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Existence and Uniqueness of ODE Solutions

» Consider the nonlinear initial value problem:
x = F(x), x(to) = %o

> A function s(t) is a solution to the initial value problem on interval [to, tf] if:
d
s(to) =xo and Es(t) =F(s(t)), Vo <t<t

> If the function F(x) is well-behaved (Lipschitz continuous), then the initial
value problem has a unique solution

» In general, a nonlinear initial value problem:
> may not have a unique solution (see Example 5.3: x = 24/x)

> may not have a solution (see Example 5.2: x = x?)



Example 1: Scalar System

» Consider the scalar system:
X = —ax,

> Its unique solution is x(t) = e ™% xg

a=1>0

state x

state z

x(0) = xo

x10%

time ¢



Example 2: Decoupled Two-dimensional System

» Consider the system:

—_——
A
» lts unique solution is:
Xl(t) = e_atxl(O), Xg(t) = e_th2(0)

» Note the vector form of the solution:

e 0

K= % S50



Example 3: Double Integrator

» Consider the system with constant a € R:

i X1| 01 X1 + 0
dt | X2 {00 X2 a
~——
A
> Interpret the system state as position xq(t) and velocity xx(t)

» Determine the velocity solution first

» The unique solution is:

x1(t) = x1(0) + x(0)t + %atz
XQ(t)

Xz(O) + at



Example 4: Damped Oscillator (Spring-mass System)

- = = m = mass

- o(d) o

Z L F = External force
d—F ‘ L

- L . ¢ = friction (damper)
s 'Y ‘ k = spring stiffness

i
rest position

g = position
» System model: from Newton's second law:

mg+cq+ kqg=F
» Free response: let F = 0:
.. . . C k
mg+cqg+kg=0 = ¢G+—qg+—qg=0
m m
» Introduce damping ratio ¢ and natural frequency wg parameters:

c k .. .
Awg=—=, wg=— = §+2wd+wyq=0
m m



Example 4: Damped Oscillator (Spring-mass System)

> State variables: ]
q

X1 =4q, Xy = —

wo

» State-space model:

i X1| _ WoX2 o 0 wo X1
dt [x2| |—woxi —2Qwoxz| |—wo —2Cwo] [X2
—_—

A

» Assume ¢ < 1 (underdamped oscillator) and define the damped frequency:
wa = woy/1— (2
» The unique solution is:
x1(t) = e~ (x1(0) cos(wat) + ay sin(wqt))
xa(t) = e7¢“°t (x2(0) cos(wat) + az sin(wqt))

where aj, a; are constants depending on the initial conditions x;(0), x2(0):

ar = wid(woCxl(O) + x(0)), a = _wid(ngl(o) +wolxa(0))



Example 4: Damped Oscillator (Spring-mass System)
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Figure 5.1: Response of the damped oscillator to the initial condition zo = (1, 0).

The solution is unique for the given initial conditions and consists of an oscillatory
solution for each state, with an exponentially decaying magnitude.
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LTI ODE System

» Consider the LTI ODE system:

x = Ax + Bu
y = Cx + Du

> The output y(t) satisfies linear properties:
> Case 1: Zero initial state x(0) = 0: the output y(t) is linear in input u(t)

> Case 2: Zero input u(t) = 0: the output y(t) is linear in initial state x(0)

12



Case 1: Zero Initial State x(0) =0

Input w(t)

Input u(t)

Input u(t)

1

Input u(t)
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Time ¢t
L Input us(t)
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Time ¢
) Input g (t) 4 us(t)
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Time ¢

Position p

Position p

Position p

Output ¥, ()
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Time ¢
Output y5(t)
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Time ¢
Output y1(t) +y2(t)

100
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Time ¢

100
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Case 1: Zero Initial State x(0) =0
Zero initial state x(0) = 0: the output y(t) is linear in input u(t)

{ul(t) — yi(t)

w(t) = yolt) auy(t) + Bua(t) — ayi(t) + Bya(t)

