ECE171A: Linear Control System Theory Lecture 5: Transfer Function

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

LTI ODE Solution

Consider the LTI ODE system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

The system output satisfies the convolution equation:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \int_{t_0}^t \mathbf{C}e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au + \mathbf{D}\mathbf{u}(t)$$

Observations:

- Using the convolution equation directly for control design can be challenging
- A simpler relationship between u(t) and y(t) can be obtained by transforming the LTI ODE from the time domain to the complex domain using a Laplace transform

Laplace Transform

The **Laplace transform** \mathcal{L} maps a real function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$ to a complex function $F : \mathbb{C} \mapsto \mathbb{C}$:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt$$

The Laplace transform L converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain

Example:

y(

$$\ddot{y}(t) + y(t) = 0 \qquad \xrightarrow{\mathcal{L}} \quad s^2 Y(s) - sy(0) - \dot{y}(0) + Y(s) = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$t) = y(0)\cos(t) + \dot{y}(0)\sin(t) \qquad \xleftarrow{\mathcal{L}^{-1}} \quad Y(s) = \frac{sy(0) + \dot{y}(0)}{s^2 + 1}$$

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Complex Numbers \mathbb{C}

- \blacktriangleright The space of real numbers is denoted by $\mathbb R$
- \blacktriangleright The space of complex numbers is denoted by $\mathbb C$
- A complex number has the form:

$$s = \sigma + j\omega$$
,

where $\sigma, \omega \in \mathbb{R}$ and $j = \sqrt{-1}$

- Cartesian coordinates: $s = \sigma + j\omega$
 - The real part of s is $Re(s) = \sigma$
 - The imaginary part of s is $Im(s) = \omega$
- ▶ Polar coordinates: $s = re^{j\theta} = r(\cos(\theta) + j\sin(\theta))$
 - The magnitude of s is $|s| = r = \sqrt{\sigma^2 + \omega^2}$
 - The **phase** of *s* is $\arg(s) = \underline{s} = \theta = \operatorname{atan2}(\omega, \sigma)$

• The complex conjugate of $s = \sigma + j\omega$ is $s^* = \sigma - j\omega$

Complex Polynomial

A complex polynomial of order *n* is a function $a : \mathbb{C} \mapsto \mathbb{C}$:

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_2 s^2 + a_1 s + a_0$$

where $a_0, a_1, \ldots, a_n \in \mathbb{C}$ are constants.

A **root** of a complex polynomial a(s) is a number $\lambda \in \mathbb{C}$ such that:

 $a(\lambda) = 0$

• A root λ of **multiplicity** *m* of a complex polynomial a(s) satisfies:

$$\lim_{s\to\lambda}\frac{a(s)}{(s-\lambda)^m}<\infty$$

Fundamental theorem of algebra: a complex polynomial a(s) of degree n has exactly n roots, counting multiplicities, and can be factorized as:

$$a(s) = a_n s^n + \ldots + a_0 = a_n (s - \lambda_1) \cdots (s - \lambda_n)$$

where $\lambda_1, \ldots, \lambda_n$ are the *n* roots of a(s)

Complex Polynomial with Real Coefficients

A complex polynomial of order *n* with real coefficients is a function:

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_2 s^2 + a_1 s + a_0$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$ are constants.

- The roots of a complex polynomial with real coefficients are either real, $\lambda = \sigma$, or come in complex conjugate pairs, $\lambda = \sigma \pm j\omega$.
- Every complex polynomial with real coefficients can be factorized into polynomials of degree one or two:

$$a(s) = a_n s^n + \ldots + a_0 = a_n \prod_{i=1}^{n_1} (s - \lambda_i) \prod_{k=1}^{n_2} (s^2 + 2\zeta_k \omega_k s + \omega_k^2)$$

where n_1 and n_2 are the numbers of real roots and complex conjugate pairs.

• **Vieta's formulas** relate the coefficients a_i to the roots λ_i :

$$\sum_{i=1}^{n} \lambda_{i} = -\frac{a_{n-1}}{a_{n}} \qquad \prod_{i=1}^{n} \lambda_{i} = (-1)^{n} \frac{a_{0}}{a_{n}} \qquad \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \prod_{j=1}^{k} \lambda_{i_{j}} = (-1)^{k} \frac{a_{n-k}}{a_{n}}$$

Rational Function

• A rational function $F : \mathbb{C} \mapsto \mathbb{C}$ is a ratio of complex polynomials:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

