ECE171A: Linear Control System Theory Lecture 4: ODE Solutions

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

Existence and Uniqueness of ODE Solutions

- Consider the nonlinear initial value problem:

$$
\dot{\mathbf{x}}=\mathbf{F}(\mathbf{x}), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

- A function $\mathbf{s}(t)$ is a solution to the initial value problem on interval $\left[t_{0}, t_{\mathrm{f}}\right]$ if:

$$
\mathbf{s}\left(t_{0}\right)=\mathbf{x}_{0} \quad \text { and } \quad \frac{d}{d t} \mathbf{s}(t)=\mathbf{F}(\mathbf{s}(t)), \quad \forall t_{0}<t<t_{\mathrm{f}}
$$

- If the function $\mathbf{F}(\mathbf{x})$ is well-behaved (Lipschitz continuous), then the initial value problem has a unique solution
- In general, a nonlinear initial value problem:
- may not have a unique solution (see Example 5.3: $\dot{x}=2 \sqrt{x}$)
- may not have a solution (see Example 5.2: $\dot{x}=x^{2}$)

Example 1: Scalar System

- Consider the scalar system:

$$
\dot{x}=-a x, \quad x(0)=x_{0}
$$

- Its unique solution is $x(t)=e^{-a t} x_{0}$

Example 2: Decoupled Two-dimensional System

- Consider the system:

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
-a & 0 \\
0 & -b
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Its unique solution is:

$$
x_{1}(t)=e^{-a t} x_{1}(0), \quad x_{2}(t)=e^{-b t} x_{2}(0)
$$

- Note the vector form of the solution:

$$
\mathbf{x}(t)=\left[\begin{array}{cc}
e^{-a t} & 0 \\
0 & e^{-b t}
\end{array}\right] \mathbf{x}(0)
$$

Example 3: Double Integrator

- Consider the system with constant $a \in \mathbb{R}$:

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
a
\end{array}\right]
$$

- Interpret the system state as position $x_{1}(t)$ and velocity $x_{2}(t)$
- Determine the velocity solution first
- The unique solution is:

$$
\begin{aligned}
& x_{1}(t)=x_{1}(0)+x_{2}(0) t+\frac{1}{2} a t^{2} \\
& x_{2}(t)=x_{2}(0)+a t
\end{aligned}
$$

Example 4: Damped Oscillator (Spring-mass System)

$$
\begin{aligned}
m & =\text { mass } \\
F & =\text { External force } \\
c & =\text { friction (damper) } \\
k & =\text { spring stiffness } \\
q & =\text { position }
\end{aligned}
$$

- System model: from Newton's second law:

$$
m \ddot{q}+c \dot{q}+k q=F
$$

- Free response: let $F=0$:

$$
m \ddot{q}+c \dot{q}+k q=0 \quad \Rightarrow \quad \ddot{q}+\frac{c}{m} q+\frac{k}{m} q=0
$$

- Introduce damping ratio ζ and natural frequency ω_{0} parameters:

$$
2 \zeta \omega_{0}=\frac{c}{m}, \quad \omega_{0}^{2}=\frac{k}{m} \quad \Rightarrow \quad \ddot{q}+2 \zeta \omega_{0} \dot{q}+\omega_{0}^{2} q=0
$$

Example 4: Damped Oscillator (Spring-mass System)

- State variables:

$$
x_{1}=q, \quad x_{2}=\frac{\dot{q}}{\omega_{0}}
$$

- State-space model:

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\omega_{0} x_{2} \\
-\omega_{0} x_{1}-2 \zeta \omega_{0} x_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & \omega_{0} \\
-\omega_{0} & -2 \zeta \omega_{0}
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- Assume $\zeta<1$ (underdamped oscillator) and define the damped frequency:

$$
w_{\mathrm{d}}=\omega_{0} \sqrt{1-\zeta^{2}}
$$

- The unique solution is:

$$
\begin{aligned}
& x_{1}(t)=e^{-\zeta \omega_{0} t}\left(x_{1}(0) \cos \left(\omega_{\mathrm{d}} t\right)+a_{1} \sin \left(\omega_{\mathrm{d}} t\right)\right) \\
& x_{2}(t)=e^{-\zeta \omega_{0} t}\left(x_{2}(0) \cos \left(\omega_{\mathrm{d}} t\right)+a_{2} \sin \left(\omega_{\mathrm{d}} t\right)\right)
\end{aligned}
$$

where a_{1}, a_{2} are constants depending on the initial conditions $x_{1}(0), x_{2}(0)$:

$$
a_{1}=\frac{1}{\omega_{\mathrm{d}}}\left(\omega_{0} \zeta x_{1}(0)+x_{2}(0)\right), \quad a_{2}=-\frac{1}{\omega_{\mathrm{d}}}\left(\omega_{0}^{2} x_{1}(0)+\omega_{0} \zeta x_{2}(0)\right)
$$

Example 4: Damped Oscillator (Spring-mass System)

Figure 5.1: Response of the damped oscillator to the initial condition $x_{0}=(1,0)$. The solution is unique for the given initial conditions and consists of an oscillatory solution for each state, with an exponentially decaying magnitude.

Outline

Examples

Linear Properties of LTI Systems

LTI ODE System

- Consider the LTI ODE system:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

- The output $\mathbf{y}(t)$ satisfies linear properties:
- Case 1: Zero initial state $\mathbf{x}(0)=\mathbf{0}$: the output $\mathbf{y}(t)$ is linear in input $\mathbf{u}(t)$
- Case 2: Zero input $\mathbf{u}(t) \equiv 0$: the output $\mathbf{y}(t)$ is linear in initial state $\mathbf{x}(0)$

Case 1: Zero Initial State $\mathbf{x}(0)=\mathbf{0}$

Case 1: Zero Initial State $\mathbf{x}(0)=\mathbf{0}$

Zero initial state $\mathbf{x}(0)=\mathbf{0}$: the output $\mathbf{y}(t)$ is linear in input $\mathbf{u}(t)$

$$
\left\{\begin{array}{l}
\mathbf{u}_{1}(t) \rightarrow \mathbf{y}_{1}(t) \\
\mathbf{u}_{2}(t) \rightarrow \mathbf{y}_{2}(t)
\end{array} \quad \Longrightarrow \quad \alpha \mathbf{u}_{1}(t)+\beta \mathbf{u}_{2}(t) \rightarrow \alpha \mathbf{y}_{1}(t)+\beta \mathbf{y}_{2}(t)\right.
$$

Proof:

- Denote the state trajectory for $\mathbf{u}_{1}(t)$ as $\mathbf{x}_{1}(t)$, and for $\mathbf{u}_{2}(t)$ as $\mathbf{x}_{2}(t)$:

$$
\dot{\mathbf{x}}_{1}(t)=\mathbf{A} \mathbf{x}_{1}(t)+\mathbf{B} \mathbf{u}_{1}(t), \quad \dot{\mathbf{x}}_{2}(t)=\mathbf{A} \mathbf{x}_{2}(t)+\mathbf{B} \mathbf{u}_{2}(t)
$$

\rightarrow Let $\mathbf{u}(t)=\alpha \mathbf{u}_{1}(t)+\beta \mathbf{u}_{2}(t)$ and verify $\mathbf{x}(t)=\alpha \mathbf{x}_{1}(t)+\beta \mathbf{x}_{2}(t)$ is a solution:

- Initial condition: $\mathbf{x}(0)=\alpha \mathbf{x}_{1}(0)+\beta \mathbf{x}_{2}(0)=0$
- ODE:

$$
\begin{aligned}
\dot{\mathbf{x}} & =\alpha \dot{\mathbf{x}}_{1}+\beta \dot{\mathbf{x}}_{2}=\alpha\left(\mathbf{A} \mathbf{x}_{1}+\mathbf{B} \mathbf{u}_{1}\right)+\beta\left(\mathbf{A} \mathbf{x}_{2}+\mathbf{B} \mathbf{u}_{2}\right) \\
& =\mathbf{A}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right)+\mathbf{B}\left(\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}\right) \\
& =\mathbf{A x}+\mathbf{B u}
\end{aligned}
$$

