ECE171A: Linear Control System Theory Lecture 5: Transfer Function

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

LTI ODE Solution

- Consider the LTI ODE system:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{u}, \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \\
& \mathbf{y}=\mathbf{C} \mathbf{x}+\mathbf{D u}
\end{aligned}
$$

- The system output satisfies the convolution equation:

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A}\left(t-t_{0}\right)} \mathbf{x}_{0}+\int_{t_{0}}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
$$

- Observations:
- Using the convolution equation directly for control design can be challenging
- A simpler relationship between $\mathbf{u}(t)$ and $\mathbf{y}(t)$ can be obtained by transforming the LTI ODE from the time domain to the complex domain using a Laplace transform

Laplace Transform

The Laplace transform \mathcal{L} maps a real function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ to a complex function $F: \mathbb{C} \mapsto \mathbb{C}$:

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

- The Laplace transform \mathcal{L} converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain
- Example:

$$
\begin{array}{ccc}
\ddot{y}(t)+y(t)=0 & \stackrel{\mathcal{L}}{\longrightarrow} & s^{2} Y(s)-s y(0)-\dot{y}(0) \\
\downarrow \\
y(t)=y(0) \cos (t)+\dot{y}(0) \sin (t) & \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} & Y(s)=\frac{s y(0)+\dot{y}(0)}{s^{2}+1}
\end{array}
$$

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Complex Numbers \mathbb{C}

- The space of real numbers is denoted by \mathbb{R}
- The space of complex numbers is denoted by \mathbb{C}
- A complex number has the form:

$$
s=\sigma+j \omega
$$

where $\sigma, \omega \in \mathbb{R}$ and $j=\sqrt{-1}$

- Cartesian coordinates: $s=\sigma+j \omega$
- The real part of s is $\operatorname{Re}(s)=\sigma$
- The imaginary part of s is $\operatorname{Im}(s)=\omega$
- Polar coordinates: $s=r e^{j \theta}=r(\cos (\theta)+j \sin (\theta))$

- The magnitude of s is $|s|=r=\sqrt{\sigma^{2}+\omega^{2}}$
- The phase of s is $\arg (s)=\angle s=\theta=\operatorname{atan} 2(\omega, \sigma)$
- The complex conjugate of $s=\sigma+j \omega$ is $s^{*}=\sigma-j \omega$

Complex Polynomial

- A complex polynomial of order n is a function $a: \mathbb{C} \mapsto \mathbb{C}$:

$$
a(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$ are constants.

- A root of a complex polynomial $a(s)$ is a number $\lambda \in \mathbb{C}$ such that:

$$
a(\lambda)=0
$$

- A root λ of multiplicity m of a complex polynomial $a(s)$ satisfies:

$$
\lim _{s \rightarrow \lambda} \frac{a(s)}{(s-\lambda)^{m}}<\infty
$$

- Fundamental theorem of algebra: a complex polynomial $a(s)$ of degree n has exactly n roots, counting multiplicities, and can be factorized as:

$$
a(s)=a_{n} s^{n}+\ldots+a_{0}=a_{n}\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the n roots of $a(s)$

Complex Polynomial with Real Coefficients

- A complex polynomial of order n with real coefficients is a function:

$$
a(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{2} s^{2}+a_{1} s+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ are constants.

- The roots of a complex polynomial with real coefficients are either real, $\lambda=\sigma$, or come in complex conjugate pairs, $\lambda=\sigma \pm j \omega$.
- Every complex polynomial with real coefficients can be factorized into polynomials of degree one or two:

$$
a(s)=a_{n} s^{n}+\ldots+a_{0}=a_{n} \prod_{i=1}^{n_{1}}\left(s-\lambda_{i}\right) \prod_{k=1}^{n_{2}}\left(s^{2}+2 \zeta_{k} \omega_{k} s+\omega_{k}^{2}\right)
$$

where n_{1} and n_{2} are the numbers of real roots and complex conjugate pairs.

- Vieta's formulas relate the coefficients a_{i} to the roots λ_{i} :

$$
\sum_{i=1}^{n} \lambda_{i}=-\frac{a_{n-1}}{a_{n}} \quad \prod_{i=1}^{n} \lambda_{i}=(-1)^{n} \frac{a_{0}}{a_{n}} \quad \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \prod_{j=1}^{k} \lambda_{i_{j}}=(-1)^{k} \frac{a_{n-k}}{a_{n}}
$$

Rational Function

- A rational function $F: \mathbb{C} \mapsto \mathbb{C}$ is a ratio of complex polynomials:

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{m} s^{m}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+\ldots+a_{1} s+a_{0}}
$$

- Rational functions remain rational functions under addition, subtraction, multiplication, division (except by 0)
- The characteristic equation of a rational function $F(s)=\frac{b(s)}{a(s)}$ is:

$$
a(s)=0
$$

- A zero $z \in \mathbb{C}$ of a rational function $F(s)$ is a root of the numerator: $b(z)=0$
- A pole $p \in \mathbb{C}$ of a rational function $F(s)$ is a root of the characteristic equation: $a(p)=0$

Pole-Zero Map

- The pole-zero form of a rational function $F(s)$ is:

$$
F(s)=\frac{b_{m} s^{m}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+\ldots+a_{1} s+a_{0}}=k \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)}
$$

where $k=b_{m} / a_{n}, z_{1}, \ldots, z_{m}$ are the zeros of $F(s)$, and p_{1}, \ldots, p_{n} are the poles of $F(s)$