- Rational functions remain rational functions under addition, subtraction, multiplication, division (except by 0)
- The characteristic equation of a rational function $F(s) = \frac{b(s)}{a(s)}$ is:

$$a(s) = 0$$

- A zero $z \in \mathbb{C}$ of a rational function F(s) is a root of the numerator: b(z) = 0
- A pole p ∈ C of a rational function F(s) is a root of the characteristic equation: a(p) = 0

Pole-Zero Map

• The **pole-zero form** of a rational function F(s) is:

$$F(s) = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0} = k \frac{(s - z_1) \cdots (s - z_m)}{(s - p_1) \cdots (s - p_n)}$$

where $k = b_m/a_n, z_1, \ldots, z_m$ are the zeros of F(s), and p_1, \ldots, p_n are the poles of F(s)

► A pole-zero map is a plot of the poles and zeros of F(s) in the s-domain: • Example: $F(s) = k \frac{(s+1.5)(s+1+2j)(s+1-2j)}{(s+2.5)(s-2)(s-1-j)(s-1+j)}$ • × = pole; \circ = zero; k = not available

Example: Zeros and Poles

• Consider
$$F(s) = \frac{2s+1}{3s^2+2s+1}$$

- F(s) has one zero: $z = -\frac{1}{2}$
- The roots of a quadratic polynomial $a(s) = a_2s^2 + a_1s + a_0$ are:

$$s = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2a_0}}{2a_2}$$

F(s) has two conjugate poles: p₁ = -¹/₃ + j^{√2}/₃ and p₂ = -¹/₃ - j^{√2}/₃
 Pole-zero form of F(s):

$$F(s) = \frac{2(s-z)}{3(s-p_1)(s-p_2)}$$

Partial Fraction Expansion (no repeated poles)

Assume that the rational function:

$$F(s) = \frac{b(s)}{a(s)} = \frac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

is **strictly proper** (m < n) and has no repeated poles (all roots of a(s) have multiplicity one)

▶ The **residue** *r_i* associated with pole *p_i* is:

$$r_i = \lim_{s \to p_i} (s - p_i) F(s)$$

▶ The partial fraction expansion of *F*(*s*) is:

$$F(s) = \frac{r_1}{s - p_1} + \dots + \frac{r_n}{s - p_n}$$

where p_1, \ldots, p_n and r_1, \ldots, r_n are the poles and residues of F(s)

Example: Residues

• Consider
$$F(s) = \frac{2s+1}{3s^2+2s+1}$$
 with zero $z = -\frac{1}{2}$ and poles $p_{1,2} = -\frac{1}{3} \pm j\frac{\sqrt{2}}{3}$

The residue associated with p₁ is:

$$r_{1} = \lim_{s \to p_{1}} (s - p_{1})F(s) = \lim_{s \to p_{1}} \frac{2(s - z)}{3(s - p_{2})} = \frac{2(p_{1} + 1/2)}{3(p_{1} - p_{2})}$$
$$= \frac{2(p_{1} + 1/2)}{j2\sqrt{2}} = -j\frac{\sqrt{2}}{2}\left(\frac{1}{6} + j\frac{\sqrt{2}}{3}\right) = \frac{1}{3} - j\frac{\sqrt{2}}{12}$$

Residues associated with complex conjugate poles are also complex conjugate!

• The residue associated with $p_2 = p_1^*$ is $r_2 = r_1^* = \frac{1}{3} + j\frac{\sqrt{2}}{12}$

• The partial fraction expansion of F(s) is:

$$F(s) = \frac{r_1}{(s-p_1)} + \frac{r_2}{(s-p_2)}$$

Partial Fraction Expansion (repeated poles)

Assume that the rational function:

$$F(s) = rac{b(s)}{a(s)} = rac{b_m s^m + \ldots + b_1 s + b_0}{a_n (s - p_1)^{m_1} \cdots (s - p_k)^{m_k}}$$

is strictly proper and has poles p_1, \ldots, p_k with multiplicities m_1, \ldots, m_k

The **residue** r_{i,m_i-j} associated with pole p_i of multiplicity m_i is:

$$r_{i,m_i-j} = \lim_{s \to p_i} \frac{1}{j!} \frac{d^j}{ds^j} \left[(s - p_i)^{m_i} F(s) \right], \qquad j = 0, \dots, (m_i - 1)$$

▶ The **partial fraction expansion** of *F*(*s*) is:

$$F(s) = \frac{r_{1,m_1}}{(s-p_1)^{m_1}} + \frac{r_{1,m_1-1}}{(s-p_1)^{m_1-1}} + \dots + \frac{r_{1,1}}{s-p_1} \\ + \frac{r_{2,m_2}}{(s-p_2)^{m_2}} + \frac{r_{2,m_2-1}}{(s-p_2)^{m_2-1}} + \dots + \frac{r_{2,1}}{s-p_2} \\ + \dots \\ + \frac{r_{k,m_k}}{(s-p_k)^{m_k}} + \frac{r_{k,m_k-1}}{(s-p_k)^{m_k-1}} + \dots + \frac{r_{k,1}}{s-p_k}$$

