stability Margins from a Nyquist Plot



- Consider an open-loop transfer function: $G(s) = k \frac{\prod_{i=1}^{m} (s z_i)}{\prod_{i=1}^{n} (s p_i)}$
- Increasing k increases the magnitude of all points on the Nyquist plot of G(s), i.e, pushes the contour G(C) further away from the origin

Stability Margins from a Nyquist Plot: Example

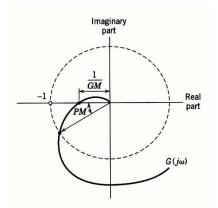
Nyquist plot of $G(s) = \frac{k}{s(s+1)(s+10)}$



- ightharpoonup The closed-loop system is stable for small k and unstable for large k
- ▶ In practice, it is not enough that the system is stable. There must also be a stability margin allowing robustness to disturbances.
- ▶ **Stability margin**: quantifies how far the Nyquist plot G(C) is from the critical point -1

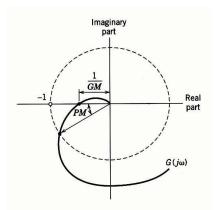
Gain Margin

- Gain Margin (GM):
 - the factor by which the open-loop gain can be increased before a stable closed-loop system becomes unstable
 - the factor by which the open-loop gain should be decreased until an unstable system becomes stable
- Nyquist plot: GM is the inverse of the distance from the origin to the first point where G(C) crosses the real axis



Phase Margin

- Phase Margin (PM):
 - the amount by which the open-loop phase can be decreased before a stable closed-loop system becomes unstable
 - the amount by which the open-loop phase should be increased before an unstable system becomes stable
- Nyquist plot: PM is the smallest angle on the unit circle between -1 and G(C)



Algebraic Definitions of Gain Margin and Phase Margin

Phase-Crossover Frequency: ω_p at which $G(j\omega)$ crosses the real axis:

$$/G(j\omega_p) = -180^\circ$$

▶ Gain Margin: the inverse of the open-loop gain at ω_p :

$$GM = 20 \log \frac{1}{|G(j\omega_p)|} = -20 \log |G(j\omega_p)| dB$$

▶ Gain-Crossover Frequency: ω_g at which $G(j\omega)$ crosses the unit circle:

$$20\log|G(j\omega_g)|=0$$
 dB

▶ **Phase Margin**: amount by which the open-loop phase at ω_g exceeds -180° :

$$PM = \underline{/G(j\omega_g)} + 180^{\circ}$$

Gain Margin and Phase Margin

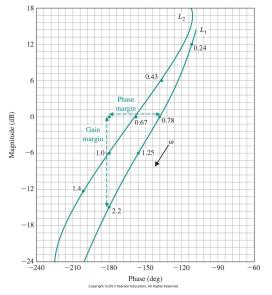
- ► For a stable minimum-phase system both *GM* and *PM* are positive. Larger gains mean larger relative stability.
- When $\omega_g = \omega_p = \omega_*$, there are closed-loop poles on the imaginary axis and instability starts to occur:

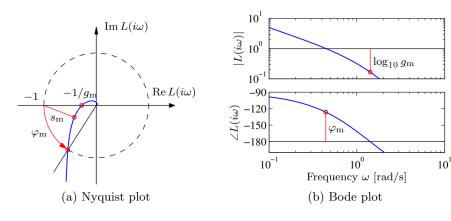
$$|G(j\omega_*)|=1, \qquad /G(j\omega_*)=-180^\circ \qquad \Rightarrow \qquad 1+G(j\omega_*)=0$$

- ▶ Bode plot and magnitude-phase plot provide $|G(j\omega)|$ and $\underline{/G(j\omega)}$ and hence ω_p , ω_g , GM, and PM can all be seen
- ➤ Caution: the Bode plot or magnitude-phase plot interpretation of GM and PM to determine stability can be incorrect if the system is non-minimum phase or has delays. Only the Nyquist stability criterion should be used to determine stability.