- A pole-zero map is a plot of the poles and zeros of $F(s)$ in the s-domain:
- Example:

$$
F(s)=k \frac{(s+1.5)(s+1+2 j)(s+1-2 j)}{(s+2.5)(s-2)(s-1-j)(s-1+j)}
$$

- $\times=$ pole; $\circ=$ zero; $k=$ not available

Example: Zeros and Poles

- Consider $F(s)=\frac{2 s+1}{3 s^{2}+2 s+1}$
- $F(s)$ has one zero: $z=-\frac{1}{2}$
- The roots of a quadratic polynomial $a(s)=a_{2} s^{2}+a_{1} s+a_{0}$ are:

$$
s=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2} a_{0}}}{2 a_{2}}
$$

- $F(s)$ has two conjugate poles: $p_{1}=-\frac{1}{3}+j \frac{\sqrt{2}}{3}$ and $p_{2}=-\frac{1}{3}-j \frac{\sqrt{2}}{3}$
- Pole-zero form of $F(s)$:

$$
F(s)=\frac{2(s-z)}{3\left(s-p_{1}\right)\left(s-p_{2}\right)}
$$

Partial Fraction Expansion (no repeated poles)

- Assume that the rational function:

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{m} s^{m}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+\ldots+a_{1} s+a_{0}}
$$

is strictly proper $(m<n)$ and has no repeated poles (all roots of $a(s)$ have multiplicity one)

- The residue r_{i} associated with pole p_{i} is:

$$
r_{i}=\lim _{s \rightarrow p_{i}}\left(s-p_{i}\right) F(s)
$$

- The partial fraction expansion of $F(s)$ is:

$$
F(s)=\frac{r_{1}}{s-p_{1}}+\cdots+\frac{r_{n}}{s-p_{n}}
$$

where p_{1}, \ldots, p_{n} and r_{1}, \ldots, r_{n} are the poles and residues of $F(s)$

Example: Residues

- Consider $F(s)=\frac{2 s+1}{3 s^{2}+2 s+1}$ with zero $z=-\frac{1}{2}$ and poles $p_{1,2}=-\frac{1}{3} \pm j \frac{\sqrt{2}}{3}$
- The residue associated with p_{1} is:

$$
\begin{aligned}
r_{1} & =\lim _{s \rightarrow p_{1}}\left(s-p_{1}\right) F(s)=\lim _{s \rightarrow p_{1}} \frac{2(s-z)}{3\left(s-p_{2}\right)}=\frac{2\left(p_{1}+1 / 2\right)}{3\left(p_{1}-p_{2}\right)} \\
& =\frac{2\left(p_{1}+1 / 2\right)}{j 2 \sqrt{2}}=-j \frac{\sqrt{2}}{2}\left(\frac{1}{6}+j \frac{\sqrt{2}}{3}\right)=\frac{1}{3}-j \frac{\sqrt{2}}{12}
\end{aligned}
$$

- Residues associated with complex conjugate poles are also complex conjugate!
- The residue associated with $p_{2}=p_{1}^{*}$ is $r_{2}=r_{1}^{*}=\frac{1}{3}+j \frac{\sqrt{2}}{12}$
- The partial fraction expansion of $F(s)$ is:

$$
F(s)=\frac{r_{1}}{\left(s-p_{1}\right)}+\frac{r_{2}}{\left(s-p_{2}\right)}
$$

Partial Fraction Expansion (repeated poles)

- Assume that the rational function:

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{m} s^{m}+\ldots+b_{1} s+b_{0}}{a_{n}\left(s-p_{1}\right)^{m_{1}} \cdots\left(s-p_{k}\right)^{m_{k}}}
$$

is strictly proper and has poles p_{1}, \ldots, p_{k} with multiplicities m_{1}, \ldots, m_{k}

- The residue $r_{i, m_{i}-j}$ associated with pole p_{i} of multiplicity m_{i} is:

$$
r_{i, m_{i}-j}=\lim _{s \rightarrow p_{i}} \frac{1}{j!} \frac{d^{j}}{d s^{j}}\left[\left(s-p_{i}\right)^{m_{i}} F(s)\right], \quad j=0, \ldots,\left(m_{i}-1\right)
$$

- The partial fraction expansion of $F(s)$ is:

$$
\begin{aligned}
F(s)= & \frac{r_{1, m_{1}}}{\left(s-p_{1}\right)^{m_{1}}}+\frac{r_{1, m_{1}-1}}{\left(s-p_{1}\right)^{m_{1}-1}}+\cdots+\frac{r_{1,1}}{s-p_{1}} \\
& +\frac{r_{2, m_{2}}}{\left(s-p_{2}\right)^{m_{2}}}+\frac{r_{2, m_{2}-1}^{\left(s-p_{2}\right)^{m_{2}-1}}+\cdots+\frac{r_{2,1}}{s-p_{2}}}{} \\
& +\cdots \\
& +\frac{r_{k, m_{k}}}{\left(s-p_{k}\right)^{m_{k}}}+\frac{r_{k, m_{k}-1}}{\left(s-p_{k}\right)^{m_{k}-1}}+\cdots+\frac{r_{k, 1}}{s-p_{k}}
\end{aligned}
$$

Partial Fraction Expansion (improper rational function)

- Assume that the rational function:

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{m} s^{m}+\ldots+b_{1} s+b_{0}}{a_{n} s^{n}+\ldots+a_{1} s+a_{0}}
$$

is not strictly proper $(m \geq n)$

- The numerator $b(s)$ can be divided by the denominator $a(s)$ to obtain:

$$
F(s)=\frac{b(s)}{a(s)}=c(s)+\frac{d(s)}{a(s)}
$$

where $c(s)$ is of order $m-n$ and $d(s)$ is of order $k<n$
$-\frac{d(s)}{a(s)}$ is now strictly proper and has a partial fraction expansion

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Laplace Transform and Inverse Laplace Transform

- The Laplace transform $F(s)$ of a function $f(t)$ is:

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

where $s=\sigma+j \omega$ is a complex number.