Partial Fraction Expansion (improper rational function)

Assume that the rational function:

$$F(s) = rac{b(s)}{a(s)} = rac{b_m s^m + \ldots + b_1 s + b_0}{a_n s^n + \ldots + a_1 s + a_0}$$

is not strictly proper $(m \ge n)$

The numerator b(s) can be divided by the denominator a(s) to obtain:

$$F(s) = \frac{b(s)}{a(s)} = c(s) + \frac{d(s)}{a(s)}$$

where c(s) is of order m - n and d(s) is of order k < n

• $\frac{d(s)}{a(s)}$ is now strictly proper and has a partial fraction expansion

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Laplace Transform and Inverse Laplace Transform

• The Laplace transform F(s) of a function f(t) is:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_0^\infty f(t)e^{-st}dt,$$

where $s = \sigma + j\omega$ is a complex number.

• The inverse Laplace transform f(t) of a function F(s) is:

$$f(t) = \mathcal{L}^{-1} \{F(s)\} = \frac{1}{2\pi j} \lim_{\omega \to \infty} \int_{\sigma - j\omega}^{\sigma + j\omega} F(s) e^{st} ds,$$

where σ is greater than the real part of all singularities of F(s).

Cauchy's Residue Theorem: If F(s) is a strictly proper rational function:

$$f(t) = \mathcal{L}^{-1} \left\{ F(s)
ight\} = \sum_{s ext{ is a pole of } F(s)} \left(ext{residue of } F(s) e^{st} ext{ at } s
ight)$$

► The Laplace transform is **linear**:

$$\mathcal{L} \{ \alpha f(t) + \beta g(t) \} = \int_0^\infty (\alpha f(t) + \beta g(t)) e^{-st} dt$$
$$= \alpha \int_0^\infty f(t) e^{-st} dt + \beta \int_0^\infty g(t) e^{-st} dt$$
$$= \alpha \mathcal{L} \{ f(t) \} + \beta \mathcal{L} \{ g(t) \}$$

Convolution: for f(t), g(t) supported on $t \in [0, \infty)$:

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$

Convolution in time domain becomes multiplication in the complex domain:

$$\mathcal{L}\left\{(f*g)(t)\right\} = \int_0^\infty \int_0^\infty f(\tau)g(t-\tau)e^{-st}d\tau dt$$
$$= \int_0^\infty \int_{-\tau}^\infty f(\tau)g(\mu)e^{-s\tau}e^{-s\mu}d\mu d\tau$$
$$\frac{g(\mu)=0,\mu<0}{2} \int_0^\infty f(\tau)e^{-s\tau}d\tau \int_0^\infty g(\mu)e^{-s\mu}d\mu$$
$$= \mathcal{L}\left\{f(t)\right\}\mathcal{L}\left\{g(t)\right\}$$

Differentiation:

$$\mathcal{L}\left\{\frac{d}{dt}x(t)\right\} = s\mathcal{L}\left\{x(t)\right\} - x(0)$$

Proof:

$$\int_{0}^{\infty} \frac{d}{dt} (x(t)e^{-st}) dt = x(t)e^{-st} \Big|_{0}^{\infty} = -x(0)$$
$$\int_{0}^{\infty} \frac{d}{dt} (x(t)e^{-st}) dt = \int_{0}^{\infty} \left(\frac{d}{dt}x(t)\right)e^{-st} dt + \int_{0}^{\infty} x(t)\left(\frac{d}{dt}e^{-st}\right) dt$$
$$= \mathcal{L}\left\{\frac{d}{dt}x(t)\right\} - s\mathcal{L}\left\{x(t)\right\}$$

Integration:

$$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}\mathcal{L}\left\{f(t)\right\}$$

• Note that $\frac{d}{dt} \left(\int_0^t f(\tau) d\tau \right) = f(t)$

► Laplace transform of e^{at} :

$$\mathcal{L}\left\{e^{at}\right\} = \int_0^\infty e^{at} e^{-st} dt = \int_0^\infty e^{-(s-a)t} dt = -\frac{1}{(s-a)} e^{-(s-a)t} \Big|_{t=0}^{t=\infty}$$
$$\frac{\frac{\mathsf{require}}{\mathsf{Re}(s)>a}}{0} - \left(-\frac{1}{(s-a)} e^0\right) = \frac{1}{s-a}$$