Gain Margin and Phase Margin on a Magnitude-Phase Plot

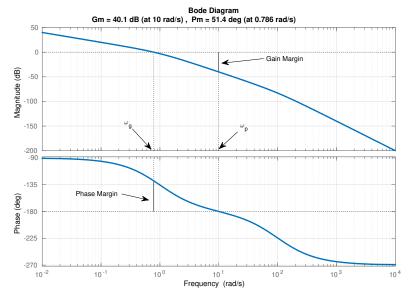
▶ Magnitude-phase plot of $G_1(s) = \frac{1}{s(s+1)(s/5+1)}$ and $G_2(s) = \frac{1}{s(s+1)^2}$





- **Stability margin**: shortest distance $s_{\rm m}$ from Nyquist plot G(C) to -1
- **Gain margin**: inverse gain $g_{
 m m}$ at phase-crossover ω_p
- **Phase margin**: phase distance $arphi_{
 m m}$ from -180° at gain-crossover $\omega_{
 m g}$

▶ Bode plot of $G(s) = \frac{k}{s(s+1)(s/100+1)}$ with k=1



- If k>0, it has no effect on the phase and shifts the magnitude up or down by $20\log k$. This changes the gain-crossover frequency ω_g but not the phase-crossover frequency ω_p .
- lacktriangle Some closed-loop poles lie on the imaginary axis when $\omega_g=\omega_p$
- lacktriangle Choose kpprox 100 to shift the magnitude up by \sim 40 dB, making $\omega_{\it g}pprox \omega_{\it p}$
- ► The imaginary axis crossing can be determined from the Bode plot but we do not know if we are going from stability to instability or vice versa
- Assuming that the system is stable initially (can only be verified by Nyquist or Routh-Hurwitz stability criteria), we expect the region of stability to be $0 < \mathcal{K} < 100$

Use Routh-Hurwitz to verify the region of stability for:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{k}{s(s+1)(s/100+1) + k} = \frac{100k}{s^3 + 101s^2 + 100s + 100k}$$

- ► Characteristic polynomial $a(s) = s^3 + 101s^2 + 100s + 100k$
- ► The Routh table is:

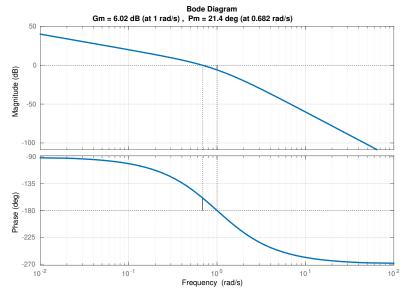
<i>s</i> ³	1	100
s ²	101	100 <i>k</i>
s^1	$100 - \frac{100k}{101}$	0
s^0	100 <i>k</i>	0

- ▶ Stability region: 0 < k < 101
- Auxiliary polynomial roots for k = 101:

$$A(s) = 101(s^2 + 100) \qquad \Rightarrow \qquad s = \pm j10$$

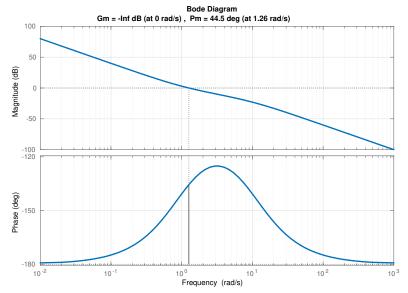
Stability Margins: Example 1

▶ What are the gain margin and phase margin of $G(s) = \frac{1}{s(s+1)^2}$?



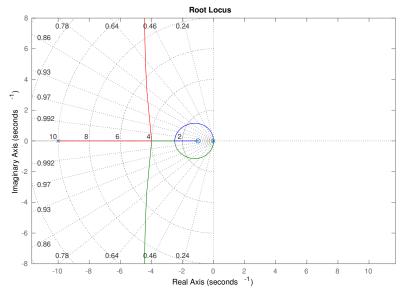
Stability Margins: Example 2

▶ What are the gain margin and phase margin of $G(s) = \frac{(s+1)}{s^2(s/10+1)}$?