- The inverse Laplace transform $f(t)$ of a function $F(s)$ is:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2 \pi j} \lim _{\omega \rightarrow \infty} \int_{\sigma-j \omega}^{\sigma+j \omega} F(s) e^{s t} d s,
$$

where σ is greater than the real part of all singularities of $F(s)$.

- Cauchy's Residue Theorem: If $F(s)$ is a strictly proper rational function:

$$
f(t)=\mathcal{L}^{-1}\{F(s)\}=\sum_{s \text { is a pole of } F(s)}\left(\text { residue of } F(s) e^{s t} \text { at } s\right)
$$

Laplace Transform Properties

- The Laplace transform is linear:

$$
\begin{aligned}
\mathcal{L}\{\alpha f(t)+\beta g(t)\} & =\int_{0}^{\infty}(\alpha f(t)+\beta g(t)) e^{-s t} d t \\
& =\alpha \int_{0}^{\infty} f(t) e^{-s t} d t+\beta \int_{0}^{\infty} g(t) e^{-s t} d t \\
& =\alpha \mathcal{L}\{f(t)\}+\beta \mathcal{L}\{g(t)\}
\end{aligned}
$$

- Convolution: for $f(t), g(t)$ supported on $t \in[0, \infty)$:

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

- Convolution in time domain becomes multiplication in the complex domain:

$$
\begin{aligned}
\mathcal{L}\{(f * g)(t)\} & =\int_{0}^{\infty} \int_{0}^{\infty} f(\tau) g(t-\tau) e^{-s t} d \tau d t \\
& =\int_{0}^{\infty} \int_{-\tau}^{\infty} f(\tau) g(\mu) e^{-s \tau} e^{-s \mu} d \mu d \tau \\
& \xlongequal{g(\mu)=0, \mu<0} \int_{0}^{\infty} f(\tau) e^{-s \tau} d \tau \int_{0}^{\infty} g(\mu) e^{-s \mu} d \mu \\
& =\mathcal{L}\{f(t)\} \mathcal{L}\{g(t)\}
\end{aligned}
$$

Laplace Transform Properties

- Differentiation:

$$
\mathcal{L}\left\{\frac{d}{d t} x(t)\right\}=s \mathcal{L}\{x(t)\}-x(0)
$$

- Proof:

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d}{d t}\left(x(t) e^{-s t}\right) d t & =\left.x(t) e^{-s t}\right|_{0} ^{\infty}=-x(0) \\
\int_{0}^{\infty} \frac{d}{d t}\left(x(t) e^{-s t}\right) d t & =\int_{0}^{\infty}\left(\frac{d}{d t} x(t)\right) e^{-s t} d t+\int_{0}^{\infty} x(t)\left(\frac{d}{d t} e^{-s t}\right) d t \\
& =\mathcal{L}\left\{\frac{d}{d t} x(t)\right\}-s \mathcal{L}\{x(t)\}
\end{aligned}
$$

- Integration:

$$
\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} \mathcal{L}\{f(t)\}
$$

- Note that $\frac{d}{d t}\left(\int_{0}^{t} f(\tau) d \tau\right)=f(t)$

Laplace Transform Properties

- Laplace transform of $e^{a t}$:

$$
\begin{aligned}
\mathcal{L}\left\{e^{a t}\right\} & =\int_{0}^{\infty} e^{a t} e^{-s t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t=-\left.\frac{1}{(s-a)} e^{-(s-a) t}\right|_{t=0} ^{t=\infty} \\
& \xlongequal[\operatorname{Re}(s)>a]{\text { require }} 0-\left(-\frac{1}{(s-a)} e^{0}\right)=\frac{1}{s-a}
\end{aligned}
$$

- Delta function (Impulse):

$$
\delta_{\epsilon}(t)=\left\{\begin{array}{ll}
0 & \text { if } t<0 \\
1 / \epsilon & \text { if } 0 \leq t<\epsilon \\
0 & \text { if } t \geq \epsilon
\end{array} \quad \delta(t)=\lim _{\epsilon \rightarrow 0} \delta_{\epsilon}(t)= \begin{cases}\infty, & t=0 \\
0, & t \neq 0\end{cases}\right.
$$

- Sifting property: for any $f(t)$ continuous at $\tau \in(a, b)$:

$$
\int_{a}^{b} f(t) \delta(t-\tau) d t=f(\tau)
$$

- Laplace transform of $\delta(t)$:

$$
\mathcal{L}\{\delta(t)\}=\int_{0}^{\infty} \delta(t) e^{-s t} d t=\left.e^{-s t}\right|_{t=0}=1
$$

Laplace Transform Properties

- Heaviside step function:

$$
H(t)=\int_{-\infty}^{t} \delta(\tau) d \tau=\left\{\begin{array}{ll}
1, & t \geq 0 \\
0, & t<0
\end{array} \quad \Rightarrow \quad \mathcal{L}\{H(t)\}=\frac{1}{s}\right.
$$

- Ramp function:

$$
t H(t)=\left\{\begin{array}{ll}
t, & t \geq 0 \\
0, & t<0
\end{array} \quad \Rightarrow \quad \mathcal{L}\{H(t)\}=\frac{1}{s^{2}}\right.
$$