Delta function (Impulse):

$$\delta_{\epsilon}(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1/\epsilon & \text{if } 0 \le t < \epsilon \\ 0 & \text{if } t \ge \epsilon \end{cases} \qquad \qquad \delta(t) = \lim_{\epsilon \to 0} \delta_{\epsilon}(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \ne 0 \end{cases}$$

Sifting property: for any f(t) continuous at $\tau \in (a, b)$:

$$\int_{a}^{b} f(t)\delta(t-\tau)dt = f(\tau)$$

• Laplace transform of $\delta(t)$:

$$\mathcal{L}\left\{\delta(t)\right\} = \int_0^\infty \delta(t) e^{-st} dt = e^{-st} \bigg|_{t=0} = 1$$

Heaviside step function:

$$H(t) = \int_{-\infty}^t \delta(au) d au = egin{cases} 1, & t \ge 0 \ 0, & t < 0 \end{cases} \quad \Rightarrow \quad \mathcal{L}\left\{H(t)
ight\} = rac{1}{s}$$

Ramp function:

$$tH(t) = egin{cases} t, & t \geq 0 \ 0, & t < 0 \end{cases} agenum{0} \Rightarrow extstyle \mathcal{L} \left\{ H(t)
ight\} = rac{1}{s^2}$$

Parabola function:

$$rac{t^2}{2} H(t) = egin{cases} rac{t^2}{2}, & t \geq 0 \ 0, & t < 0 \end{cases} \quad \Rightarrow \quad \mathcal{L}\left\{H(t)
ight\} = rac{1}{s^3}$$

	t domain	<i>s</i> domain	
linearity	af(t) + bg(t)	aF(s)+bG(s)	
convolution	(f * g)(t)	F(s)G(s)	
multiplication	f(t)g(t)	$rac{1}{2\pi j}\int_{Re(\sigma)-j\infty}^{Re(\sigma)+j\infty}F(\sigma)G(s-\sigma)d\sigma$	
scaling, <i>a</i> > 0	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	
<i>s</i> -domain derivative	$t^n f(t)$	$(-1)^n F^{(n)}(s)$	
time-domain derivative	$f^{(n)}(t)$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k}f^{(k-1)}(0)$	
s-domain integarion	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(\sigma) d\sigma$	
time-domain integarion	$\int_0^t f(\tau) d\tau = (H * f)(t)$	$\frac{1}{s}F(s)$	
<i>s</i> -domain shift	$e^{at}f(t)$	F(s-a)	
time-domain shift, $a > 0$	f(t-a)H(t-a)	$e^{-as}F(s)$	

• Heaviside step function
$$H(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0 \end{cases}$$

• Convolution: $(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau$

	$f(t) = \mathfrak{L}^{-1} \{F(s)\}$	$F(s) = \mathfrak{L} \{f(t)\}$		$f(t) = \mathcal{L}^{-1} \{F(s)\}$	$F(s) = \mathfrak{L} \{f(t)\}$
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p \ge -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n = 1, 2, 3, \dots$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	$\cos(at)$	$\frac{s}{s^2 + a^2}$
9.	$t\sin(at)$	$\frac{2as}{\left(s^2 + a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2 - a^2}{(s^2 + a^2)^2}$
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$
13.	$\cos(at) - at\sin(at)$	$\frac{s(s^2-a^2)}{(s^2+a^2)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s(s^2 + 3a^2)}{(s^2 + a^2)^2}$
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$
17.	$\sinh(at)$	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$
19.	$\mathbf{e}^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	20.	$\mathbf{e}^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$
21.	$\mathbf{e}^{at}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{\omega} \cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$
23.	$t^n \mathbf{e}^{at}, n=1,2,3,\ldots$	$\frac{n!}{(s-a)^{s+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
25.	$u_c(t) = u(t-c)$ Heaviside Function	$\frac{e^{-cr}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e^{-cs}
27.	$\overline{u_c(t)f(t-c)}$	$e^{-cs}F(s)$	28.	$\overline{u_c(t)g(t)}$	$e^{-cs} \mathfrak{L} \{g(t+c)\}$
29.	$\mathbf{e}^{\alpha}f(t)$	F(s-c)	30.	$t^{n}f(t), n = 1, 2, 3,$	$(-1)^{n} F^{(n)}(s)$
31.	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) du$	32.	$\int_0^t f(v) dv$	$\frac{F(s)}{s}$
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	$f\left(t+T\right)=f\left(t\right)$	$\frac{\int_{0}^{T} \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$
35	f'(t)	sF(s) - f(0)	36	f''(t)	$s^{2}F(s) - sf(0) - f'(0)$

