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Existence and Uniqueness of ODE Solutions

I Consider the nonlinear initial value problem:

ẋ = F(x), x(t0) = x0

I A function s(t) is a solution to the initial value problem on interval [t0, tf ] if:

s(t0) = x0 and
d

dt
s(t) = F(s(t)), ∀t0 < t < tf

I If the function F(x) is well-behaved (Lipschitz continuous), then the initial
value problem has a unique solution

I In general, a nonlinear initial value problem:
I may not have a unique solution (see Example 5.3: ẋ = 2

√
x)

I may not have a solution (see Example 5.2: ẋ = x2)
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Example 1: Scalar System

I Consider the scalar system:

ẋ = −ax , x(0) = x0

I Its unique solution is x(t) = e−atx0
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Example 2: Decoupled Two-dimensional System

I Consider the system:

d

dt

[
x1
x2

]
=

[
−a 0
0 −b

]
︸ ︷︷ ︸

A

[
x1
x2

]

I Its unique solution is:

x1(t) = e−atx1(0), x2(t) = e−btx2(0)

I Note the vector form of the solution:

x(t) =

[
e−at 0

0 e−bt

]
x(0)

6



Example 3: Double Integrator

I Consider the system with constant a ∈ R:

d

dt

[
x1
x2

]
=

[
0 1
0 0

]
︸ ︷︷ ︸

A

[
x1
x2

]
+

[
0
a

]

I Interpret the system state as position x1(t) and velocity x2(t)

I Determine the velocity solution first

I The unique solution is:

x1(t) = x1(0) + x2(0)t +
1

2
at2

x2(t) = x2(0) + at
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Example 4: Damped Oscillator (Spring-mass System)

m = mass

F = External force

c = friction (damper)

k = spring stiffness

q = position

I System model: from Newton’s second law:

mq̈ + cq̇ + kq = F

I Free response: let F = 0:

mq̈ + cq̇ + kq = 0 ⇒ q̈ +
c

m
q +

k

m
q = 0

I Introduce damping ratio ζ and natural frequency ω0 parameters:

2ζω0 =
c

m
, ω2

0 =
k

m
⇒ q̈ + 2ζω0q̇ + ω2

0q = 0
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Example 4: Damped Oscillator (Spring-mass System)
I State variables:

x1 = q, x2 =
q̇

ω0

I State-space model:

d

dt

[
x1
x2

]
=

[
ω0x2

−ω0x1 − 2ζω0x2

]
=

[
0 ω0

−ω0 −2ζω0

]
︸ ︷︷ ︸

A

[
x1
x2

]

I Assume ζ < 1 (underdamped oscillator) and define the damped frequency:

wd = ω0

√
1− ζ2

I The unique solution is:

x1(t) = e−ζω0t (x1(0) cos(ωdt) + a1 sin(ωdt))

x2(t) = e−ζω0t (x2(0) cos(ωdt) + a2 sin(ωdt))

where a1, a2 are constants depending on the initial conditions x1(0), x2(0):

a1 =
1

ωd
(ω0ζx1(0) + x2(0)), a2 = − 1

ωd
(ω2

0x1(0) + ω0ζx2(0))
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Example 4: Damped Oscillator (Spring-mass System)
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LTI ODE System

I Consider the LTI ODE system:

ẋ = Ax + Bu

y = Cx + Du

I The output y(t) satisfies linear properties:
I Case 1: Zero initial state x(0) = 0: the output y(t) is linear in input u(t)

I Case 2: Zero input u(t) ≡ 0: the output y(t) is linear in initial state x(0)
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Case 1: Zero Initial State x(0) = 0
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Case 1: Zero Initial State x(0) = 0

Zero initial state x(0) = 0: the output y(t) is linear in input u(t){
u1(t)→ y1(t)

u2(t)→ y2(t)
=⇒ αu1(t) + βu2(t)→ αy1(t) + βy2(t)

Proof:
I Denote the state trajectory for u1(t) as x1(t), and for u2(t) as x2(t):

ẋ1(t) = Ax1(t) + Bu1(t), ẋ2(t) = Ax2(t) + Bu2(t)

I Let u(t) = αu1(t) + βu2(t) and verify x(t) = αx1(t) + βx2(t) is a solution:
I Initial condition: x(0) = αx1(0) + βx2(0) = 0