- Parabola function:

$$
\frac{t^{2}}{2} H(t)=\left\{\begin{array}{ll}
\frac{t^{2}}{2}, & t \geq 0 \\
0, & t<0
\end{array} \quad \Rightarrow \quad \mathcal{L}\{H(t)\}=\frac{1}{s^{3}}\right.
$$

Laplace Transform Properties

	t domain	s domain
linearity	$a f(t)+b g(t)$	$a F(s)+b G(s)$
convolution	$(f * g)(t)$	$F(s) G(s)$
multiplication	$f(t) g(t)$	$\left.\frac{1}{2 \pi j} \int_{R e}^{R e(\sigma)+j \infty}\right) F(\sigma) G(s-\sigma) d \sigma$
scaling, $a>0$	$f(a t)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
s-domain derivative	$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$
time-domain derivative	$f^{(n)}(t)$	$s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
s-domain integarion	$\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(\sigma) d \sigma$
time-domain integarion	$\int_{0}^{t} f(\tau) d \tau=(H * f)(t)$	$\frac{1}{s} F(s)$
s-domain shift	$e^{a t} f(t)$	$F(s-a)$
time-domain shift, $a>0$	$f(t-a) H(t-a)$	$e^{-a s} F(s)$

- Heaviside step function $H(t)= \begin{cases}1, & t \geq 0, \\ 0, & t<0\end{cases}$
- Convolution: $(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$

Laplace Transform Properties

$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\mathfrak{L}\{f(t)\}$	$f(t)=\mathfrak{L}^{-1}\{F(s)\}$	$F(s)=\mathfrak{\sim}\{f(t)\}$
1. 1	$\frac{1}{s}$	2. $\mathrm{e}^{a t}$	$\frac{1}{s-a}$
3. $t^{n}, n=1,2,3, \ldots$	$\frac{n!}{s^{n+1}}$	4. $t^{p}, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5. \sqrt{t}	$\frac{\sqrt{\pi}}{2 s^{\frac{1}{2}}}$	6. $t^{n \frac{1}{2}}, n=1,2,3, \ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) \sqrt{\pi}}{2^{n} s^{n+\frac{1}{2}}}$
7. $\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$	8. $\quad \cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
9. $t \sin (a t)$	$\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$	10. $t \cos (a t)$	$\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
11. $\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$	12. $\sin (a t)+a t \cos (a t)$	$\frac{2 a s^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
13. $\cos (a t)-a t \sin (a t)$	$\frac{s\left(s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{2}}$	14. $\cos (a t)+a t \sin (a t)$	$\frac{s\left(s^{2}+3 a^{2}\right)}{\left(s^{2}+a^{2}\right)^{2}}$
15. $\sin (a t+b)$	$\frac{s \sin (b)+a \cos (b)}{s^{2}+a^{2}}$	16. $\cos (a t+b)$	$\frac{s \cos (b)-a \sin (b)}{s^{2}+a^{2}}$
17. $\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$	18. $\cosh (a i)$	$\frac{s}{s^{2}-a^{2}}$
19. $\mathbf{e}^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$	20. $\mathrm{e}^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
21. $\mathbf{e}^{a t} \sinh (b t)$	$\frac{b}{(s-a)^{2}-b^{2}}$	22. $\mathrm{e}^{a t} \cosh (b t)$	$\frac{s-a}{(s-a)^{2}-b^{2}}$
23. $t^{\prime \prime} \mathrm{e}^{\text {dt }}, \quad n=1,2,3, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	24. $f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$
25. $u_{e}(t)=u(t-c)$ Heaviside Function	$\frac{\mathrm{e}^{-c s}}{s}$	26. $\delta(t-c)$ Dirac Delta Function	$\mathbf{e}^{-c s}$
27. $u_{c}(t) f(t-c)$	$\mathrm{e}^{-c s} F(s)$	28. $u_{c}(t) g(t)$	$\mathrm{e}^{-c s} \mathfrak{\sim}\{g(t+c)\}$
29. $\mathbf{e}^{d} f(t)$	$F(s-c)$	30. $t^{\prime \prime} f(t), \quad n=1,2,3, \ldots$	$(-1)^{n} F^{(n)}(s)$
31. $\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(u) d u$	32. $\int_{0}^{t} f(v) d v$	$\frac{F(s)}{s}$
33. $\int_{0}^{1} f(t-\tau) g(\tau) d \tau$ 35. $f^{\prime}(t)$	$F(s) G(s)$ $s F(s)-f(0)$	34. $\quad f(t+T)=f(t)$ 36. $\quad f^{\prime \prime}(t)$	$\frac{\int_{0}^{T} \mathbf{e}^{-s t} f(t) d t}{1-\mathbf{e}^{-s T}}$