Initial and Final Value Theorems

Initial Value Theorem

Suppose that f(t) has a Laplace transform F(s). Then:

$$\lim_{t\to 0} f(t) = \lim_{s\to\infty} sF(s)$$

Final Value Theorem

Suppose that f(t) has a Laplace transform F(s). Suppose that every pole of F(s) is either in the open left-half plane or at the origin of \mathbb{C} . Then:

 $\lim_{t\to\infty}f(t)=\lim_{s\to0}sF(s)$

Consider a spring-mass-damper system:

$$M\frac{d^2y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = 0$$

• This is an example of a second-order system with natural frequency $\omega_n = \sqrt{k/M}$ and damping ratio $\zeta = b/(2\sqrt{kM})$:

$$\ddot{y}(t) + 2\zeta \omega_n \dot{y}(t) + \omega_n^2 y(t) = 0$$

Laplace transform:

$$(s^{2}Y(s) - sy(0) - \dot{y}(0)) + 2\zeta\omega_{n}(sY(s) - y(0)) + \omega_{n}^{2}Y(s) = 0$$

Natural response:

$$Y(s) = \frac{(s+2\zeta\omega_n)y(0)+\dot{y}(0)}{s^2+2\zeta\omega_n s+\omega_n^2}$$

• Consider the natural response with $\omega_n^2 = k/M = 2$ and $2\zeta \omega_n = b/M = 3$:

$$Y(s) = \frac{(s+3)y(0) + \dot{y}(0)}{s^2 + 3s + 2} = \frac{(s+3)y(0) + \dot{y}(0)}{(s+1)(s+2)}$$
$$= \frac{2y(0) + \dot{y}(0)}{s+1} - \frac{y(0) + \dot{y}(0)}{s+2}$$

• Poles:
$$p_1 = -1$$
 and $p_2 = -2$

• Zeros: $z_1 = -\frac{\dot{y}(0)}{y(0)} - 3$

Residues:

$$r_1 = \frac{(s+3)y(0) + \dot{y}(0)}{(s+2)} \bigg|_{s=-1}$$

$$r_2 = \frac{(s+3)y(0) + \dot{y}(0)}{(s+1)} \bigg|_{s=-2}$$

$$= -y(0) - \dot{y}(0)$$

Spring-Mass-Damper Pole-Zero Map

• Let the initial conditions be y(0) = 1 and $\dot{y}(0) = 0$

The time-domain natural response of the spring-mass-damper system can be obtained using an inverse Laplace transform:

$$y(t) = \mathcal{L}^{-1} \{ Y(s) \} = \mathcal{L}^{-1} \left\{ \frac{2y(0) + \dot{y}(0)}{s+1} \right\} - \mathcal{L}^{-1} \left\{ \frac{y(0) + \dot{y}(0)}{s+2} \right\}$$
$$= (2y(0) + \dot{y}(0)) e^{-t} - (y(0) + \dot{y}(0)) e^{-2t}$$

The steady-state response can be obtained via the Final Value Theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$
$$= \lim_{s \to 0} \frac{(s^2 + 3s)y(0) + s\dot{y}(0)}{s^2 + 3s + 2} = 0$$

The poles of the system are the roots of the characteristic equation:

$$a(s) = s^2 + 2\zeta\omega_n s + \omega_n^2 = 0$$

The natural response is determined by the poles:

• Overdamped $(\zeta > 1)$: the poles are real:

$$p_1 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}$$
 $p_2 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$

• Critically damped ($\zeta = 1$): the poles are repeated and real:

$$p_1 = p_2 = -\omega_n$$

• Underdamped ($\zeta < 1$): the poles are complex:

$$p_1 = -\zeta \omega_n - j\omega_n \sqrt{1-\zeta^2}$$
 $p_2 = -\zeta \omega_n + j\omega_n \sqrt{1-\zeta^2}$

Example: Spring-Mass-Damper Locus of Roots

- S-domain plot of the poles (×) and zeros (○) of Y(s) with y(0) = 0
- For constant ω_n, as ζ varies, the complex conjugate roots follow a circular locus
- The poles and zeros can be expressed either in Cartesian coordinates or Polar coordinates (e.g., magnitude ω_n and angle θ = cos⁻¹(ζ))

Example: Spring-Mass-Damper Response

- The time-domain natural response can be obtained by determining the residues and applying an inverse Laplace transform:
 - Overdamped $(\zeta > 1)$:

$$y(t) = r_1 e^{p_1 t} + r_2 e^{p_2 t}$$
where $p_1 = -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}$, $p_2 = -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}$, $r_1 = \frac{p_2 y(0) + \dot{y}(0)}{p_2 - p_1}$,
and $r_2 = -\frac{p_1 y(0) + \dot{y}(0)}{p_2 - p_1}$

