ECE171A: Linear Control System Theory Lecture 2: Feedback Control Principles

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Advantages and Disadvantages of Feedback Control

Example: Nonlinear Static System

Example: Cruise Control System

Outline

Advantages and Disadvantages of Feedback Control

Example: Nonlinear Static System

Example: Cruise Control System

Advantages of Feedback Control

Disturbance attenuation:

 Closed-loop control reduces the effect of disturbances and noise in the system response

Robustness to parameter variations:

- Closed-loop control reduces the sensitivity of the system response to variations in the model parameters
- Accurate control may be achieved with imprecise components

Dynamic behavior shaping:

- Closed-loop control may widen the range in which a system behaves linearly
- Closed-loop control allows the system output to track a desired reference signal

Disadvantages of Feedback Control

Increased system complexity:

Sensing components are necessary for feedback control, which may be expensive and introduces noise

Loss of gain:

- The forward gain in a closed-loop system is smaller by a certain factor than the forward gain of an open-loop system
- The gain is decreased by the same factor that reduces the sensitivity to parameter variations and disturbances
- In practice, the advantage of increased robustness outweighs the loss of control gain

Potential for instability:

Closed-loop control may lead to system instability, even if the open-loop system is stable

Examples of Feedback Control Use

- Feedback control was used by James Watt to make steam engines run at constant speed in spite of varying load (industrial revolution)
- Feedback control was used by electrical engineers to make water-turbine generators deliver electricity with constant frequency and voltage.
- Feedback control is commonly used to alleviate effects of disturbances in the process industry, for machine tools, and for engine and cruise control in cars.
- The human body exploits feedback to keep body temperature, blood pressure, and other important variables constant.
- Servo problem: a major application of feedback control is to make a system's output follow a desired reference signal
 - Examples: car steering, satellite tracking with an antenna, audio amplifiers, industrial robots

Outline

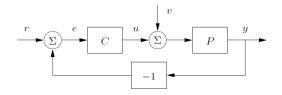
Advantages and Disadvantages of Feedback Control

Example: Nonlinear Static System

Example: Cruise Control System

Example: Nonlinear Static System

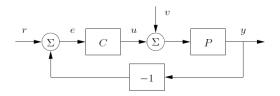
- Automatic control has had significant impact on industrial automation, e.g., for process control in chemical plants
- > The dynamical system to be controlled is often referred to as **plant**



- ▶ Reference signal: *r*(*t*)
- ► Controller: C
- Plant: P
- Summing point: Σ

- lnput: u(t)
- Disturbance: v(t)
- Output: y(t)
- Error: *e*(*t*)

Example: Nonlinear Static System



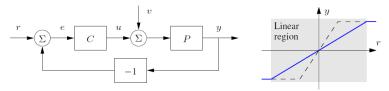
Plant P: consider a static system (no dynamics and no ODE description):

$$y = \operatorname{sat}(x) := \begin{cases} -1 & \text{if } x \leq -1 \\ x & \text{if } |x| < 1 \\ 1 & \text{if } x \geq 1 \end{cases}$$

Controller C: consider a controller with constant gain k > 0:

$$u = ke$$

Dynamic Behavior Shaping



Assume no disturbances for now: $v \equiv 0$

Open-loop system: combination of C and P with no feedback:

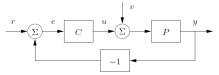
 $y = \operatorname{sat}(kr) \Rightarrow \text{ linear range: } |r| < 1/k$

Closed-loop system: combination of *C* and *P* with feedback:

$$\begin{array}{l} y = \operatorname{sat}(u) \\ u = k(r - y) \end{array} \} \quad \Rightarrow \quad y = \operatorname{sat}(k(r - y)) \\ \Rightarrow \quad y = \operatorname{sat}\left(\frac{k}{k + 1}r\right) \quad \Rightarrow \quad \text{linear range: } |r| < \frac{k + 1}{k} \end{array}$$

Observation 1: Feedback control **widens** the linear range of the system by a factor of k + 1 compared to the open-loop system