Laplace Transform Properties

$$
\int_{-\infty}^{t} f(t) d t
$$

Impulse function $\delta(t)$

$$
\begin{aligned}
& e^{-a t} \sin \omega t \\
& e^{-a t} \cos \omega t \\
& \frac{1}{\omega}\left[(\alpha-a)^{2}+\omega^{2}\right]^{1 / 2} e^{-a t} \sin (\omega t+\phi), \\
& \phi=\tan ^{-1} \frac{\omega}{\alpha-a} \\
& \frac{\omega_{n}}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \omega_{n} \sqrt{1-\zeta^{2}} t, \zeta<1 \\
& \frac{1}{a^{2}+\omega^{2}}+\frac{1}{\omega \sqrt{a^{2}+\omega^{2}}} e^{-a t} \sin (\omega t-\phi), \\
& \phi=\tan ^{-1} \frac{\omega}{-a} \\
& 1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t+\phi\right), \\
& \phi=\cos ^{-1} \zeta, \zeta<1 \\
& \frac{\alpha}{a^{2}+\omega^{2}}+\frac{1}{\omega}\left[\frac{(\alpha-a)^{2}+\omega^{2}}{a^{2}+\omega^{2}}\right]^{1 / 2} e^{-a t} \sin (\omega t+\phi) \text {. } \\
& \phi=\tan ^{-1} \frac{\omega}{\alpha-a}-\tan ^{-1} \frac{\omega}{-a} \\
& \frac{\omega}{(s+a)^{2}+\omega^{2}} \\
& \frac{s+a}{(s+a)^{2}+\omega^{2}} \\
& \frac{s+\alpha}{(s+a)^{2}+\omega^{2}} \\
& \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \frac{1}{s\left[(s+a)^{2}+\omega^{2}\right]} \\
& \frac{\omega_{n}^{2}}{s\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)} \\
& \frac{s+\alpha}{s\left[(s+a)^{2}+\omega^{2}\right]}
\end{aligned}
$$

Initial and Final Value Theorems

Initial Value Theorem

Suppose that $f(t)$ has a Laplace transform $F(s)$. Then:

$$
\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

Final Value Theorem

Suppose that $f(t)$ has a Laplace transform $F(s)$. Suppose that every pole of $F(s)$ is either in the open left-half plane or at the origin of \mathbb{C}. Then:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

Example: Spring-Mass-Damper

- Consider a spring-mass-damper system:

$$
M \frac{d^{2} y(t)}{d t^{2}}+b \frac{d y(t)}{d t}+k y(t)=0
$$

- This is an example of a second-order system with natural frequency $\omega_{n}=\sqrt{k / M}$ and damping ratio $\zeta=b /(2 \sqrt{k M})$:

$$
\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=0
$$

- Laplace transform:

$$
\left(s^{2} Y(s)-s y(0)-\dot{y}(0)\right)+2 \zeta \omega_{n}(s Y(s)-y(0))+\omega_{n}^{2} Y(s)=0
$$

- Natural response:

$$
Y(s)=\frac{\left(s+2 \zeta \omega_{n}\right) y(0)+\dot{y}(0)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Example: Spring-Mass-Damper

- Consider the natural response with $\omega_{n}^{2}=k / M=2$ and $2 \zeta \omega_{n}=b / M=3$:

$$
\begin{aligned}
Y(s) & =\frac{(s+3) y(0)+\dot{y}(0)}{s^{2}+3 s+2}=\frac{(s+3) y(0)+\dot{y}(0)}{(s+1)(s+2)} \\
& =\frac{2 y(0)+\dot{y}(0)}{s+1}-\frac{y(0)+\dot{y}(0)}{s+2}
\end{aligned}
$$

- Poles: $p_{1}=-1$ and $p_{2}=-2$
- Zeros: $z_{1}=-\frac{\dot{y}(0)}{y(0)}-3$
- Residues:

$$
\begin{aligned}
r_{1} & =\left.\frac{(s+3) y(0)+\dot{y}(0)}{(s+2)}\right|_{s=-1} \\
& =2 y(0)+\dot{y}(0)
\end{aligned}
$$

$$
r_{2}=\left.\frac{(s+3) y(0)+\dot{y}(0)}{(s+1)}\right|_{s=-2}
$$

$$
=-y(0)-\dot{y}(0)
$$

Example: Spring-Mass-Damper

- Spring-Mass-Damper Pole-Zero Map
- Let the initial conditions be $y(0)=1$ and $\dot{y}(0)=0$
- The poles and zeros are:

$$
p_{1}=-1, \quad p_{2}=-2, \quad z_{1}=-3
$$

- The residues are:

$$
\begin{aligned}
& r_{1}=\left.\frac{(s+3)}{(s+2)}\right|_{s=-1}=2 \\
& r_{2}=\left.\frac{(s+3)}{(s+1)}\right|_{s=-2}=-1
\end{aligned}
$$

Example: Spring-Mass-Damper

- The time-domain natural response of the spring-mass-damper system can be obtained using an inverse Laplace transform:

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\{Y(s)\}=\mathcal{L}^{-1}\left\{\frac{2 y(0)+\dot{y}(0)}{s+1}\right\}-\mathcal{L}^{-1}\left\{\frac{y(0)+\dot{y}(0)}{s+2}\right\} \\
& =(2 y(0)+\dot{y}(0)) e^{-t}-(y(0)+\dot{y}(0)) e^{-2 t}
\end{aligned}
$$

- The steady-state response can be obtained via the Final Value Theorem:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} y(t) & =\lim _{s \rightarrow 0} s Y(s) \\
& =\lim _{s \rightarrow 0} \frac{\left(s^{2}+3 s\right) y(0)+s \dot{y}(0)}{s^{2}+3 s+2}=0
\end{aligned}
$$

Example: Spring-Mass-Damper

- The poles of the system are the roots of the characteristic equation:

$$
a(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0
$$

- The natural response is determined by the poles:
- Overdamped $(\zeta>1)$: the poles are real:

$$
p_{1}=-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1} \quad p_{2}=-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}
$$

- Critically damped $(\zeta=1)$: the poles are repeated and real:

$$
p_{1}=p_{2}=-\omega_{n}
$$

- Underdamped $(\zeta<1)$: the poles are complex:

$$
p_{1}=-\zeta \omega_{n}-j \omega_{n} \sqrt{1-\zeta^{2}} \quad p_{2}=-\zeta \omega_{n}+j \omega_{n} \sqrt{1-\zeta^{2}}
$$

