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System Modeling

I A model is a mathematical representation of a dynamical system

I Models allow us to make predictions about how a system will behave

I There may be multiple models for a single dynamical system

I All models are approximations of the real system behavior

I Whether we choose a simple coarse model or a complex precise model
depends on the questions we wish to answer
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System Modeling

I Dynamic behavior can be described in several ways:
I ordinary differential equations (ODEs) in continuous time

I partial differential equations (PDEs) when the system behavior is determined
by other variables in addition to time

I difference equations (DEs) in discrete time

I The relationships among the variables and their derivatives in these equations
may be linear or nonlinear

I The coefficients of these equations may be invariant or varying

I We will focus on linear time-invariant (LTI) ordinary differential equations
(ODEs)
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Why LTI ODEs?

I Many practically relevant systems can be modeled as LTI ODEs:
I Electric circuits (e.g., RLC circuits).

I Mechanical systems (e.g., spring-mass systems)

I Many techniques have been developed for LTI ODE analysis and design:
I Classical control analysis tools: step, impulse, and frequency response

I Classical control design tools: Bode/Nyquist/Nichols plots, gain/phase
margins, loop shaping

I Optimal estimation and control: Kalman filter and linear quadratic regulator
(LQR)

I Robust control design: H2 and H∞ control design and µ analysis for
structural uncertainty.

I LTI ODEs provide a foundation for nonlinear system analysis and control
(e.g., via linearization)
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Differential Equations
I A differential equation is any equation involving a function and its

derivatives
I Example:

d

dt
y(t) = −y(t)

I A solution to a differential equation is any function that satisfies the
equation
I Example: a solution to the differential equation above is:

y(t) = e−t

I Another solution is
y(t) = 2e−t

I A general solution is
y(t) = e−ty(0).

where y(0) ∈ R is the initial value of y(t) at t = 0.

I When the variable is time t, we will use short-hand derivative notation:

d

dt
y(t) ≡ ẏ(t)

d2

dt2
y(t) ≡ ÿ(t) · · · dn

dtn
y(t) ≡ y (n)(t)
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Ordinary Differential Equations

I An nth-order linear time-invariant ordinary differential equation is:

dn

dtn
y(t) + an−1

dn−1

dtn−1
y(t) + . . .+ a1

d

dt
y(t) + a0y(t) = u(t)

I If u(t) ≡ 0, then the nth-order linear ODE is called homogeneous

I A particular solution is a solution y(t) that contains no arbitrary constants

I A general solution is a solution y(t) that contains n arbitrary constants

I An initial value problem is an LTI ODE with initial value constraints:

y(t0) = y0, ẏ(t0) = y1, . . . , y (n−1)(t0) = yn−1.

Theorem: Existence and Uniqueness of Solutions

Let u(t) be continuous on an interval I = [t1, t2]. Then, for any t0 ∈ I, a solution
y(t) of the initial value problem exists on I and is unique.
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Example

I Consider the homogeneous linear ODE:
d2

dt2
y(t) + y(t) = 0

I Two particular solutions are:

y1(t) = cos(t) ⇒ d2

dt2
cos(t) = − cos(t)

y2(t) = sin(t) ⇒ d2

dt2
sin(t) = − sin(t)

I In fact, any linear combination y(t) = c1y1(t) + c2y2(t) wiht c1, c2 ∈ R is
also a solution
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Superposition Principle for Homogeneous Linear ODEs

Let y1, y2, . . ., yk be solutions to a homogeneous nth-order linear ODE on an
interval I. Then, any linear combination:

y(t) = c1y1(t) + c2y2(t) + . . .+ ckyk(t)

is also a solution, where c1, c2, . . ., ck are constants.

Superposition Principle for Nonhomogeneous Linear ODEs

For i = 1, . . . , k , let ypi (t) denote particular solutions to the linear ODEs:

dn

dtn
y(t) + an−1

dn−1

dtn−1
y(t) + . . .+ a1

d

dt
y(t) + a0y(t) = ui (t).

Then, yp(t) = c1yp1(t) + c2yp2(t) + . . .+ ckypk (t) is a particular solution of:

dn

dtn
y(t) + an−1

dn−1

dtn−1
y(t) + . . .+ a1

d

dt
y(t) + a0y(t)

= c1u1(t) + c2u2(t) + . . .+ ckuk(t),

where c1, c2, . . ., ck are constants.
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State-Space Model

I An nth-order LTI ODE can be reformulated into a first-order vector LTI ODE
of the form:

ẋ(t) = Ax(t) + Bu(t)

I Define variables:

x1(t) = y(t), x2(t) =
d

dt
y(t), . . . , xn(t) =

dn−1

dtn−1
y(t)

I The nth-order linear ODE specifies the following relationships:

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...