Stability Margins: Example 2

• Root locus of $G(s) = \frac{(s+1)}{s^2(s/10+1)}$



Stability Margins: Example 2

- ▶ What are the gain margin and phase margin of $G(s) = \frac{k(s+1)}{s^2(s/10+1)}$?
- ▶ The gain margin is ∞ since the phase hits -180° at $\omega_p = \infty$
- As $k \to \infty$, the gain-crossover frequency ω_g moves to the right and the phase margin decreases
- As $k \to \infty$, a pair of closed-loop poles moves vertically on the root locus and the **damping ratio** ζ **decreases**
- lacktriangle There is a relationship between **phase margin** PM and **damping ratio** ζ
- We will analyze a second-order system to determine this and establish a relationship between frequency response and transient step response

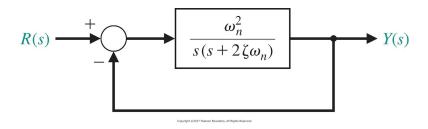
Outline

Stability Margins

Frequency Domain Performance Specifications

Closed-loop Control from Open-loop Frequency Response

Frequency Domain Performance Specifications



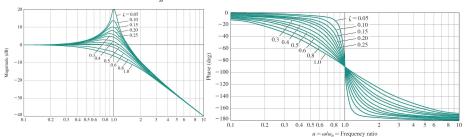
Consider a second-order system:

$$T(s) = \frac{G(s)}{1 + G(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{\frac{s^2}{\omega_n^2} + 2\zeta\frac{s}{\omega_n} + 1}$$

How does the closed-loop frequency response $T(j\omega)$ relate to the transient step response (rise time, overshoot, settling time)?

Frequency Response of a Second-order System

▶ Bode plot of $T(s) = \frac{1}{\frac{s^2}{\omega_n^2} + 2\zeta \frac{s}{\omega_n} + 1}$



- ▶ The damping ratio ζ is related to the resonant peak $\max_{\omega} |T(j\omega)|$
- The natural frequency ω_n and rise time t_r are related to the bandwidth ω_b (frequency range $(0, \omega_b)$ over which the system tracks an input signal well)

Frequency Domain Performance Specifications

- **Low-frequency (DC) gain**: the magnitude of the transfer function $|T(j\omega)|$ for low frequencies $\omega \to 0$ is equal to the steady-state step response
- **Bandwidth**: the frequency ω_b at which the transfer function magnitude drops 3 dB below the DC gain:

$$|T(j\omega_b)| = \frac{1}{\sqrt{2}}|T(0)|$$

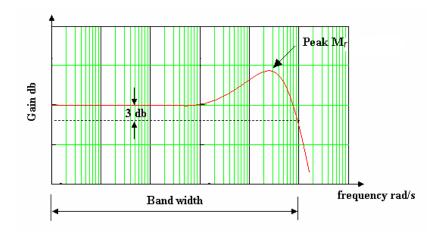
Resonant frequency: ω_r where the transfer function magnitude is maximized:

$$\omega_r = \argmax_{\omega} |T(j\omega)|$$

▶ **Resonant peak**: the maximum value of the transfer function magnitude:

$$M_r = |T(j\omega_r)|$$

Frequency Domain Performance Specifications



Frequency Response of a Second-order System

Consider a second-order system:

$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{1}{\frac{s^2}{\omega_n^2} + 2\zeta\frac{s}{\omega_n} + 1}$$

▶ Transfer function magnitude at $s = j\omega$:

$$|T(j\omega)| = \frac{1}{|-\frac{\omega^2}{\omega_n^2} + 2\zeta\frac{\omega}{\omega_n}j + 1|} = \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + 4\zeta^2\left(\frac{\omega}{\omega_n}\right)^2}}$$

▶ Transfer function phase at $s = j\omega$:

$$\underline{/T(j\omega)} = \underline{/\frac{1}{-\left(\frac{\omega}{\omega_n}\right)^2 + 2\zeta\left(\frac{\omega}{\omega_n}\right)j + 1}} = -\arctan\left(\frac{2\zeta\left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2}\right)$$

Resonant Frequency of a Second-order System

Resonant frequency:

$$\frac{d|T(j\omega)|}{d\omega} = 0$$
 \Rightarrow $\omega_r = 0$ or $\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$

- ► Resonant peak:

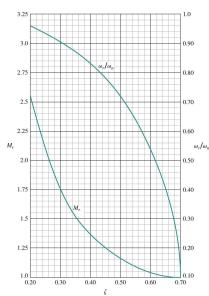
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$
 $M_r = \frac{1}{2\zeta\sqrt{1 - \zeta^2}}$

$$\omega_r = 0$$
 $M_r = 1$

Resonant Frequency of a Second-order System

▶ Plot of $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}}$ and $\frac{\omega_r}{\omega_n} = \sqrt{1-2\zeta^2}$ as a function of ζ