Robustness to Parameter Variations



Parameter sensitivity: quantifies the change in system behavior due to change in the system parameters

Open-loop system:

In the linear range: y = kr

• It follows that
$$\frac{dy}{dk} = r = \frac{y}{k} \Rightarrow \frac{dy}{y} = \frac{dk}{k}$$

Sensitivity: 10% change in k leads to 10% change in output

Closed-loop system:

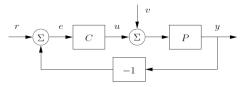
• In the linear range: $y = \frac{k}{k+1}r$

It follows that
$$\frac{dy}{dk} = \frac{1}{(k+1)^2}r = \frac{1}{(k+1)}\frac{y}{k} \Rightarrow \frac{dy}{y} = \frac{1}{(k+1)}\frac{dk}{k}$$

Sensitivity: for k = 100, 10% change in k leads to $\approx 0.1\%$ change in output

Observation 2: Feedback control **reduces the sensitivity** to gain variations by a factor of k + 1.

Disturbance Attenuation



Suppose now that the system is subject to a disturbance signal v

• Assume $r \equiv 0$ for simplicity

Open-loop system:

• With $r \equiv 0$, $y = \operatorname{sat}(v)$

In the linear range, disturbances are passed through with no attenuation

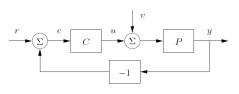
Closed-loop system:

• With
$$r \equiv 0$$
, $y = \operatorname{sat}(v - ky) \Rightarrow y = \operatorname{sat}\left(\frac{v}{k+1}\right)$

• In the linear range, disturbances are attenuated by a factor of k + 1

Observation 3: Feedback control reduces the effect of disturbances in the linear range by a factor of k + 1.

Summary



Static plant P: $y = \operatorname{sat}(x) := \begin{cases} -1 & \text{if } x \leq -1 \\ x & \text{if } |x| < 1 \\ 1 & \text{if } x \geq 1 \end{cases}$

Constant-gain controller C: u = ke, k > 0

Feedback control

- ▶ 1) increases the range of linearity of the system,
- > 2) decreases the sensitivity of the system response to parameter variations,
- 3) attenuates the effect of disturbances.

The trade-off is that

- 1) output sensing is required,
- ▶ 2) the closed-loop gain is decreased by a factor of k + 1:

open-loop: closed-loop:

$$y = \operatorname{sat}(kr)$$
 $y = \operatorname{sat}\left(\frac{k}{k+1}r\right)$

Outline

Advantages and Disadvantages of Feedback Control

Example: Nonlinear Static System

Example: Cruise Control System

Example: Cruise Control System

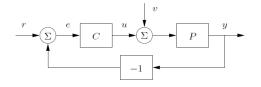
A cruise controller aims to maintain constant velocity in the presence of disturbances caused by the road slope, friction, air drag, etc.

- Desired speed (reference): r(t)
- Actual speed (output): y(t)
- Engine force (input): u(t)
- Mass (parameter): m
- Disturbances:
 - Road slope: $F_{road} = -mg \sin(\theta)$
 - Air drag: $F_{drag} = -\delta y(t)$

System model:

$$m\dot{y}(t) = u(t) - \delta y(t) - mg\sin(\theta)$$

Example: Cruise Control System



Plant P:

$$m\dot{y}(t) = u(t) - \delta y(t) - mg\sin(\theta)$$

Controller C: design u(t) using reference r(t) and output y(t)

Performance criteria:

- Stable response
 - Steady-state velocity approaches desired velocity
 - Smooth response with no overshoot or oscillations
- Disturbance rejection
 - Effect of disturbances (e.g., slope θ) approaches zero over time

Robustness

System response is invariant to variations in the parameters (e.g., mass m)

Closed-loop Control

System model:

$$m\dot{y}(t) = u(t) - \delta y(t) - mg\sin(\theta)$$

Closed-loop control:

- u(t) designed using the error signal e(t) = r(t) y(t)
- P (Proportional) control:

$$u(t) = k_{\rm p} e(t)$$

I (Integral) control:

$$u(t)=k_{\rm i}\int_0^t e(t)dt$$

D (Derivative) control:

$$u(t)=k_{\rm d}\frac{d}{dt}e(t)$$

PID control:

$$u(t) = k_{\mathrm{p}}e(t) + k_{\mathrm{i}}\int_{0}^{t}e(t)dt + k_{\mathrm{d}}\frac{d}{dt}e(t)$$

Open-loop Control

System model:

$$m\dot{y}(t) = u(t) - \delta y(t) - mg\sin(\theta)$$

Open-loop control:

u(t) is designed using reference r(t) and initial condition y(0) = y₀ but no measurements of the output y(t)

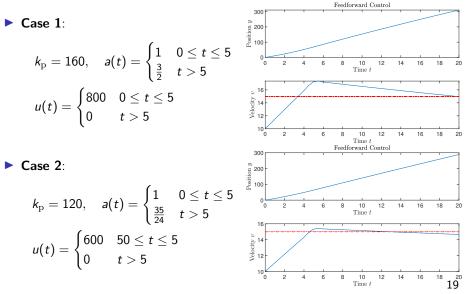
• Approximate the error using y_0 and some function a(t):

$$e(t) \approx r(t) - a(t)y_0$$

Use PID control with the approximate error

Open-loop P Control Simulation

- ▶ Parameters: $r(t) \equiv 15$ m/s, $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$, $\theta = 0^\circ$
- Matlab ODE45 function: [t,y] = ode45(odefun,tspan,y0)

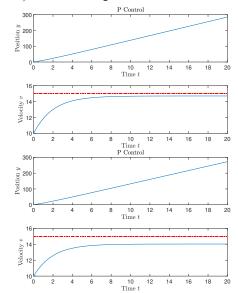


Closed-loop P Control Simulation

▶ Parameters: $r(t) \equiv 15$ m/s, $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$

Case 1: flat road $\theta = 0^{\circ}$

$$k_{\mathrm{p}} = 250$$
 $u(t) = k_{\mathrm{p}}e(t)$



• Case 2: uphill $\theta = 2^{\circ}$ $k_{\rm p} = 250$ $u(t) = k_{\rm p}e(t)$

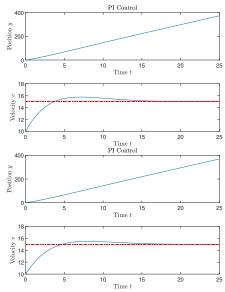
Closed-loop PI Control Simulation

- ▶ Parameters: $r(t) \equiv 15$ m/s, $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$
- **Case 1**: flat road $\theta = 0^{\circ}$

$$k_{\rm p} = 250, \quad k_{\rm i} = 50$$
$$u(t) = k_{\rm p}e(t) + k_{\rm i} \int_0^t e(t)dt$$

Case 2: uphill $\theta = 2^{\circ}$

$$k_{\rm p} = 250, \quad k_{\rm i} = 50$$
$$u(t) = k_{\rm p}e(t) + k_{\rm i} \int_0^t e(t)dt$$



Disturbance Attenuation with PI Control

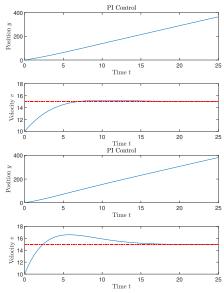
▶ Parameters: $r(t) \equiv 15$ m/s, $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$

Case 1: uphill $\theta = 5^{\circ}$

$$k_{\rm p} = 250, \quad k_{\rm i} = 50$$
$$u(t) = k_{\rm p}e(t) + k_{\rm i} \int_0^t e(t)dt$$

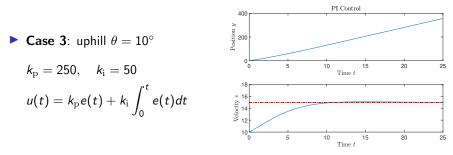
Case 2: downhill $\theta = -5^{\circ}$

$$k_{\rm p} = 250, \quad k_{\rm i} = 50$$
$$u(t) = k_{\rm p}e(t) + k_{\rm i} \int_0^t e(t)dt$$



Disturbance Attenuation with PI Control

▶ Parameters: $r(t) \equiv 15$ m/s, $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$



Disturbance attenuation: The same PI controller achieves *zero steady-state error*, i.e., $e(t) \rightarrow 0$, despite the presence of an *unknown* disturbance θ .