Proof:
> Denote the state trajectory for uy(t) as x;(t), and for uy(t) as xa(t):
x1(t) = Ax1(t) + Buy(t), x2(t) = Axz(t) + Bua(t)
> Let u(t) = auy(t) + Sua(t) and verify x(t) = axi(t) + Bxa(t) is a solution:
> Initial condition: x(0) = ax1(0) + Bx2(0) =0
> ODE:
X = axXi + ﬂXz = Oé(AXl + Bu1) + ﬂ(AXz + BU2)
= A(axl + /BXQ) + B(aul + ﬁU2)
= Ax + Bu
» Hence, the output corresponding to u = au; + Su; is:
y = Cx + Du = C(ax; + 5x;) + D(au; + Suy)

= «(Cx; + Duy) + B(Cxz + Duy) = ay; + By
14



Case 1: Zero Initial State x(0) =0

» Consider an LTI ODE with zero initial condition

> Suppose that with input u(t), the output is y(t)

Input u(t)

Output y(t)

Input u(t)

Position p

Time ¢

Time ¢

> If the input is 2u(t), what is the output?

Input 2u(t)

Output y(t)

o

Position p

Time ¢

» If the input amplitude is doubled, then the output amplitude is also doubled

Time ¢
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Case 2: Zero Input u(t) =0
Zero input u(t) = 0: the output y(t) is linear in the initial state x(0)

{xl(O) =& —yi(t)

x0) =& = yalt) x3(0) = a&; + B&, = aya(t) + Bya(t)

Proof:

> Denote the state trajectory for &; as x;(t), and for &, as x,(t):
).(1(1') = AXl(t), Xz(t) = AX2(t)

> Verify that x3(t) = axy(t) + Sxz(t) is a solution:
> Initial condition: x3(0) = ax1(0) + fx2(0) = a&; + B¢,

> ODE:
X3 = ax1 + %2 = aAx1 + SAx2 = A(axi + Bx2) = Axs

> Hence, the output corresponding to x3(t) = axi(t) + Bxa(t) is:
y3(t) = Cxs(t) = Claxy(t) + Sxz(t)) = ayi(t) + By2(t)
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Case 2: Zero Input u(t) =0

A Output y(t) L Output y(t)
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(c) Initial condition x(0) = &; + &,
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Homogeneous LTI ODE Solution

» Consider the homogeneous scalar LTI ODE:
X = ax, x(0) = xo

» |ts solution is:
x(t) = e*xo

» Consider the homogeneous vector LTI ODE:
x = Ax, x(0) = xg

» What is the solution?

19



Homogeneous LTI ODE Solution

Theorem

The homogeneous vector linear time-invariant ordinary differential equation:
x = Ax, x(to) = Xo

has a unique solution:

The exponential function of a matrix X € R"*" is defined as:

2 3 k
_|+x+2x+ x Zklx

where | is the n x n identity matrix.

> Note: it is immediate to see that the solution x(t) = eA(t=®)x, is linear in
the initial condition xq



Proof

» Initial condition:
x(tg) = eMlto—®)xy = eOxy = xg

» ODE:

tto)

1
I+ A(t—to) + A2( to)2—|—3|A3(t—t0)3--~>xo

I
/\/-\

('+A(t—to)+ —A%(t — tp)? +31!A3(t—t0)3-~-)x0

A(t— tg)x

(t)

_9 (.
dt
_d
dt
2 1 3
+A(t—t0)+2|A(t—t0) +-- ) xo
A
Ae
Ax
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Example: Double Integrator
» Consider a second-order scalar LTI ODE:

d = u q(O) = qo, q(O) =W

> |t is called a double integrator because u(t) is integrated twice before it
affects g

> State-space model: let x = (g, §):

X = [8 é] X+ {(1)] u, x(0) = x¢ := [32}

——
A

» Matrix exponential of A:

2 _ At _ |1t
A =0 = e —|+At—[0 1

» When u = 0, the solution of the double integrator system is:

x(t) = Mo = [(1) ﬂ [iﬂ - [qo totvo]
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Example: Undamped Oscillator
» Consider a spring-mass system with zero damping:

d+wig=u,  q(0)=qo, 4(0)=vo

> State-space model: let x = (g, ¢/wp):

X = [?do a(z)o} X+ [ﬂ u, x(0) = xg := [Zﬂ

A

ar | cos(wot)  sin(wot)

> . . )
Matrix exponential of At: e | sin(wot) cos(wot)]

» This can be verified by differentiation:

doac_[ 0w [ cos(wot)  sin(wot)] _ AAt
dt - |~wo 0] |—sin(wot) cos(wot)|

» When u = 0, the solution of the undamped oscillator is:
At | cos(wot)  sin(wot) | [qo
X(t) = ¢%xo = {— sin(wot) cos(wot)| |vo
23



Where Does the Homogeneous LTI ODE Solution Come From?
> The solution to x = Ax with x(tp) = xo should satisfy:

x(t) = xo + /tAX(T)dT

to

» This is an implicit equation. Replace the expression above into the integral:

t T
x(t) = xo +/ A (xo —|—/ AX(Tl)d’7'1> dr
to to
t T
=(1+A(t—t))xo + / / A2x(my)drdT
to to

» Repeat the step above:

x(t) = (1+A(t—t))xo + /tt/tT A? (xo + /Tl AX(TQ)dTQ) dridr

to

1 t T T1
= <| +A(t—to) + §A2(t - to)z) Xo Jr/ / / A3x(mp)dradTidT
to to to

= (I—l—A(t—to)—i-21|A2(t—t0)2—|—31|A3(t—to)3+---)xo
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LTI ODE Solution

Theorem

The linear time-invariant ordinary differential equation:
x = Ax + Bu, x(to) = xo

has a unique solution:

t
x(t) = eAlt=0)x, +/ A=) Bu(r)dr

to

25



Proof

» Initial condition:

to
x(tg) = eflto—f)xy 4 / erO=T)Bu(7)d7 = Ixg + 0 = xo

to

> ODE:
i _ i A(t—to)y i / A(t—T)
dtx(t)_ p” (e dt Bu(r)dr

= AePlt=t)y 1 — ( / e ABu(r )

= A+ (k) / e Bu(r)dr ) + (¢ (e NBu(r)

=A (eA(t_to)x —|—/ AE=T)Bu(r )dT) Bu(t)
= Ax(t) + Bu(t)
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LTI ODE Solution
» Consider the LTI ODE system:

x = Ax + Bu, x(tp) = xo
y = Cx + Du

» The system output satisfies the convolution equation:

t
y(t) = CeA(t*t‘J)xo+/ CeAt=T)Bu(r)dr + Du(t)

to

> Observations:
» Due to the linearity of matrix-vector multiplication and integration, the output
is jointly linear in the initial condition xo and the input u(t)

» The objective of control design is to choose an input signal u(t) to shape the
output y(t), e.g., to achieve regulation or tracking without overshoot or
oscillations and with robustness to noise

» Using the convolution equation directly for control design can be challenging

> We will look for a simpler relationship between u(t) and y(t) by transforming
the LTI ODE from the time domain to the frequency domain using a Laplace

transform
27



LTI Difference Equation Solution

Theorem

The linear time-invariant difference equation:
X1 = Axx + Buy

has a unique solution:
k—1

Xy = AkXO + ZAkijilBUj

Jj=0

Proof:
> Base case (time k =1): x; = Axg + Bug
» Induction hypothesis (time k): x, = Afxg + Zj-:ol Ak—i—1Buy;
> Induction step (time k + 1):

k—1
Xk+1 = Axy + Buy = A(Akxo + ZAkleuJ) + Bug
j=0
k—1 «

= Alxo + 3 A*TBu; + Buy = A¥tlxg + > AF B,

j=0 j=0

28



	Examples
	Linear Properties of LTI Systems
	LTI ODE Solution