- ► The **resonant peak** *M_r* is related to the **percent overshoot** via *ζ*
- Example:
 - The resonant peak of the closed-loop system should be less than 1.75 (≈ 5 dB)
 - Equivalent to ζ should be greater than 0.3
 - ► Equivalent to p.o. should be less than 37%



Bandwidth of a Second-order System

▶ **Bandwidth**: the low frequency range $(0, \omega_b)$ over which the closed-loop system tracks an input signal well

$$|T(j\omega_b)| = \frac{1}{\sqrt{2}}|T(0)|$$

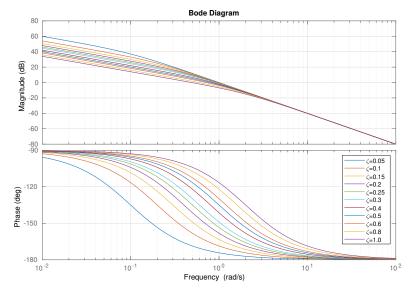
▶ Relationship between ω_b , ω_n , and ζ : with $u = \omega_b/\omega_n$:

$$u^4 + 2(\zeta^2 - 1)u^2 + 1 = 2$$
 \Rightarrow $u^2 = (1 - 2\zeta^2) \pm \sqrt{4\zeta^4 - 4\zeta^2 + 2}$
$$\omega_b = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}}$$

- ▶ Bandwidth ω_b and rise time $t_r \approx \frac{2.16\zeta + 0.6}{\omega_c}$ are inversely proportional:
 - ▶ If $\omega_n \uparrow$, then $\omega_b \uparrow$ and $t_r \downarrow$
 - ▶ If $\zeta \uparrow$, then $\omega_b \downarrow$ and $t_r \uparrow$
- Adding a zero to G(s) increases ω_b of the closed-loop transfer function T(s)
- Adding a pole to G(s) decreases ω_b of the closed-loop transfer function T(s)

Stability Margins of a Second-order System

▶ Bode plot of $G(s) = \frac{\omega_n^2}{s(s+2\zeta\omega_n)}$



Stability Margins of a Second-order System

▶ The phase plot of G(s) shows that the **phase-crossover frequency** is:

$$\omega_p = \infty$$

► The gain margin is:

$$GM = \infty$$

▶ Set $|G(j\omega)|$ to 1 to obtain the gain-crossover frequency ω_g :

$$1 = |G(j\omega_g)| = \frac{\omega_n^2}{|j\omega_g||j\omega_g + 2\zeta\omega_n|} = \frac{\omega_n^2}{\omega_g\sqrt{4\zeta^2\omega_n^2 + \omega_g^2}}$$

► The gain-crossover frequency is:

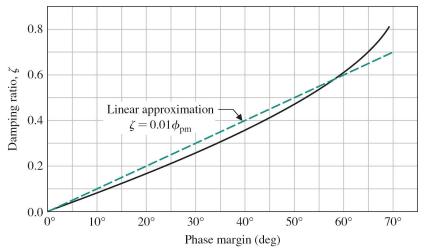
$$\omega_{g} = \omega_{n} \sqrt{\sqrt{1 + 4\zeta^{4}} - 2\zeta^{2}}$$

► The **phase margin** is:

$$\mathsf{PM} = \underline{/G(j\omega_g)} + \pi = \mathsf{tan}^{-1} \left(\frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4 - 2\zeta^2}}} \right)$$

Phase Margin of a Second-order System

- lacktriangle The phase margin of a second-order system is a function of ζ but not ω_n
- ▶ The relationship between PM and ζ can be approximated well by a straight line for small values of ζ



