ECE171A: Linear Control System Theory Lecture 6: Block Diagram and Signal Flow Graph

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Block Diagram

- The Laplace transform converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain
- Transfer function: a description of the input-output relationship of a SISO LTI ODE system as a ratio of the output-to-input Laplace transforms with zero initial conditions:

$$
G(s)=\frac{Y(s)}{U(s)}
$$

- The transfer functions of system elements can be represented as blocks in a block diagram to obtain a powerful algebraic method to analyze complex LTI ODE systems

Figure: A block diagram for a feedback control system

Block Diagram

- Block: represents input-output relationship of a system component either in the time domain (LTI ODE) or in the complex domain (transfer function)

- Block diagram: interconnects blocks to represent a multi-element system

- Summing point: adds or subtracts two or more signals

Block Diagram Transformations

- A block diagram can be simplified using equivalent transformations
- Parallel connection: if two or more elements are connected in parallel, the total transfer function is the sum of the individual transfer functions:

- Series connection: if two or more elements are connected in series, the total transfer function is the product of the individual transfer functions:

$$
\xrightarrow{X(s)} F(s) \rightarrow G(s) \xrightarrow{Y(s)} \Rightarrow \quad \xrightarrow{ } \quad \underset{ }{ } \xrightarrow{Y(s) G(s)} \xrightarrow{Y(s)}
$$

Block Diagram Transformations

- Feedback connection: two or more elements are connected in a loop

- Forward path:

$$
Y(s)=G(s) E(s)
$$

- Feedback path:

$$
E(s)=R(s)-H(s) Y(s)
$$

- Equivalent transfer function:

$$
\begin{gathered}
Y(s)=G(s)[R(s)-H(s) Y(s)] \quad \Rightarrow \quad[1+G(s) H(s)] Y(s)=G(s) R(s) \\
\Rightarrow \quad Y(s)=\left[\frac{G(s)}{1+G(s) H(s)}\right] R(s)
\end{gathered}
$$

Table 2.5 Block Diagram Transformations
Transformation Original Diagram

1. Combining blocks in cascade

2. Moving a summing point behind a block

3. Moving a pickoff point ahead of a block

4. Moving a pickoff point behind a block

5. Moving a summing point ahead of a block

6. Eliminating a feedback loop

Example: Block Diagram Reduction

- Consider a multi-loop feedback control system:

- Apply equivalent transformations to eliminate the feedback loops and obtain the system transfer function $\frac{Y(s)}{R(s)}$

Example: Block Diagram Reduction

(a)

(b)

(c)
(d)

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Signal Flow Graph

- Signal Flow Graph: a graphical representation of a control system consisting of nodes connected by branches
- Node: a junction point representing a signal variable as the sum of all signals entering it
- Branch: a directed line connecting two nodes with an associated transfer function
- Path: continuous succession of branches traversed in the same direction
- Forward Path: starts at an input node, ends at an output node, and no node is traversed more than once
- Path Gain: the product of all branch gains along the path
- Loop: a closed path that starts and ends at the same node and no node is traversed more than once
- Non-touching Loops: loops that do not contain common nodes

Block Diagram vs Signal Flow Graph

(a) Block Diagram

(b) Signal Flow Graph

Mason's Gain Formula

- A method for reducing a signal flow graph to a single transfer function
- The transfer function $T^{i j}(s)$ from input $X_{i}(s)$ to any variable $X_{j}(s)$ is:

$$
T^{i j}(s)=\frac{X_{j}(s)}{X_{i}(s)}=\frac{\sum_{k} P_{k}^{i j}(s) \Delta_{k}^{i j}(s)}{\Delta(s)}
$$

where:

- $\Delta(s)$: graph determinant
- $P_{k^{i j}}^{i j}(s)$: gain of the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$
- $\Delta_{k}^{j}(s)$: graph determinant with the loops touching the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$ removed
- The transfer function $T^{n j}(s)$ from non-input $X_{n}(s)$ to variable $X_{j}(s)$ is:

$$
T^{n j}(s)=\frac{X_{j}(s)}{X_{n}(s)}=\frac{X_{j}(s) / X_{i}(s)}{X_{n}(s) / X_{i}(s)}=\frac{T^{i j}(s)}{T^{i n}(s)}=\frac{\sum_{k} P_{k}^{i j}(s) \Delta_{k}^{i j}(s)}{\sum_{k} P_{k}^{i n}(s) \Delta_{k}^{i n}(s)}
$$