Dynamic Behavior Shaping with PI Control

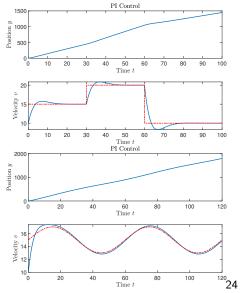
▶ Parameters: $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$, $\theta = 0^\circ$

- Closed-loop PI control with $k_{\rm p} = 250$ and $k_{\rm i} = 50$
- Case 1: piecewise-constant reference

$$r(t) = \begin{cases} 15m/s & t \le 30\\ 20m/s & 30 < t \le 60\\ 10m/s & 60 < t \end{cases}$$

Case 2: sinusoidal reference

$$r(t) = 15 + 2\sin\left(\frac{2\pi}{60}t\right)$$



Dynamic Behavior Shaping with PI Control

▶ Parameters: $y_0 = 10 \text{ m/s}$, m = 500 kg, $\delta = 0.5$, $\theta = 0^\circ$

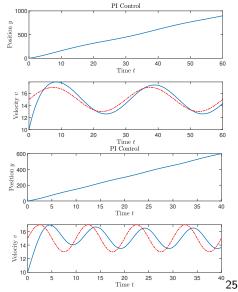
• Closed-loop PI control with $k_{\rm p} = 250$ and $k_{\rm i} = 50$

Case 3: sinusoidal reference

$$r(t) = 15 + 2\sin\left(\frac{2\pi}{30}t\right)$$

Case 4: sinusoidal reference

$$r(t) = 15 + 2\sin\left(\frac{2\pi}{10}t\right)$$



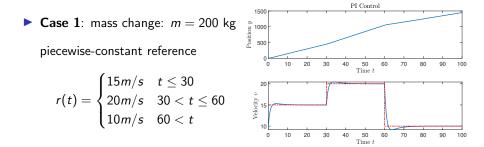
Dynamic Behavior Shaping with PI Control

Reference tracking: The same PI controller can make the closed-loop system follow a reference signal with small tracking error.

- To analyze the tracking behavior with respect to the frequency of the reference signal and to quantify the tracking error, we need to understand the system behavior in the Laplace domain
- The bandwidth of the closed-loop system provides an upper bound on the frequency of reference signals that can be tracked with small error

Robustness to Parameter Variations with PI Control

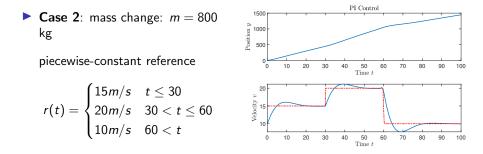
- ▶ Parameters: $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$, $\theta = 0^\circ$
- Closed-loop PI control with $k_{\rm p} = 250$ and $k_{\rm i} = 50$



Robustness to Parameter Variations with PI Control

▶ Parameters: $y_0 = 10$ m/s, m = 500 kg, $\delta = 0.5$, $\theta = 0^\circ$

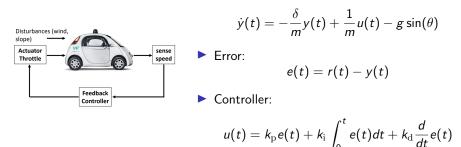
• Closed-loop PI control with $k_{\rm p}=250$ and $k_{\rm i}=50$



Robustness: The same PI controller can make the closed-loop system follow a reference signal even when some system parameters are not known exactly.

Summary

Plant:



Feedback control

- 1) achieves reference signal tracking,
- 2) decreases the sensitivity of the system response to parameter variations,
- ▶ 3) attenuates the effect of disturbances.