Copyright ():2017 Pearson Education, All Rights Reserved

Phase Margin of a Second-order System

For $0 \le \zeta \le 0.7$, the phase margin PM (in degrees) and the damping ratio ζ of a second-order system are related by:

$$PM \approx 100\zeta$$

- The relationship between ζ and PM can be used to design control systems in the frequency domain meeting time-domain specifications
- ▶ Poles that are ignored in a dominant-pole-pair approximation contribute phase lag so it is important to keep a large phase margin
- ► For $0.2 \le \zeta \le 0.8$, the gain-crossover frequency ω_g of G(s) is related to the closed-loop system bandwidth ω_b :

$$\omega_b \approx 1.8 \omega_g$$

Frequency Domain Control Design

- Consider proportional control design with gain k
- ightharpoonup To obtain low steady-state error, we want large gain k
- ▶ To obtain fast transient response we want large ω_g since $\omega_b \uparrow$, $t_r \downarrow$
- Increasing k, increases ω_g but decreases the phase margin and the system becomes less stable and might exhibit oscillatory behavior
- More complicated control design may be needed to simultaneously provide good phase margin, good gain-crossover frequency, and good steady state tracking

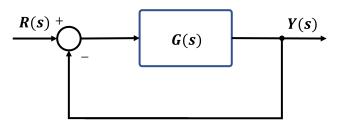
Outline

Stability Margins

Frequency Domain Performance Specifications

Closed-loop Control from Open-loop Frequency Response

Frequency Domain Performance Specifications



► Feedback control system with control gain *k* and open-loop transfer function:

$$G(s) = k \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}$$

- ▶ How can the closed-loop frequency-domain performance specifications (resonant peak M_r , resonant frequency ω_r , bandwidth ω_b) be related to the open-loop frequency response $(G(j\omega))$?
- ► How can the gain *k* be adjusted to meet frequency-domain performance specifications?

Closed-loop Transfer Function Magnitude

Closed-loop transfer function:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)}$$

Closed-loop transfer function magnitude:

$$M(s) = |T(s)| = \frac{|G(s)|}{|1 + G(s)|}$$

▶ Obtain M(s) as a function of the real and imaginary parts of G(s) = x(s) + jy(s):

$$M = \frac{\sqrt{x^2 + y^2}}{\sqrt{(1+x)^2 + y^2}}$$

This equation turns out to be a circle on a Nyquist plot

Constant Magnitude Circles

Relationship between the magnitude of the closed-loop transfer function M and the real part x and imaginary part y of the open-loop transfer function:

$$M^{2}(1+x)^{2} + M^{2}y^{2} = x^{2} + y^{2}$$

$$M^{2} = (1 - M^{2})x^{2} - 2M^{2}x + (1 - M^{2})y^{2}$$

▶ Assume $M \neq 1$ and divide both sides by $(1 - M^2)$:

$$x^2 - 2\frac{M^2}{1 - M^2}x + y^2 = \frac{M^2}{1 - M^2}$$

Add $M^4/(1-M^2)^2$ to both sides to complete the square for x:

$$\left(x - \frac{M^2}{1 - M^2}\right)^2 + y^2 = \frac{M^2}{(1 - M^2)^2}$$

Constant Magnitude Circles

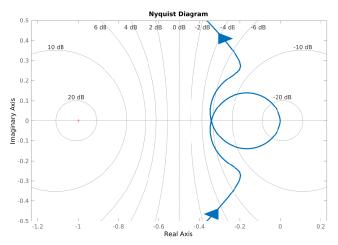
M circle: a circle of constant closed-loop transfer function magnitude on a polar/Nyquist plot:

$$\left(x - \frac{M^2}{1 - M^2}\right)^2 + y^2 = \frac{M^2}{(1 - M^2)^2}$$

- ▶ An M circle is centered at $\left(\frac{M^2}{1-M^2},0\right)$ with radius $\frac{M}{|(1-M^2)|}$
- ▶ As $M \to \infty$, the M circle is centered at (-1,0) with radius 0
- ▶ For $1 < M < \infty$, the M circle center moves to the left of (-1,0), while the radius increases
- ▶ As $M \rightarrow 0$, the M circle is centered at (0,0) with radius 0
- ▶ For 0 < M < 1, the M circle center moves to the right of (0,0), while the radius increases
- lacktriangle At M=1, we get a degenerate circle at $(\pm\infty,0)$ with radius ∞

Constant Magnitude Circles on a Nyquist Plot

- ► Nyquist plot of $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$
- If the frequencies ω along the polar plot of G(s) are available, we can construct a closed-loop Bode plot using the M circles