Mason's Gain Formula

- $L_{n}(s)$: gain of the n-th loop
- $\Delta(s)$: graph determinant

$$
\begin{aligned}
& \Delta(s)=1-\sum \text { (individual loop gains) } \\
&+\sum \prod \text { (gains of all } 2 \text { non-touching loop combinations) } \\
&-\sum \prod \text { (gains of all } 3 \text { non-touching loop combinations) } \\
&+\cdots \\
&=1-\sum_{n} L_{n}(s)+\sum_{\substack{n, m \\
\text { nontouching }}} L_{n}(s) L_{m}(s)-\sum_{\substack{n, m, p \\
\text { nontouching }}} L_{n}(s) L_{m}(s) L_{p}(s)+\cdots \\
&
\end{aligned}
$$

- $\Delta_{k}^{i j}(s)$: graph determinant with the loops touching the k-th forward path between $X_{i}(s)$ and $X_{j}(s)$ removed

Mason's Gain Formula Example 1

(a)

(b)

- Determine the transfer function $\frac{Y(s)}{R(s)}$ using Mason's gain formula
- Forward paths from $R(s)$ to $Y(s)$:

$$
\begin{aligned}
& P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) \\
& P_{2}(s)=G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s)
\end{aligned}
$$

- Loop gains:

$$
\begin{array}{ll}
L_{1}(s)=G_{2}(s) H_{2}(s), & L_{2}(s)=H_{3}(s) G_{3}(s), \\
L_{3}(s)=G_{6}(s) H_{6}(s), & L_{4}(s)=G_{7}(s) H_{7}(s)
\end{array}
$$

Mason's Gain Formula Example 1

- Determinant:

$$
\begin{aligned}
\Delta(s)=1 & -\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)\right) \\
& +\left(L_{1}(s) L_{3}(s)+L_{1}(s) L_{4}(s)+L_{2}(s) L_{3}(s)+L_{2}(s) L_{4}(s)\right)
\end{aligned}
$$

- Cofactor of path 1 :

$$
\Delta_{1}(s)=1-\left(L_{3}(s)+L_{4}(s)\right)
$$

- Cofactor of path 2 :

$$
\Delta_{2}(s)=1-\left(L_{1}(s)+L_{2}(s)\right)
$$

- Transfer function:

$$
T(s)=\frac{P_{1}(s) \Delta_{1}(s)+P_{2}(s) \Delta_{2}(s)}{\Delta(s)}
$$

Mason's Gain Formula Example 1

(a)

(b)

- The transfer function can also be obtained using block diagram transformations:

$$
\begin{aligned}
T(s)= & G_{1}(s)\left(\frac{G_{2}(s)}{1-G_{2}(s) H_{2}(s)}\right)\left(\frac{G_{3}(s)}{1-G_{3}(s) H_{3}(s)}\right) G_{4}(s) \\
& +G_{5}(s)\left(\frac{G_{6}(s)}{1-G_{6}(s) H_{6}(s)}\right)\left(\frac{G_{7}(s)}{1-G_{7}(s) H_{7}(s)}\right) G_{8}(s) \\
= & G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) \frac{\Delta_{1}(s)}{\Delta(s)}+G_{5}(s) G_{6}(s) G_{7}(s) G_{8}(s) \frac{\Delta_{2}(s)}{\Delta(s)}
\end{aligned}
$$

Mason's Gain Formula Example 2

- Determine the transfer function $\frac{Y(s)}{R(s)}$ using Mason's gain formula
- Forward paths from $R(s)$ to $Y(s)$:

$$
\begin{aligned}
& P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) \\
& P_{2}(s)=G_{1}(s) G_{2}(s) G_{7}(s) G_{6}(s) \\
& P_{3}(s)=G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{8}(s)
\end{aligned}
$$

Mason's Gain Formula Example 2

- Loop gains:

$$
\begin{array}{ll}
L_{1}(s)=-G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) H_{2}(s), & L_{2}(s)=-G_{5}(s) G_{6}(s) H_{1}(s), \\
L_{3}(s)=-G_{8}(s) H_{1}(s), & L_{4}(s)=-G_{7}(s) H_{2}(s) G_{2}(s) \\
L_{5}(s)=-G_{4}(s) H_{4}(s), & L_{6}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{5}(s) G_{6}(s) H_{3}(s) \\
L_{7}(s)=-G_{1}(s) G_{2}(s) G_{7}(s) G_{6}(s) H_{3}(s), & L_{8}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) G_{4}(s) G_{8}(s) H_{3}(s)
\end{array}
$$