- Hence, the output corresponding to $\mathbf{u}=\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}$ is:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{C x}+\mathbf{D u}=\mathbf{C}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right)+\mathbf{D}\left(\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}\right) \\
& =\alpha\left(\mathbf{C} \mathbf{x}_{1}+\mathbf{D} \mathbf{u}_{1}\right)+\beta\left(\mathbf{C} \mathbf{x}_{2}+\mathbf{D} \mathbf{u}_{2}\right)=\alpha \mathbf{y}_{1}+\beta \mathbf{y}_{2}
\end{aligned}
$$

Case 1: Zero Initial State $\mathbf{x}(0)=\mathbf{0}$

- Consider an LTI ODE with zero initial condition
- Suppose that with input $\mathbf{u}(t)$, the output is $\mathbf{y}(t)$

- If the input is $2 \mathbf{u}(t)$, what is the output?

- If the input amplitude is doubled, then the output amplitude is also doubled

Case 2: Zero Input $\mathbf{u}(t) \equiv \mathbf{0}$

Zero input $\mathbf{u}(t) \equiv \mathbf{0}$: the output $\mathbf{y}(t)$ is linear in the initial state $\mathbf{x}(0)$

$$
\left\{\begin{array}{l}
\mathbf{x}_{1}(0)=\boldsymbol{\xi}_{1} \rightarrow \mathbf{y}_{1}(t) \\
\mathbf{x}_{2}(0)=\boldsymbol{\xi}_{2} \rightarrow \mathbf{y}_{2}(t)
\end{array} \quad \Longrightarrow \quad \mathbf{x}_{3}(0)=\alpha \boldsymbol{\xi}_{1}+\beta \boldsymbol{\xi}_{2} \rightarrow \alpha \mathbf{y}_{1}(t)+\beta \mathbf{y}_{2}(t)\right.
$$

Proof:

- Denote the state trajectory for $\boldsymbol{\xi}_{1}$ as $\mathbf{x}_{1}(t)$, and for $\boldsymbol{\xi}_{2}$ as $\mathbf{x}_{2}(t)$:

$$
\dot{\mathbf{x}}_{1}(t)=\mathbf{A} \mathbf{x}_{1}(t), \quad \dot{\mathbf{x}}_{2}(t)=\mathbf{A} \mathbf{x}_{2}(t)
$$

- Verify that $\mathbf{x}_{3}(t)=\alpha \mathbf{x}_{1}(t)+\beta \mathbf{x}_{2}(t)$ is a solution:
- Initial condition: $\mathbf{x}_{3}(0)=\alpha \mathbf{x}_{1}(0)+\beta \mathbf{x}_{2}(0)=\alpha \boldsymbol{\xi}_{1}+\beta \boldsymbol{\xi}_{2}$
- ODE:

$$
\dot{\mathbf{x}}_{3}=\alpha \dot{\mathbf{x}}_{1}+\beta \dot{\mathbf{x}}_{2}=\alpha \mathbf{A} \mathbf{x}_{1}+\beta \mathbf{A} \mathbf{x}_{2}=\mathbf{A}\left(\alpha \mathbf{x}_{1}+\beta \mathbf{x}_{2}\right)=\mathbf{A} \mathbf{x}_{3}
$$

- Hence, the output corresponding to $\mathbf{x}_{3}(t)=\alpha \mathbf{x}_{1}(t)+\beta \mathbf{x}_{2}(t)$ is:

$$
\mathbf{y}_{3}(t)=\mathbf{C} \mathbf{x}_{3}(t)=\mathbf{C}\left(\alpha \mathbf{x}_{1}(t)+\beta \mathbf{x}_{2}(t)\right)=\alpha \mathbf{y}_{1}(t)+\beta \mathbf{y}_{2}(t)
$$