I ODE:
ẋ = αẋ1 + βẋ2 = α(Ax1 + Bu1) + β(Ax2 + Bu2)

= A(αx1 + βx2) + B(αu1 + βu2)

= Ax + Bu

I Hence, the output corresponding to u = αu1 + βu2 is:

y = Cx + Du = C(αx1 + βx2) + D(αu1 + βu2)

= α(Cx1 + Du1) + β(Cx2 + Du2) = αy1 + βy2
14



Case 1: Zero Initial State x(0) = 0

I Consider an LTI ODE with zero initial condition

I Suppose that with input u(t), the output is y(t)

I If the input is 2u(t), what is the output?

I If the input amplitude is doubled, then the output amplitude is also doubled
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Case 2: Zero Input u(t) ≡ 0

Zero input u(t) ≡ 0: the output y(t) is linear in the initial state x(0){
x1(0) = ξ1 → y1(t)

x2(0) = ξ2 → y2(t)
=⇒ x3(0) = αξ1 + βξ2 → αy1(t) + βy2(t)

Proof:

I Denote the state trajectory for ξ1 as x1(t), and for ξ2 as x2(t):

ẋ1(t) = Ax1(t), ẋ2(t) = Ax2(t)

I Verify that x3(t) = αx1(t) + βx2(t) is a solution:
I Initial condition: x3(0) = αx1(0) + βx2(0) = αξ1 + βξ2

I ODE:
ẋ3 = αẋ1 + βẋ2 = αAx1 + βAx2 = A(αx1 + βx2) = Ax3

I Hence, the output corresponding to x3(t) = αx1(t) + βx2(t) is:

y3(t) = Cx3(t) = C(αx1(t) + βx2(t)) = αy1(t) + βy2(t)
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Case 2: Zero Input u(t) ≡ 0

(a) Initial condition x(0) = ξ1 (b) Initial condition x(0) = ξ2

(c) Initial condition x(0) = ξ1 + ξ2
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Homogeneous LTI ODE Solution

I Consider the homogeneous scalar LTI ODE:

ẋ = ax , x(0) = x0

I Its solution is:
x(t) = eatx0

I Consider the homogeneous vector LTI ODE:

ẋ = Ax, x(0) = x0

I What is the solution?
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Homogeneous LTI ODE Solution

Theorem
The homogeneous vector linear time-invariant ordinary differential equation:

ẋ = Ax, x(t0) = x0

has a unique solution:
x(t) = eA(t−t0)x0

Definition

The exponential function of a matrix X ∈ Rn×n is defined as:

eX = I + X +
1

2
X2 +

1

3!
X3 + . . . =

∞∑
k=0

1

k!
Xk ,

where I is the n × n identity matrix.

I Note: it is immediate to see that the solution x(t) = eA(t−t0)x0 is linear in
the initial condition x0
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Proof

I Initial condition:
x(t0) = eA(t0−t0)x0 = e0x0 = x0

I ODE:

d

dt
x(t) =

d

dt

(
eA(t−t0)x0

)
=

d

dt

(
I + A(t − t0) +

1

2
A2(t − t0)2 +

1

3!
A3(t − t0)3 · · ·

)
x0

=

(
0 + A + A2(t − t0) +

1

2!
A3(t − t0)2 + · · ·

)
x0

= A

(
I + A(t − t0) +

1

2!
A2(t − t0)2 +

1

3!
A3(t − t0)3 · · ·

)
x0

= AeA(t−t0)x0

= Ax(t)
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Example: Double Integrator
I Consider a second-order scalar LTI ODE:

q̈ = u, q(0) = q0, q̇(0) = v0

I It is called a double integrator because u(t) is integrated twice before it
affects q

I State-space model: let x = (q, q̇):

ẋ =

[
0 1
0 0

]
︸ ︷︷ ︸

A

x +

[
0
1

]
u, x(0) = x0 :=

[
q0
v0

]

I Matrix exponential of A:

A2 = 0 ⇒ eAt = I + At =

[
1 t
0 1

]
I When u ≡ 0, the solution of the double integrator system is:

x(t) = eAtx0 =

[
1 t
0 1

] [
q0
v0

]
=

[
q0 + tv0

v0

]
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Example: Undamped Oscillator
I Consider a spring-mass system with zero damping:

q̈ + ω2
0q = u, q(0) = q0, q̇(0) = v0

I State-space model: let x = (q, q̇/ω0):

ẋ =

[
0 ω0

−ω0 0

]
︸ ︷︷ ︸

A

x +

[
0
1

]
u, x(0) = x0 :=

[
q0
v0

]

I Matrix exponential of At: eAt =

[
cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

]
I This can be verified by differentiation:

d

dt
eAt =

[
0 ω0

−ω0 0

] [
cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

]
= AeAt

I When u ≡ 0, the solution of the undamped oscillator is:

x(t) = eAtx0 =

[
cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

] [
q0
v0

]
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Where Does the Homogeneous LTI ODE Solution Come From?
I The solution to ẋ = Ax with x(t0) = x0 should satisfy:

x(t) = x0 +

∫ t

t0

Ax(τ)dτ

I This is an implicit equation. Replace the expression above into the integral:

x(t) = x0 +

∫ t

t0

A

(
x0 +

∫ τ

t0

Ax(τ1)dτ1

)
dτ

= (I + A(t − t0)) x0 +

∫ t

t0

∫ τ

t0

A2x(τ1)dτ1dτ

I Repeat the step above:

x(t) = (I + A(t − t0)) x0 +

∫ t

t0

∫ τ

t0

A2

(
x0 +

∫ τ1

t0

Ax(τ2)dτ2

)
dτ1dτ

=

(
I + A(t − t0) +

1

2
A2(t − t0)2

)
x0 +

∫ t

t0

∫ τ

t0

∫ τ1

t0

A3x(τ2)dτ2dτ1dτ

= . . . =

(
I + A(t − t0) +

1

2!
A2(t − t0)2 +

1

3!
A3(t − t0)3 + · · ·

)
x0
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LTI ODE Solution

Theorem
The linear time-invariant ordinary differential equation:

ẋ = Ax + Bu, x(t0) = x0

has a unique solution:

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ
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Proof

I Initial condition:

x(t0) = eA(t0−t0)x0 +

∫ t0

t0

eA(t0−τ)Bu(τ)dτ = Ix0 + 0 = x0

I ODE:

d

dt
x(t) =

d

dt

(
eA(t−t0)x0

)
+

d

dt

(∫ t

t0

eA(t−τ)Bu(τ)dτ

)
= AeA(t−t0)x0 +

d

dt

(
eAt

∫ t

t0

e−AτBu(τ)dτ

)
= AeA(t−t0)x0 +

(
AeAt

)(∫ t

t0

e−AτBu(τ)dτ

)
+
(
eAt
) (

e−AtBu(t)
)

= A

(
eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ

)
+ Bu(t)

= Ax(t) + Bu(t)
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LTI ODE Solution
I Consider the LTI ODE system:

ẋ = Ax + Bu, x(t0) = x0

y = Cx + Du

I The system output satisfies the convolution equation:

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ + Du(t)

I Observations:
I Due to the linearity of matrix-vector multiplication and integration, the output

is jointly linear in the initial condition x0 and the input u(t)

I The objective of control design is to choose an input signal u(t) to shape the
output y(t), e.g., to achieve regulation or tracking without overshoot or
oscillations and with robustness to noise

I Using the convolution equation directly for control design can be challenging

I We will look for a simpler relationship between u(t) and y(t) by transforming
the LTI ODE from the time domain to the frequency domain using a Laplace
transform
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LTI Difference Equation Solution

Theorem
The linear time-invariant difference equation:

xk+1 = Axk + Buk

has a unique solution:

xk = Akx0 +
k−1∑
j=0

Ak−j−1Buj

Proof:
I Base case (time k = 1): x1 = Ax0 + Bu0

I Induction hypothesis (time k): xk = Akx0 +
∑k−1

j=0 Ak−j−1Buj

I Induction step (time k + 1):

xk+1 = Axk + Buk = A

(
Akx0 +

k−1∑
j=0

Ak−j−1Buj

)
+ Buk

= Ak+1x0 +
k−1∑
j=0

Ak−jBuj + Buk = Ak+1x0 +
k∑

j=0

Ak−jBuj
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