Mason's Gain Formula Example 2

- Cofactors: $\Delta_{1}(s)=\Delta_{3}(s)=1$ and $\Delta_{2}(s)=1-L_{5}(s)$
- Determinant: L_{5} does not touch L_{4} or L_{7} and L_{3} does not touch L_{4} :

$$
\begin{aligned}
\Delta(s)=1 & -\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)+L_{5}(s)+L_{6}(s)+L_{7}(s)+L_{8}(s)\right) \\
& +\left(L_{5}(s) L_{4}(s)+L_{5}(s) L_{7}(s)+L_{3}(s) L_{4}(s)\right)
\end{aligned}
$$

- Transfer function:

$$
T(s)=\frac{P_{1}(s)+P_{2}(s) \Delta_{2}(s)+P_{3}(s)}{\Delta(s)}
$$

Mason's Gain Formula Example 3

(a)

- Consider a ladder circuit with one energy storage element
- Determine the transfer function from $V_{1}(s)$ to $V_{3}(s)$
- The current and voltage equations are:

$$
\begin{array}{ll}
I_{1}(s)=\frac{1}{R}\left(V_{1}(s)-V_{2}(s)\right) & I_{2}(s)=\frac{1}{R}\left(V_{2}(s)-V_{3}(s)\right) \\
V_{2}(s)=R\left(I_{1}(s)-I_{2}(s)\right) & V_{3}(s)=\frac{1}{C s} I_{2}(s)
\end{array}
$$

Mason's Gain Formula Example 3

(b)

Copyright \$2017 Pearson Education, All Rights Reserved

(c)

Copyright e2017 Pearson Education, All Rights Reserved

- Admittance: $G=\frac{1}{R}$
- Impedence: $Z(s)=\frac{1}{C s}$

Mason's Gain Formula Example 3

(b)

- Forward path: $P_{1}(s)=G R G Z(s)=G Z(s)=\frac{1}{R C s}$
- Loops: $L_{1}(s)=-G R=-1, L_{2}(s)=-G R=-1, L_{3}(s)=-G Z(s)$
- Cofactor: all loops touch the forward path: $\Delta_{1}(s)=1$
- Determinant: loops $L_{1}(s)$ and $L_{3}(s)$ are non-touching:

$$
\Delta(s)=1-\left(L_{1}(s)+L_{2}(s)+L_{3}(s)\right)+L_{1}(s) L_{3}(s)=3+2 G Z(s)
$$

- Transfer function:

$$
T(s)=\frac{V_{3}(s)}{V_{1}(s)}=\frac{P_{1}(s)}{\Delta(s)}=\frac{G Z(s)}{3+2 G Z(s)}=\frac{1 /(3 R C)}{s+2 /(3 R C)}
$$

Mason's Gain Formula Example 3

(b)

- Determine the transfer function from $I_{1}(s)$ to $I_{2}(s)$
- Instead of re-drawing the signal flow graph, we can use:

$$
\frac{I_{2}(s)}{I_{1}(s)}=\frac{I_{2}(s) / V_{1}(s)}{I_{1}(s) / V_{1}(s)}=\frac{G}{G(2+G Z(s))}=\frac{1}{2+G Z(s)}=\frac{s}{2 s+1 /(R C)}
$$

- One forward path from $V_{1}(s)$ to $I_{2}(s)$ with gain $G R G=G$ and cofactor 1
- One forward path from $V_{1}(s)$ to $I_{1}(s)$ with gain G and cofactor

$$
1-\left(L_{2}(s)+L_{3}(s)\right)=2+G Z(s)
$$

Mason's Gain Formula Example 4

- Determine the transfer function from $R(s)$ to $C(s)$
- Forward paths:

$$
P_{1}(s)=G_{1}(s) G_{2}(s) G_{3}(s) \quad P_{2}(s)=G_{4}(s)
$$

- Loops:

$$
\begin{array}{ll}
L_{1}(s)=-G_{1}(s) G_{2}(s) H_{1}(s) & L_{2}(s)=-G_{2}(s) G_{3}(s) H_{2}(s) \\
L_{3}(s)=-G_{1}(s) G_{2}(s) G_{3}(s) H_{3}(s) & L_{4}(s)=-G_{4}(s) H_{3}(s) \\
L_{5}(s)=G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s) &
\end{array}
$$