Example: Spring-Mass-Damper Locus of Roots

- s-domain plot of the poles (\times) and zeros (o) of $Y(s)$ with $\dot{y}(0)=0$

- For constant ω_{n}, as ζ varies, the complex conjugate roots follow a circular locus
- The poles and zeros can be expressed either in Cartesian coordinates or Polar coordinates (e.g., magnitude ω_{n} and angle $\theta=\cos ^{-1}(\zeta)$)

Example: Spring-Mass-Damper Response

- The time-domain natural response can be obtained by determining the residues and applying an inverse Laplace transform:
- Overdamped $(\zeta>1)$:

$$
y(t)=r_{1} e^{p_{1} t}+r_{2} e^{p_{2} t}
$$

where $p_{1}=-\zeta \omega_{n}-\omega_{n} \sqrt{\zeta^{2}-1}, p_{2}=-\zeta \omega_{n}+\omega_{n} \sqrt{\zeta^{2}-1}, r_{1}=\frac{p_{2} y(0)+\dot{y}(0)}{p_{2}-p_{1}}$, and $r_{2}=-\frac{p_{1} y(0)+\dot{y}(0)}{p_{2}-p_{1}}$

- Critically damped ($\zeta=1$):

$$
y(t)=y(0) e^{-\omega_{n} t}+\left(\dot{y}(0)+\omega_{n} y(0)\right) t e^{-\omega_{n} t}
$$

- Underdamped $(\zeta<1)$:

$$
y(t)=e^{-\zeta \omega_{n} t}\left(c_{1} \cos \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)+c_{2} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}} t\right)\right)
$$

where $c_{1}=y(0)$ and $c_{2}=\frac{\dot{y}(0)+\zeta \omega_{n} y(0)}{\omega_{n} \sqrt{1-\zeta^{2}}}$

Example: Spring-Mass-Damper Natural Response with $\dot{y}(0)=0$

Outline

Complex Numbers and Rational Functions

Laplace Transform

Transfer Function

Laplace Transform of LTI ODE

- Consider an LTI ODE with zero initial conditions:

$$
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+b_{m-1} \frac{d^{m-1} u}{d t^{m-1}}+\ldots+b_{0} u
$$

Let $Y(s)=\mathcal{L}\{y(t)\}$ and $U(s)=\mathcal{L}\{u(t)\}$

- Recall that $\mathcal{L}\left\{\frac{d^{n}}{d t^{n}} y(t)\right\}=s^{n} Y(s)-\left.\sum_{k=1}^{n} s^{n-k} \frac{d^{k-1}}{d t^{k-1}} y(t)\right|_{t=0}$
- Laplace transform of the LTI ODE:

$$
\left(a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}\right) Y(s)=\left(b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}\right) U(s)
$$

- Transfer function: ratio of Laplace transform of output to Laplace transform of input with zero initial conditions:

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}}{a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}}
$$

Transfer Function

Transfer Function

The transfer function $G(s)$ of a single-input single-output LTI ODE is the ratio of the Laplace transform $Y(s)$ of the output $y(t)$ to the Laplace transform $U(s)$ of the input $u(t)$ with zero initial conditions:

$$
G(s)=\frac{Y(s)}{U(s)}
$$

Relative Degree

The relative degree of a single-input single-output LTI ODE with transfer function $G(s)$ is the difference $r=n-m$ between the number of poles n and number of zeros m of $G(s)$.

- If $r>0$, the transfer function is called strictly proper.
- If $r \geq 0$, the transfer function is called proper.
- If $r<0$, the transfer function is called improper (there is no state space realization).

Example

- A vehicle with position $p(t)$ and acceleration input $u(t)$ satisfies:

$$
m \ddot{p}(t)=u(t)
$$

- The transfer function of this system is:

$$
G(s)=\frac{P(s)}{U(s)}=\frac{1}{m s^{2}}
$$

- The transfer function is strictly proper with relative degree $r=2$

Example: Second-order LTI ODE

- Consider a second-order system with natural frequency ω_{n}, damping ratio ζ, and input $u(t)$:

$$
\ddot{y}(t)+2 \zeta \omega_{n} \dot{y}(t)+\omega_{n}^{2} y(t)=u(t)
$$

- Laplace transform:

$$
\left(s^{2} Y(s)-s y(0)-\dot{y}(0)\right)+2 \zeta \omega_{n}(s Y(s)-y(0))+\omega_{n}^{2} Y(s)=U(s)
$$

- Transfer function (set $y(0)=\dot{y}(0)=0)$:

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

- Total response:

$$
Y(s)=\underbrace{\frac{\left(s+2 \zeta \omega_{n}\right) y(0)+\dot{y}(0)}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}}_{\text {natural response }}+\underbrace{G(s) U(s)}_{\text {forced response }}
$$

Transfer Function of State-space Model

- Consider an LTI ODE system in state-space:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

- Laplace transform:

$$
\begin{aligned}
s \mathbf{X}(s)-\mathbf{x}(0) & =\mathbf{A X}(s)+\mathbf{B} \mathbf{U}(s) \\
\mathbf{Y}(s) & =\mathbf{C X}(s)+\mathbf{D} \mathbf{U}(s)
\end{aligned}
$$

- The response $\mathbf{Y}(s)$ of LTI ODE system consists of natural response due to the initial conditions $\mathbf{x}(0)$ and forced response due to the input $\mathbf{U}(s)$:

$$
\mathbf{Y}(s)=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{x}(0)+\underbrace{\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right)}_{\mathbf{G}(s)} \mathbf{U}(s)
$$