• Critically damped $(\zeta = 1)$:

$$y(t) = y(0)e^{-\omega_n t} + (\dot{y}(0) + \omega_n y(0))te^{-\omega_n t}$$

• Underdamped ($\zeta < 1$):

$$y(t) = e^{-\zeta \omega_n t} \left(c_1 \cos(\omega_n \sqrt{1-\zeta^2} t) + c_2 \sin(\omega_n \sqrt{1-\zeta^2} t) \right)$$

where $c_1 = y(0)$ and $c_2 = \frac{\dot{y}(0) + \zeta \omega_n y(0)}{\omega_n \sqrt{1 - \zeta^2}}$

Example: Spring-Mass-Damper Natural Response with $\dot{y}(0) = 0$

Copyright ©2017 Pearson Education, All Rights Reserved

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Laplace Transform of LTI ODE

Consider an LTI ODE with zero initial conditions:

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \ldots + b_0 u$$

• Let
$$Y(s) = \mathcal{L} \{y(t)\}$$
 and $U(s) = \mathcal{L} \{u(t)\}$

• Recall that
$$\mathcal{L}\left\{\frac{d^n}{dt^n}y(t)\right\} = s^nY(s) - \sum_{k=1}^n s^{n-k}\frac{d^{k-1}}{dt^{k-1}}y(t)\Big|_{t=0}$$

Laplace transform of the LTI ODE:

$$(a_ns^n + a_{n-1}s^{n-1} + \ldots + a_0) Y(s) = (b_ms^m + b_{m-1}s^{m-1} + \ldots + b_0) U(s)$$

Transfer function: ratio of Laplace transform of output to Laplace transform of input with zero initial conditions:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_0}$$

Transfer Function

Transfer Function

The transfer function G(s) of a single-input single-output LTI ODE is the ratio of the Laplace transform Y(s) of the output y(t) to the Laplace transform U(s) of the input u(t) with zero initial conditions:

$$G(s) = rac{Y(s)}{U(s)}$$

Relative Degree

The relative degree of a single-input single-output LTI ODE with transfer function G(s) is the difference r = n - m between the number of poles n and number of zeros m of G(s).

- If r > 0, the transfer function is called *strictly proper*.
- If $r \ge 0$, the transfer function is called *proper*.
- If r < 0, the transfer function is called *improper* (there is no state space realization).

Example

A vehicle with position p(t) and acceleration input u(t) satisfies:

$$m\ddot{p}(t) = u(t)$$

The transfer function of this system is:

$$G(s) = \frac{P(s)}{U(s)} = \frac{1}{ms^2}$$

• The transfer function is strictly proper with relative degree r = 2

Example: Second-order LTI ODE

Consider a second-order system with natural frequency ω_n, damping ratio ζ, and input u(t):

$$\ddot{y}(t) + 2\zeta \omega_n \dot{y}(t) + \omega_n^2 y(t) = u(t)$$

Laplace transform:

$$(s^{2}Y(s) - sy(0) - \dot{y}(0)) + 2\zeta\omega_{n}(sY(s) - y(0)) + \omega_{n}^{2}Y(s) = U(s)$$

• Transfer function (set $y(0) = \dot{y}(0) = 0$):

$$G(s)=rac{Y(s)}{U(s)}=rac{1}{s^2+2\zeta\omega_ns+\omega_n^2}$$

Total response:

$$Y(s) = \underbrace{\frac{(s + 2\zeta\omega_n)y(0) + \dot{y}(0)}{s^2 + 2\zeta\omega_n s + \omega_n^2}}_{\text{natural response}} + \underbrace{\mathcal{G}(s)U(s)}_{\text{forced response}}$$

Transfer Function of State-space Model

Consider an LTI ODE system in state-space:

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

Laplace transform:

$$s\mathbf{X}(s) - \mathbf{x}(0) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s)$$

 $\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s)$

The response Y(s) of LTI ODE system consists of natural response due to the initial conditions x(0) and forced response due to the input U(s):

$$\mathbf{Y}(s) = \mathbf{C} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{x}(0) + \underbrace{\left(\mathbf{C} (s\mathbf{I} - \mathbf{A})^{-1} \mathbf{B} + \mathbf{D}\right)}_{\mathbf{G}(s)} \mathbf{U}(s)$$

The transfer function of an LTI ODE system in state-space form is:

$$\mathbf{G}(s) = \mathbf{C} \left(s \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{B} + \mathbf{D}$$