Case 2: Zero Input $\mathbf{u}(t) \equiv \mathbf{0}$

(c) Initial condition $\mathbf{x}(0)=\boldsymbol{\xi}_{1}+\boldsymbol{\xi}_{2}$

Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

Homogeneous LTI ODE Solution

- Consider the homogeneous scalar LTI ODE:

$$
\dot{x}=a x, \quad x(0)=x_{0}
$$

- Its solution is:

$$
x(t)=e^{a t} x_{0}
$$

- Consider the homogeneous vector LTI ODE:

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

- What is the solution?

Homogeneous LTI ODE Solution

Theorem

The homogeneous vector linear time-invariant ordinary differential equation:

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

has a unique solution:

$$
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}
$$

Definition

The exponential function of a matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ is defined as:

$$
e^{\mathbf{X}}=\mathbf{I}+\mathbf{X}+\frac{1}{2} \mathbf{X}^{2}+\frac{1}{3!} \mathbf{X}^{3}+\ldots=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{X}^{k}
$$

where \mathbf{I} is the $n \times n$ identity matrix.

- Note: it is immediate to see that the solution $\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}$ is linear in the initial condition x_{0}

Proof

- Initial condition:

$$
\mathbf{x}\left(t_{0}\right)=e^{\mathbf{A}\left(t_{0}-t_{0}\right)} \mathbf{x}_{0}=e^{\mathbf{0}} \mathbf{x}_{0}=\mathbf{x}_{0}
$$

- ODE:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\frac{d}{d t}\left(e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}\right) \\
& =\frac{d}{d t}\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)+\frac{1}{2} \mathbf{A}^{2}\left(t-t_{0}\right)^{2}+\frac{1}{3!} \mathbf{A}^{3}\left(t-t_{0}\right)^{3} \cdots\right) \mathbf{x}_{0} \\
& =\left(\mathbf{0}+\mathbf{A}+\mathbf{A}^{2}\left(t-t_{0}\right)+\frac{1}{2!} \mathbf{A}^{3}\left(t-t_{0}\right)^{2}+\cdots\right) \mathbf{x}_{0} \\
& =\mathbf{A}\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)+\frac{1}{2!} \mathbf{A}^{2}\left(t-t_{0}\right)^{2}+\frac{1}{3!} \mathbf{A}^{3}\left(t-t_{0}\right)^{3} \cdots\right) \mathbf{x}_{0} \\
& =\mathbf{A} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0} \\
& =\mathbf{A} \mathbf{x}(t)
\end{aligned}
$$

Example: Double Integrator

- Consider a second-order scalar LTI ODE:

$$
\ddot{q}=u, \quad q(0)=q_{0}, \quad \dot{q}(0)=v_{0}
$$

- It is called a double integrator because $u(t)$ is integrated twice before it affects q
- State-space model: let $\mathbf{x}=(q, \dot{q})$:

$$
\dot{\mathbf{x}}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{\mathbf{A}} \mathbf{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathbf{u}, \quad \mathbf{x}(0)=\mathbf{x}_{0}:=\left[\begin{array}{l}
q_{0} \\
v_{0}
\end{array}\right]
$$

- Matrix exponential of \mathbf{A} :

$$
\mathbf{A}^{2}=\mathbf{0} \quad \Rightarrow \quad e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]
$$

- When $u \equiv 0$, the solution of the double integrator system is:

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
q_{0} \\
v_{0}
\end{array}\right]=\left[\begin{array}{c}
q_{0}+t v_{0} \\
v_{0}
\end{array}\right]
$$