The transfer function of an LTI ODE system in state-space form is:

$$
\mathbf{G}(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

Response to Periodic Signals

- The idea of a transfer function comes from looking at the response of an LTI ODE system to periodic input signals with fundamental frequency ω_{f} :

$$
u(t)=\sum_{k=0}^{\infty}\left(a_{k} \sin \left(k \omega_{\mathrm{f}} t\right)+b_{k} \cos \left(k \omega_{f} t\right)\right)
$$

- Euler's formula: $e^{j \omega}=\cos \omega+j \sin \omega$
- The exponential function $e^{s t}$ with $s=j \omega$ can represent periodic signals:

$$
\begin{aligned}
\sin (\omega t) & =\operatorname{Im}\left(e^{j \omega t}\right) \\
\cos (\omega t) & =\frac{1}{2 j}\left(e^{j \omega t}-e^{-j \omega t}\right) \\
\left.e^{j \omega t}\right) & =\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)
\end{aligned}
$$

- Thanks to linearity (superposition), it suffices to compute the response to $u(t)=e^{s t}$ and then reconstruct the response to a cosine or sine by combining the responses corresponding to $s=j \omega$ and $s=-j \omega$

Exponential Input $e^{s t}$

- The exponential input $e^{\text {st }}$ generalizes periodic signals to a broader class:

$$
e^{s t}=e^{\sigma t} e^{j \omega t}=e^{\sigma t}(\cos (\omega t)+j \sin (\omega t))
$$

- Examples of exponential signals:
- Top row: exponential signals with a real exponent $s=\sigma$
- Bottom row: exponential signals with a complex exponent $s=j \omega$

Frequency Domain Analysis

- Analyze LTI ODE response to sinusoidal and exponential signals
- State-space model:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A} \mathbf{x}+\mathbf{B u}, \quad \mathbf{x}(0)=\mathbf{x}_{0} \\
& \mathbf{y}=\mathbf{C} \mathbf{x}+\mathbf{D u}
\end{aligned}
$$

- Convolution equation:

$$
\mathbf{y}(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{x}_{0}+\int_{0}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau+\mathbf{D u}(t)
$$

- SISO system with input $u(t)=e^{s t}$ such that s is not an eigenvalue of \mathbf{A} :

$$
\begin{aligned}
y(t) & =\underbrace{\mathbf{C} e^{\mathbf{A} t} \mathbf{x}_{0}}_{\text {natural response }}+\underbrace{\mathbf{C} e^{\mathbf{A} t}(s \mathbf{I}-\mathbf{A})^{-1}\left(e^{(s \mathbf{I}-\mathbf{A}) t}-\mathbf{I}\right) \mathbf{B}+\mathbf{D} e^{s t}}_{\text {forced response }} \\
& =\underbrace{\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)-(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right)}_{\text {transient response }}+\underbrace{\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right) e^{s t}}_{\text {steady-state response }}
\end{aligned}
$$

Frequency Domain Analysis

- SISO LTI ODE response to $u(t)=e^{s t}$:

$$
y(t)=\underbrace{\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)-(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right)}_{\text {transient response }}+\underbrace{\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right) e^{s t}}_{\text {steady-state response }}
$$

The transfer function from $u(t)$ to $y(t)$ of a SISO LTI ODE is the coefficient of the steady-state response to an exponential input:

$$
G(s)=\frac{Y(s)}{U(s)}=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- The transfer function represents the system dynamics in terms of the generalized frequency s instead of time t
- Analyzing the system in the complex domain uncovers interesting properties

Example

- Consider a SISO LTI ODE with state-space model:

$$
\mathbf{A}=\left[\begin{array}{cc}
-a_{1} & -a_{2} \\
1 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad \mathbf{D}=0
$$

- Transfer function:

$$
\begin{aligned}
G(s) & =\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
s+a_{1} & a_{2} \\
-1 & s
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \frac{1}{s^{2}+a_{1} s+a_{2}}\left[\begin{array}{cc}
s & -a_{2} \\
1 & s+a_{1}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{s^{2}+a_{1} s+a_{2}} .
\end{aligned}
$$

Example

- Consider a Heaviside step input:

$$
u(t)=H(t)= \begin{cases}1, & t \geq 0 \\ 0, & t<0\end{cases}
$$

- Note that $u(t)=e^{s t}$ with $s=0$ for $t \geq 0$:

$$
y(t)=\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)+\mathbf{A}^{-1} \mathbf{B}\right)+G(0) u(t)
$$

- Suppose $a_{1}=1$ and $a_{2}=2: G(s)=\frac{1}{s^{2}+s+2}$
- The steady-state response as $t \rightarrow \infty$ is $G(0)=\frac{1}{2}$

Controllable Canonical Form

- Consider a general n-th order transfer function (some of b_{i} may be 0):

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}}
$$

- To convert this transfer function to state-space form multiply by $Z(s) / Z(s)$:

$$
G(s)=\frac{Y(s) / Z(s)}{U(s) / Z(s)}=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}}
$$

- Time-domain LTI ODEs:

$$
\begin{aligned}
& y=b_{n} z^{(n)}+b_{n-1} z^{(n-1)}+\ldots+b_{1} \dot{z}+b_{0} z \\
& u=z^{(n)}+a_{n-1} z^{(n-1)}+\ldots+a_{1} \dot{z}+a_{0} z
\end{aligned}
$$

- This suggests the following choice of state variables:

$$
x_{1}=z \quad x_{2}=\dot{z} \quad \cdots \quad x_{n}=z^{(n-1)}
$$

Controllable Canonical Form

- Consider a general n-th order transfer function (some of b_{i} may be 0):