Response to Periodic Signals

The idea of a transfer function comes from looking at the response of an LTI ODE system to periodic input signals with fundamental frequency ω_f:

$$u(t) = \sum_{k=0}^{\infty} (a_k \sin(k\omega_{\rm f} t) + b_k \cos(k\omega_f t))$$

• Euler's formula:
$$e^{j\omega} = \cos \omega + j \sin \omega$$

• The exponential function e^{st} with $s = j\omega$ can represent periodic signals:

$$\sin(\omega t) = \operatorname{Im}(e^{j\omega t}) = \frac{1}{2j} \left(e^{j\omega t} - e^{-j\omega t} \right)$$
$$\cos(\omega t) = \operatorname{Re}(e^{j\omega t}) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

► Thanks to linearity (**superposition**), it suffices to compute the response to $u(t) = e^{st}$ and then reconstruct the response to a cosine or sine by combining the responses corresponding to $s = j\omega$ and $s = -j\omega$

Exponential Input est

▶ The exponential input est generalizes periodic signals to a broader class:

$$e^{st} = e^{\sigma t} e^{j\omega t} = e^{\sigma t} (\cos(\omega t) + j\sin(\omega t))$$

Examples of exponential signals:

• Top row: exponential signals with a real exponent $s = \sigma$

• Bottom row: exponential signals with a complex exponent $s = j\omega$

Frequency Domain Analysis

- ► Analyze LTI ODE response to sinusoidal and exponential signals
- State-space model:

$$\begin{split} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u} \end{split}$$

Convolution equation:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{x}_0 + \int_0^t \mathbf{C}e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au + \mathbf{D}\mathbf{u}(t)$$

SISO system with input $u(t) = e^{st}$ such that s is not an eigenvalue of **A**:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\mathbf{x}_{0}}_{\text{natural response}} + \underbrace{\mathbf{C}e^{\mathbf{A}t}(s\mathbf{I} - \mathbf{A})^{-1}\left(e^{(s\mathbf{I} - \mathbf{A})t} - \mathbf{I}\right)\mathbf{B} + \mathbf{D}e^{st}}_{\text{forced response}}$$
$$= \underbrace{\mathbf{C}e^{\mathbf{A}t}\left(\mathbf{x}(0) - (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\right)}_{\text{transient response}} + \underbrace{\left(\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right)e^{st}}_{\text{steady-state response}}$$

Frequency Domain Analysis

► SISO LTI ODE response to
$$u(t) = e^{st}$$
:

$$y(t) = \underbrace{Ce^{At} (\mathbf{x}(0) - (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B})}_{\text{transient response}} + \underbrace{(C(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}) e^{st}}_{\text{steady-state response}}$$

The transfer function from u(t) to y(t) of a SISO LTI ODE is the coefficient of the **steady-state response to an exponential input**:

$$G(s) = \frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

- The transfer function represents the system dynamics in terms of the generalized frequency s instead of time t
- Analyzing the system in the complex domain uncovers interesting properties

Example

Consider a SISO LTI ODE with state-space model:

$$\mathbf{A} = \begin{bmatrix} -a_1 & -a_2 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 0 & 1 \end{bmatrix}, \quad \mathbf{D} = 0$$

Transfer function:

$$G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s + a_1 & a_2 \\ -1 & s \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \frac{1}{s^2 + a_1 s + a_2} \begin{bmatrix} s & -a_2 \\ 1 & s + a_1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$= \frac{1}{s^2 + a_1 s + a_2}.$$

Example

Consider a Heaviside step input:

$$u(t) = H(t) = \begin{cases} 1, & t \ge 0, \\ 0, & t < 0 \end{cases}$$

• Note that $u(t) = e^{st}$ with s = 0 for $t \ge 0$:

$$y(t) = \mathbf{C}e^{\mathbf{A}t}\left(\mathbf{x}(0) + \mathbf{A}^{-1}\mathbf{B}\right) + G(0)u(t)$$

• Suppose $a_1 = 1$ and $a_2 = 2$: $G(s) = \frac{1}{s^2 + s + 2}$

• The steady-state response as $t \to \infty$ is $G(0) = \frac{1}{2}$

Controllable Canonical Form

• Consider a general *n*-th order transfer function (some of b_i may be 0):

$$G(s) = rac{Y(s)}{U(s)} = rac{b_n s^n + b_{n-1} s^{n-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}$$

To convert this transfer function to state-space form multiply by Z(s)/Z(s):

$$G(s) = \frac{Y(s)/Z(s)}{U(s)/Z(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}$$