Example: Undamped Oscillator

- Consider a spring-mass system with zero damping:

$$
\ddot{q}+\omega_{0}^{2} q=u, \quad q(0)=q_{0}, \quad \dot{q}(0)=v_{0}
$$

- State-space model: let $\mathbf{x}=\left(q, \dot{q} / \omega_{0}\right)$:

$$
\dot{\mathbf{x}}=\underbrace{\left[\begin{array}{cc}
0 & \omega_{0} \\
-\omega_{0} & 0
\end{array}\right]}_{\mathbf{A}} \mathbf{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathbf{u}, \quad \mathbf{x}(0)=\mathbf{x}_{0}:=\left[\begin{array}{l}
q_{0} \\
v_{0}
\end{array}\right]
$$

- Matrix exponential of $\mathbf{A} t: e^{\mathbf{A} t}=\left[\begin{array}{cc}\cos \left(\omega_{0} t\right) & \sin \left(\omega_{0} t\right) \\ -\sin \left(\omega_{0} t\right) & \cos \left(\omega_{0} t\right)\end{array}\right]$
- This can be verified by differentiation:

$$
\frac{d}{d t} e^{\boldsymbol{A} t}=\left[\begin{array}{cc}
0 & \omega_{0} \\
-\omega_{0} & 0
\end{array}\right]\left[\begin{array}{cc}
\cos \left(\omega_{0} t\right) & \sin \left(\omega_{0} t\right) \\
-\sin \left(\omega_{0} t\right) & \cos \left(\omega_{0} t\right)
\end{array}\right]=\boldsymbol{A} e^{\boldsymbol{A} t}
$$

- When $u \equiv 0$, the solution of the undamped oscillator is:

$$
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}_{0}=\left[\begin{array}{cc}
\cos \left(\omega_{0} t\right) & \sin \left(\omega_{0} t\right) \\
-\sin \left(\omega_{0} t\right) & \cos \left(\omega_{0} t\right)
\end{array}\right]\left[\begin{array}{l}
q_{0} \\
v_{0}
\end{array}\right]
$$

Where Does the Homogeneous LTI ODE Solution Come From?

- The solution to $\dot{\mathbf{x}}=\mathbf{A x}$ with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ should satisfy:

$$
\mathbf{x}(t)=\mathbf{x}_{0}+\int_{t_{0}}^{t} \mathbf{A} \mathbf{x}(\tau) d \tau
$$

- This is an implicit equation. Replace the expression above into the integral:

$$
\begin{aligned}
\mathbf{x}(t) & =\mathbf{x}_{0}+\int_{t_{0}}^{t} \mathbf{A}\left(\mathbf{x}_{0}+\int_{t_{0}}^{\tau} \mathbf{A} \mathbf{x}\left(\tau_{1}\right) d \tau_{1}\right) d \tau \\
& =\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)\right) \mathbf{x}_{0}+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathbf{A}^{2} \mathbf{x}\left(\tau_{1}\right) d \tau_{1} d \tau
\end{aligned}
$$

- Repeat the step above:

$$
\begin{aligned}
\mathbf{x}(t) & =\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)\right) \mathbf{x}_{0}+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathbf{A}^{2}\left(\mathbf{x}_{0}+\int_{t_{0}}^{\tau_{1}} \mathbf{A} \mathbf{x}\left(\tau_{2}\right) d \tau_{2}\right) d \tau_{1} d \tau \\
& =\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)+\frac{1}{2} \mathbf{A}^{2}\left(t-t_{0}\right)^{2}\right) \mathbf{x}_{0}+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \int_{t_{0}}^{\tau_{1}} \mathbf{A}^{3} \mathbf{x}\left(\tau_{2}\right) d \tau_{2} d \tau_{1} d \tau \\
& =\ldots=\left(\mathbf{I}+\mathbf{A}\left(t-t_{0}\right)+\frac{1}{2!} \mathbf{A}^{2}\left(t-t_{0}\right)^{2}+\frac{1}{3!} \mathbf{A}^{3}\left(t-t_{0}\right)^{3}+\cdots\right) \mathbf{x}_{0}
\end{aligned}
$$