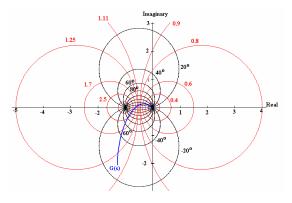


Constant Phase Circles

▶ *N* circle: a circle of constant $N = \tan /T(s)$ on a polar/Nyquist plot:

$$\left(x + \frac{1}{2}\right)^2 + \left(y - \frac{1}{2N}\right)^2 = \frac{1}{4}\left(1 + \frac{1}{N^2}\right)$$

- ▶ An N circle is centered at (-0.5, 0.5/N) with radius $0.5\sqrt{1+1/N^2}$
- \triangleright N circles are orthogonal to M circles, i.e., intersect at 90°

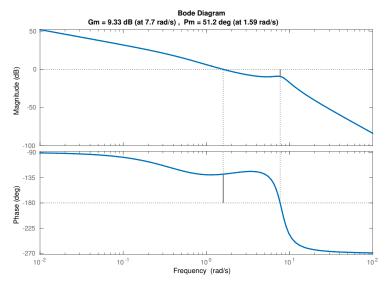


Frequency Domain Performance Specifications

- ightharpoonup Given the frequency response of an open-loop transfer function G(s), we can verify stability and frequency domain performance metrics
- Stability:
 - Determine using the Nyquist criterion
 - ▶ What if k < 0? Rotate the Nyquist plot clockwise by 180°.
- ► Gain margin *GM* and phase margin *PM*:
 - Can be obtained from a Nyquist plot, Bode plot, or magnitude-phase plot
- **Resonant peak** M_r , resonant frequency ω_r , and bandwidth ω_b :
 - Use the M circles on a Nyquist plot

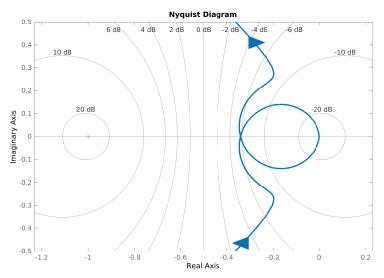
Open-loop Bode Plot

▶ Open-loop Bode plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$



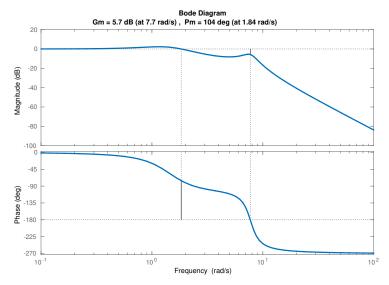
Nyquist Plot

Nyquist plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$



Closed-loop Bode Plot

► Closed-loop Bode plot for $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$



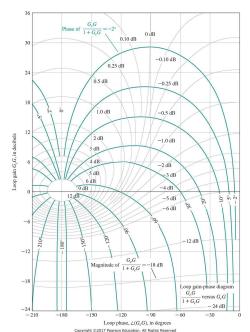
Frequency Domain Control Design

- ▶ How should *k* be adjusted to meet desired closed-loop frequency domain specifications?
 - ▶ It is difficult to determine how much to change *k* to meet a resonant peak specification on a Nyquist plot
 - ▶ It is difficult to tell where the Nyquist plot would become tangent to the desired *M* circle
- ▶ **Nathaniel Nichols** proposed to transform the *M* and *N* circles from a Nyquist plot to a magnitude-phase plot
- ➤ On a magnitude-phase plot, the M and N contours are no longer circles
- ▶ If k changes, a magnitude-phase plot only moves up or down, which is much easier to interpret that the change of the shape on a Nyquist plot

N. Nichols

Nichols Plot

- ► Nichols plot: a magnitude-phase plot with overlaid M and N contours of constant closed-loop transfer-function magnitude and phase
- The gain margin and phase margin can be obtained
- ► The resonant peak M_r and bandwidth ω_b can be obtained
- A change in the gain k moves the response up or down and can be used to meet closed-loop frequency domain specifications



Nichols Plot

► Nichols plot of $G(s) = \frac{4(s/2+1)}{s(2s+1)(1+0.4(s/8)+(s/8)^2)}$