Time-domain LTI ODEs:

$$y = b_n z^{(n)} + b_{n-1} z^{(n-1)} + \ldots + b_1 \dot{z} + b_0 z$$

$$u = z^{(n)} + a_{n-1} z^{(n-1)} + \ldots + a_1 \dot{z} + a_0 z$$

This suggests the following choice of state variables:

$$x_1 = z$$
 $x_2 = \dot{z}$ \cdots $x_n = z^{(n-1)}$

Controllable Canonical Form

• Consider a general *n*-th order transfer function (some of b_i may be 0):

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_n s^n + b_{n-1} s^{n-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}$$

The controllable canonical form is a state-space model with the same transfer function:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} (b_0 - a_0 b_n) & (b_1 - a_1 b_n) & \cdots & (b_{n-1} - a_{n-1} b_n) \end{bmatrix} \mathbf{x} + b_n u$$

Zero Frequency Gain

- > The features of the transfer function reveal important system properties
- **Zero frequency gain**: the magnitude |G(0)| of the transfer function at s = 0
- Interpretation: the ratio of the steady-state output to a step input
- LTI ODE:

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_0} \qquad \Rightarrow \qquad G(0) = \frac{b_0}{a_0}$$

State-space model:

 $G(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D} \qquad \Rightarrow \qquad G(0) = -\mathbf{C}\mathbf{A}^{-1}\mathbf{B} + \mathbf{D}$

lntegrator: $\dot{y} = u$

$$G(s)=rac{1}{s} \qquad \Rightarrow \qquad G(0) o\infty \quad {\sf pole}$$

• Differentiator $y = \dot{u}$

$$G(s) = s \qquad \Rightarrow \qquad G(0) = 0 \quad \text{zero}$$

Transfer Function Poles

Consider the LTI ODE:

$$a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \ldots + a_0 y = b_m \frac{d^m u}{dt^m} + b_{m-1} \frac{d^{m-1} u}{dt^{m-1}} + \ldots + b_0 u$$

The response Y(s) consists of natural response due to the initial conditions x(0) and forced response due to the input U(s):

• The transfer function $G(s) = \frac{b(s)}{a(s)}$ and the natural response have the same denominator:

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_0$$

A pole p of the transfer function G(s) is a solution to the characteristic equation a(s) = 0. If $u(t) \equiv 0$, then $y(t) = e^{pt}$ is a solution to the LTI ODE.

The poles p of a transfer function G(s) correspond to the natural solutions $y(t) = e^{pt}$ of the LTI ODE called modes.

Transfer Function Zeros

SISO LTI ODE response to an exponential input $u(t) = e^{st}$:

$$y(t) = \underbrace{\mathbf{C}e^{\mathbf{A}t}\left(\mathbf{x}(0) - (s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}\right)}_{\text{transient response}} + \underbrace{\left(\mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right)e^{st}}_{\text{steady-state response}}$$

A zero z of the transfer function G(s) = C(sI − A)⁻¹B + D makes G(z) = 0 and hence the steady-state response to u(t) = e^{zt} is zero

The zeros z of a transfer function G(s) block transmission of an exponential input $u(t) = e^{zt}$.

Figure: Vibrations of the mass m_1 can be damped by providing an auxiliary mass m_2 , attached to m_1 by a spring with stiffness k_2 . The parameters m_2 and k_2 are chosen so that the frequency $\sqrt{k_2/m_2}$ matches the frequency of vibration.

Vibration damper dynamics:

$$m_1\ddot{q}_1 + c_1\dot{q}_1 + k_1q_1 + k_2(q_1 - q_2) = f$$
$$m_2\ddot{q}_2 + k_2(q_2 - q_1) = 0$$

The Laplace transform with zero initial conditions is:

▶ The transfer function from F(s) to $Q_1(s)$ is obtained by eliminating $Q_2(s)$:

$$G(s) = \frac{Q_1(s)}{F(s)} = \frac{m_2 s^2 + k_2}{m_1 m_2 s^4 + m_2 c_1 s^3 + (m_1 k_2 + m_2 (k_1 + k_2)) s^2 + k_2 c_1 s + k_1 k_2}$$

Blocking property: the transfer function has zeros at $s = \pm j \sqrt{k_2/m_2}$

Blocking property with parameters

$$m_1 = 1, c_1 = 1, k_1 = 1, m_2 = 1, k_2 = 1$$

• Case 1: external input : $u = \sin(\omega t)$, with $\omega = 1$

- Other frequency responses
- **Case 2: external input** : $u = sin(\omega t)$, with $\omega = 1.1$

Case 3: external input : $u = \sin(\omega t)$,

with $\omega = 0.578$