LTI ODE Solution

Theorem

The linear time-invariant ordinary differential equation:

$$
\dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}
$$

has a unique solution:

$$
\mathbf{x}(t)=e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau
$$

Proof

- Initial condition:

$$
\mathbf{x}\left(t_{0}\right)=e^{\mathbf{A}\left(t_{0}-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t_{0}} e^{\mathbf{A}\left(t_{0}-\tau\right)} \mathbf{B u}(\tau) d \tau=\mathbf{x}_{0}+\mathbf{0}=\mathbf{x}_{0}
$$

- ODE:

$$
\begin{aligned}
\frac{d}{d t} \mathbf{x}(t) & =\frac{d}{d t}\left(e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}\right)+\frac{d}{d t}\left(\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right) \\
& =\mathbf{A} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\frac{d}{d t}\left(e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau\right) \\
& =\mathbf{A} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\left(\mathbf{A} e^{\mathbf{A} t}\right)\left(\int_{t_{0}}^{t} e^{-\mathbf{A} \tau} \mathbf{B u}(\tau) d \tau\right)+\left(e^{\mathbf{A} t}\right)\left(e^{-\mathbf{A} t} \mathbf{B u}(t)\right) \\
& =\mathbf{A}\left(e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau\right)+\mathbf{B u}(t) \\
& =\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t)
\end{aligned}
$$

LTI ODE Solution

- Consider the LTI ODE system:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \\
& \mathbf{y}=\mathbf{C} \mathbf{x}+\mathbf{D u}
\end{aligned}
$$

- The system output satisfies the convolution equation:

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
$$

- Observations:

- Due to the linearity of matrix-vector multiplication and integration, the output is jointly linear in the initial condition \mathbf{x}_{0} and the input $\mathbf{u}(t)$
- The objective of control design is to choose an input signal $\mathbf{u}(t)$ to shape the output $\mathbf{y}(t)$, e.g., to achieve regulation or tracking without overshoot or oscillations and with robustness to noise
- Using the convolution equation directly for control design can be challenging
- We will look for a simpler relationship between $\mathbf{u}(t)$ and $\mathbf{y}(t)$ by transforming the LTI ODE from the time domain to the frequency domain using a Laplace transform

LTI Difference Equation Solution

Theorem

The linear time-invariant difference equation:

$$
\mathbf{x}_{k+1}=\mathbf{A} \mathbf{x}_{k}+\mathbf{B} \mathbf{u}_{k}
$$

has a unique solution:

$$
\mathbf{x}_{k}=\mathbf{A}^{k} \mathbf{x}_{0}+\sum_{j=0}^{k-1} \mathbf{A}^{k-j-1} \mathbf{B} \mathbf{u}_{j}
$$

Proof:

- Base case (time $k=1$): $\mathbf{x}_{1}=\mathbf{A} \mathbf{x}_{0}+\mathbf{B} \mathbf{u}_{0}$
- Induction hypothesis (time $k): \mathbf{x}_{k}=\mathbf{A}^{k} \mathbf{x}_{0}+\sum_{j=0}^{k-1} \mathbf{A}^{k-j-1} \mathbf{B} \mathbf{u}_{j}$
- Induction step (time $k+1$):

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\mathbf{A} \mathbf{x}_{k}+\mathbf{B} \mathbf{u}_{k}=\mathbf{A}\left(\mathbf{A}^{k} \mathbf{x}_{0}+\sum_{j=0}^{k-1} \mathbf{A}^{k-j-1} \mathbf{B} \mathbf{u}_{j}\right)+\mathbf{B} \mathbf{u}_{k} \\
& =\mathbf{A}^{k+1} \mathbf{x}_{0}+\sum_{j=0}^{k-1} \mathbf{A}^{k-j} \mathbf{B} \mathbf{u}_{j}+\mathbf{B} \mathbf{u}_{k}=\mathbf{A}^{k+1} \mathbf{x}_{0}+\sum_{j=0}^{k} \mathbf{A}^{k-j} \mathbf{B} \mathbf{u}_{j}
\end{aligned}
$$