Mason's Gain Formula Example 4

- Cofactors: both forward paths touch all loops: $\Delta_{1}(s)=\Delta_{2}(s)=1$
- Determinant: all loop pairs are touching:

$$
\Delta(s)=1-\left(L_{1}(s)+L_{2}(s)+L_{3}(s)+L_{4}(s)+L_{5}(s)\right)
$$

- Transfer function:

$$
T(s)=\frac{C(s)}{R(s)}=\frac{P_{1}(s)+P_{2}(s)}{\Delta(s)}=\frac{G_{1}(s) G_{2}(s) G_{3}(s)+G_{4}(s)}{\Delta(s)}
$$

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Parameter Sensitivity

- Feedback control is useful for reducing sensitivity to parameter variations in the plant $G(s)$

- Transfer function:

$$
T(s)=\frac{Y(s)}{R(s)}=\frac{G(s) F(s)}{1+G(s) F(s) H(s)}
$$

- Suppose that $G(s)$ undergoes a change $\Delta G(s)$ so that the true plant model is $G(s)+\Delta G(s)$
- What is the change $\Delta T(s)$ in the overall transfer function $T(s)$?

Parameter Sensitivity

- Since $T(s)$ and $G(s)$ might have different units, parameter sensitivity is defined as a percentage change in $T(s)$ over percentage change in $G(s)$
- Parameter sensitivity: ratio of the incremental change in the overall system transfer function to the incremental change in the transfer function of one component:

$$
S_{G}^{T}(s)=\frac{d T(s)}{d G(s)} \frac{G(s)}{T(s)} \approx \frac{\Delta T(s) / T(s)}{\Delta G(s) / G(s)}
$$

- Parameter sensitivity should be small to allow robustness to changes in $G(s)$
- Conversely, the transfer function of elements with high sensitivity should be estimated well because minor mismatch might have a significant effect on the overall system transfer function. These are the system elements we should really be careful about.

Return Difference

- Hendrik Bode was interested in measuring the effect of feedback on a specific element in a closed-loop control system
- Bode defined return difference as an impulse input $U(s)=1$ at a system element minus the loop transfer function $L(s)$ back to the element:

$$
\rho(s)=1-L(s)
$$

- Return difference computation:
- open the feedback loop immediately prior to the element of interest
- compute the transfer function $L(s)=\frac{A_{2}(s)}{A_{1}(s)}$ from the element input $\left(A_{1}(s)\right)$ back to the cut connection $\left(A_{2}(s)\right)$
- the return difference is $\rho(s)=1-L(s)$

Return Difference Example 1

- Return difference with respect to $G(s)$
- Cut the loop immediately prior to $G(s)$
- Compute the loop gain: $L(s)=\frac{A_{2}(s)}{A_{1}(s)}=-G(s) H(s) F(s)$
- Return difference: $\rho_{G}(s)=1-L(s)=1+G(s) H(s) F(s)$

Return Difference Example 2

- Return difference with respect to $G_{b}(s)$
- Cut the loop immediately prior to $G_{b}(s)$
- Compute the loop gain via Mason's formula:

$$
L(s)=\frac{G_{1}(s) \Delta_{1}(s)}{\Delta(s)}=\frac{-H(s) G_{a}(s) G_{b}(s)}{1-H(s) G_{a}(s) G_{c}(s)}
$$

- Return difference:

$$
\rho_{G_{b}}(s)=1-L(s)=1+\frac{H(s) G_{a}(s) G_{b}(s)}{1-H(s) G_{a}(s) G_{c}(s)}=\frac{1+H(s) G_{a}(s)\left(G_{b}(s)-G_{c}(s)\right)}{1-H(s) G_{a}(s) G_{c}(s)}
$$

Return Difference Example 3

- Return difference with respect to $G_{2}(s)$
- Cut the loop immediately prior to $G_{2}(s)$
- Compute the loop gain via Mason's formula:

$$
L(s)=\frac{-G_{2}(s) H_{1}(s) G_{1}(s)-G_{2}(s) G_{3}(s) H_{2}(s)-G_{2}(s) G_{3}(s) H_{3}(s) G_{1}(s)+G_{2}(s) H_{1}(s) G_{4}(s) H_{2}(s)}{1+G_{4}(s) H_{3}(s)}
$$

- Return difference: $\rho_{G_{2}}(s)=1-L(s)$

Parameter Sensitivity is Inverse Return Difference

- How is parameter sensitivity related to return difference?