ẋn−1(t) = xn(t)

ẋn(t) = −a0x1(t)− a1x2(t)− · · · − an−1xn(t) + u(t)
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State-Space Model

I Let x(t) :=
[
x1(t) x2(t) · · · xn(t)

]>
be a vector called system state

I The forcing function u(t) is called system control input

I A state-space model of the nth-order linear ODE is obtained by rewriting
the equations in vector-matrix form:

ẋ(t) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−a0 −a1 · · · −an−1


︸ ︷︷ ︸

A

x(t) +


0
...
0
1


︸︷︷︸

b

u(t)

I The system output y(t) can be obtained from the state x(t) as:

y(t) =
[
1 0 · · · 0

]︸ ︷︷ ︸
c>

x(t)
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State-Space Model

I An LTI ODE state-space model of a dynamical system is:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

with:
I state: x ∈ Rn

I input: u ∈ Rm

I output: y ∈ Rp

I parameters: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m

I Single-input single-output (SISO) system: m = p = 1

I Multi-input multi-output (MIMO) system: m, p > 1
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State-Space Model Variables

I State-space model variables:
I State: consists of variables that capture information from the past motion of

the system sufficient to predict the future motion
I Input: consists of external effects acting on the system
I Output: consists of measured variables
I Parameters: describe the state evolution in the form of an update rule

I The choice of state is not unique:
I There may be many choices of variables that are sufficient to describe the

system evolution

I The choice of input and output depends on the point of view
I Inputs in one model might be outputs of another model (e.g., the output of a

cruise controller provides the input to the vehicle model)

I Outputs are variables (often states) that can be measured and depend on
what components of the system interact with external system components
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Historical Perspectives

I In the 1940s, when control theory emerged as a discipline, the modeling
approach was strongly influenced by input-output models used in electrical
engineering

I An algebraic relationship, called transfer function, between the input and
the output of an LTI ODE system can be obtained by transforming it from
the time domain to the complex domain via a Laplace transform

I In the 1950s, a second wave of control developments, inspired by mechanics,
focused on state-space models

I Both perspectives provide useful and often distinct information about the
system behavior and offer different tools for control analysis and design

I State-space techniques generalize more directly and are easier to use for
MIMO systems
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Nonlinear Systems

I Nonlinear State-space Model:{
ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t))
v.s.

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

I Typical control problems: design a function u = k(x), called feedback
control law, such that:
I Regulation problem: the state converges to zero: x(t)→ 0

I Servo problem: the state tracks a reference signal: x(t)→ r(t)

I Closed-loop system:

ẋ = f(x, k(x)) = F(x)
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Discrete-time Systems

I It some situations, it is natural to describe the evolution of a system at
discrete instants of time rather than continuously in time

I Time step: k = 0, 1, 2, . . .

I Discrete-time nonlinear system: modeled by nonlinear difference equation:

xk+1 = f(xk ,uk)

yk = h(xk ,uk)

I Discrete-time linear system: modeled by linear difference equation:

xk+1 = Axk + Buk

yk = Cxk + Duk
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RL Circuit

R : Resistance

L : Inductance

VR = Ri : Resistor

VL = L
di

dt
: Inductor

I Kirchhoff’s voltage law:

VS − VR − VL = 0

I System model:

L
di

dt
= VS − Ri

I State-space model:
I Variables: x = i , u = VS , y = VR

I Model:

ẋ = −R

L
x +

1

L
u

y = Rx 20



Spring-mass System

m = mass

F = external force

c = friction (damper)

k = spring stiffness

q = deviation from rest position

I System model: from Newton’s second law:

mq̈ + cq̇ + kq = F

I State-space model:
I Variables: x1 = q, x2 = q̇, y = x1 = q, u = F

I Model:


[
ẋ1

ẋ2

]
=

[
x2

1
m

(−cx2 − kx1 + u)

]
y = x1

⇔


d

dt

[
x1

x2

]
=

[
0 1

− k
m
− c

m

][
x1

x2

]
+

[
0
1
m

]
u

y =
[
1 0

] [x1
x2

]
+ 0u
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Speed Control

⇒

I Variables: position p, velocity v , engine force Fengine, mass m, gravity
acceleration g , road slope θ

I System model: from Newton’s second law:

ṗ = v

mv̇ = Fengine −mg sin θ

I State-space model:
I Variables: x1 = p, x2 = ṗ, y = x2 = v , u1 = Fengine, u2 = g sin(θ)

I Model:
[
ẋ1

ẋ2

]
=

[
x2

1
m
u1 − u2

]
y = x2.

⇔


d

dt

[
x1

x2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0 0
1
m
−1

][
u1

u2

]

y =
[
0 1

] [x1
x2

]
+
[
0 0

] [u1
u2

]
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Inverted Pendulum

m = mass

l = length

u = external force

θ = angle

I Torque: T = mgl sin θ − ul cos θ

I Moment of inertia: J = ml2

I System model: from Newton’s second law:

ml2θ̈ = mgl sin θ − ul cos θ

I State-space model:
I Variables: x1 = θ, x2 = θ̇, y = θ

I Model (nonlinear): [
ẋ1
ẋ2

]
=

[
x2

mgl sin(x1)− ul cos(x1)

ml2

]

y =
[
1 0

] [x1
x2

]
+ 0u
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Population Dynamics
I Population growth is a complex dynamic process that involves the interaction

of one or more species with their environment and the larger ecosystem

I Variables: x(t): species population at time t, b: birth rate, d : death rate,
r = (b − d): differential birth rate, k : carying capacity of the environment

I Logistic growth model:

dx

dt
= rx

(
1− x

k

)
, x ≥ 0

I Logistic growth model simulation with r = 1.2 and k = 10:
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