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{b_{n} s^{n}+b_{n-1} s^{n-1}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}}
$$

- The controllable canonical form is a state-space model with the same transfer function:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-1}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] u \\
& y=\left[\begin{array}{llll}
\left(b_{0}-a_{0} b_{n}\right) & \left(b_{1}-a_{1} b_{n}\right) & \cdots & \left(b_{n-1}-a_{n-1} b_{n}\right)
\end{array}\right] \mathbf{x}+b_{n} u
\end{aligned}
$$

Zero Frequency Gain

- The features of the transfer function reveal important system properties
- Zero frequency gain: the magnitude $|G(0)|$ of the transfer function at $s=0$
- Interpretation: the ratio of the steady-state output to a step input
- LTI ODE:

$$
G(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}} \quad \Rightarrow \quad G(0)=\frac{b_{0}}{a_{0}}
$$

- State-space model:

$$
G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} \quad \Rightarrow \quad G(0)=-\mathbf{C A}^{-1} \mathbf{B}+\mathbf{D}
$$

- Integrator: $\dot{y}=u$

$$
G(s)=\frac{1}{s} \quad \Rightarrow \quad G(0) \rightarrow \infty \quad \text { pole }
$$

- Differentiator $y=\dot{u}$

$$
G(s)=s \quad \Rightarrow \quad G(0)=0 \quad \text { zero }
$$

Transfer Function Poles

- Consider the LTI ODE:

$$
a_{n} \frac{d^{n} y}{d t^{n}}+a_{n-1} \frac{d^{n-1} y}{d t^{n-1}}+\ldots+a_{0} y=b_{m} \frac{d^{m} u}{d t^{m}}+b_{m-1} \frac{d^{m-1} u}{d t^{m-1}}+\ldots+b_{0} u
$$

- The response $Y(s)$ consists of natural response due to the initial conditions $\mathbf{x}(0)$ and forced response due to the input $U(s)$:

$$
Y(s)=\underbrace{\frac{c(s)}{a(s)}}_{\text {natural response }}+\underbrace{\frac{b(s)}{a(s)} U(s)}_{\text {forced response }}
$$

- The transfer function $G(s)=\frac{b(s)}{a(s)}$ and the natural response have the same denominator:

$$
a(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}
$$

- A pole p of the transfer function $G(s)$ is a solution to the characteristic equation $a(s)=0$. If $u(t) \equiv 0$, then $y(t)=e^{p t}$ is a solution to the LTI ODE.

The poles p of a transfer function $G(s)$ correspond to the natural solutions $y(t)=e^{p t}$ of the LTI ODE called modes.

Transfer Function Zeros

- SISO LTI ODE response to an exponential input $u(t)=e^{s t}$:

$$
y(t)=\underbrace{\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)-(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right)}_{\text {transient response }}+\underbrace{\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right) e^{\text {st }}}_{\text {steady-state response }}
$$

- A zero z of the transfer function $G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}$ makes $G(z)=0$ and hence the steady-state response to $u(t)=e^{z t}$ is zero

The zeros z of a transfer function $G(s)$ block transmission of an exponential input $u(t)=e^{z t}$.

Example: Vibration Damper

Figure: Vibrations of the mass m_{1} can be damped by providing an auxiliary mass m_{2}, attached to m_{1} by a spring with stiffness k_{2}. The parameters m_{2} and k_{2} are chosen so that the frequency $\sqrt{k_{2} / m_{2}}$ matches the frequency of vibration.

Example: Vibration Damper

- Vibration damper dynamics:

$$
\begin{aligned}
m_{1} \ddot{q}_{1}+c_{1} \dot{q}_{1}+k_{1} q_{1}+k_{2}\left(q_{1}-q_{2}\right) & =f \\
m_{2} \ddot{q}_{2}+k_{2}\left(q_{2}-q_{1}\right) & =0
\end{aligned}
$$

- The Laplace transform with zero initial conditions is:

$$
\begin{aligned}
\left(m_{1} s^{2}+c_{1} s+k_{1}\right) Q_{1}(s)+k_{2}\left(Q_{1}(s)-Q_{2}(s)\right) & =F(s) \\
m_{2} s^{2} Q_{2}(s)+k_{2}\left(Q_{2}(s)-Q_{1}(s)\right) & =0
\end{aligned}
$$

- The transfer function from $F(s)$ to $Q_{1}(s)$ is obtained by eliminating $Q_{2}(s)$:

$$
G(s)=\frac{Q_{1}(s)}{F(s)}=\frac{m_{2} s^{2}+k_{2}}{m_{1} m_{2} s^{4}+m_{2} c_{1} s^{3}+\left(m_{1} k_{2}+m_{2}\left(k_{1}+k_{2}\right)\right) s^{2}+k_{2} c_{1} s+k_{1} k_{2}}
$$

- Blocking property: the transfer function has zeros at $s= \pm j \sqrt{k_{2} / m_{2}}$

Example: Vibration Damper

- Blocking property with parameters

$$
m_{1}=1, c_{1}=1, k_{1}=1, m_{2}=1, k_{2}=1
$$

- Case 1: external input : $u=\sin (\omega t), \quad$ with $\omega=1$

Example: Vibration Damper

- Other frequency responses
- Case 2: external input : $u=\sin (\omega t), \quad$ with $\omega=1.1$

(a) Input $u=\sin (1.1 t)$

(b) Position of mass 1
- Case 3: external input $: u=\sin (\omega t), \quad$ with $\omega=0.578$