For a control system with a single feedback loop, parameter sensitivity $S_{G}(s)$ is equal to the inverse of the return difference $\rho_{G}(s)$.

$$
\begin{aligned}
S_{G}(s) & =\frac{d T(s)}{d G(s)} \frac{G(s)}{T(s)}=\frac{d}{d G(s)}\left(\frac{G(s) F(s)}{1+G(s) F(s) H(s)}\right) \frac{G(s)}{T(s)} \\
& =\frac{F(s)}{(1+G(s) F(s) H(s))^{2}} \frac{G(s)}{T(s)}=\frac{1}{1+G(s) F(s) H(s)} \\
& =\frac{1}{1-L(s)}=\frac{1}{\rho_{G}(s)}
\end{aligned}
$$

Canonical Feedback Control Architecture

- Transfer function:
$T(s)=\frac{Y(s)}{R(s)}=T_{4}(s)+\frac{T_{1}(s) G(s) T_{3}(s)}{1-G(s) T_{2}(s)}$

- Sensitivity of $T(s)$ with respect to $G(s)$:

$$
\begin{aligned}
\frac{d T}{d G} & =T_{1} T_{3}\left(\frac{1}{1-G T_{2}}+\frac{G T_{2}}{\left(1-G T_{2}\right)^{2}}\right)=\frac{T_{1} T_{3}}{\left(1-G T_{2}\right)^{2}} \\
S_{G}^{T} & =\frac{G}{T} \frac{d T}{d G}=\frac{G\left(1-G T_{2}\right)}{T_{4}\left(1-G T_{2}\right)+T_{1} T_{3} G} \frac{T_{1} T_{3}}{\left(1-G T_{2}\right)^{2}} \\
& =\frac{G T_{1} T_{3}}{T_{4}\left(1-G T_{2}\right)^{2}+T_{1} T_{3} G\left(1-G T_{2}\right)}
\end{aligned}
$$

Canonical Feedback Control Architecture

- Transfer function:
$T(s)=\frac{Y(s)}{R(s)}=T_{4}(s)+\frac{T_{1}(s) G(s) T_{3}(s)}{1-G(s) T_{2}(s)}$

- Sensitivity of $T(s)$ with respect to $G(s)$:

$$
S_{G}^{T}(s)=\frac{G(s) T_{1}(s) T_{3}(s)}{T_{4}(s)\left(1-G(s) T_{2}(s)\right)^{2}+T_{1}(s) T_{3}(s) G(s)\left(1-G(s) T_{2}(s)\right)}
$$

- Note that $G(s)$ does not affect $T_{4}(s)$ in the transfer function. Consider only the portion that $G(s)$ affects:

$$
T^{\prime}(s)=\frac{T_{1}(s) G(s) T_{3}(s)}{1-G(s) T_{2}(s)}
$$

- Letting $T_{4}(s)=0$ in $S_{G}^{T}(s)$ shows that $S_{G}^{T^{\prime}}(s)$ is the inverse of the return difference:

$$
S_{G}^{T^{\prime}}(s)=\frac{1}{1-G(s) T_{2}(s)}=\frac{1}{\rho_{G}^{T^{\prime}}(s)}
$$

Example: Feedback OpAmp Sensitivity

- Feedback amplifier with input voltage $R(s)$, feedforward gain k, feedback gain β, and output voltage $Y(s)$

- Transfer function: $T(s)=\frac{Y(s)}{R(s)}=\frac{k}{1-k \beta}$
- Return difference: $\rho_{k}=1-k \beta$
- Sensitivity wrt $k: S_{k}^{T}=\frac{1}{1-k \beta}$
- Sensitivity wrt $\beta: S_{\beta}^{T}=\frac{\beta}{T} \frac{d T}{d \beta}=\frac{\beta(1-k \beta)}{k} \frac{k^{2}}{(1-\beta k)^{2}}=\frac{k \beta}{1-k \beta}$
- When $k \approx 10^{3}$ and $\beta \approx-0.1$, then $S_{k}^{T} \approx 0$ and $S_{\beta}^{T} \approx-1$.
- When designing an OpAmp, the forward gain k can be arbitrary but we need to be careful with the design of β because it affects the response almost one-to-one

