# ECE171A: Linear Control System Theory Lecture 9: Frequency Response 

Nikolay Atanasov<br>natanasov@ucsd.edu

UCSanDiego
JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

## Outline

# System Response to Test Input Signals 

Bode Plot

Non-minimum Phase Systems

Polar Plot

Magnitude-Phase Plot

## Outline

System Response to Test Input Signals

## Bode Plot

Non-minimum Phase Systems

Polar Plot

Magnitude-Phase Plot

## Test Input Signals

- The transient and steady-state response of a system are often studied for specific test input signals



## Impulse Response

- LTI ODE System:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

$$
G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- Impulse response: response to an impulse input $u(t)=\delta(t)$ :

$$
\begin{aligned}
y(t) & =\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B} \delta(\tau) d \tau+\mathbf{D} \delta(t) \\
& =\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)+\mathbf{C} e^{\mathbf{A} t} \mathbf{B}+\mathbf{D} \delta(t)
\end{aligned}
$$

- The impulse response with zero initial conditions reveals the transfer function:

$$
Y(s)=G(s) U(s)^{\mathbf{r}^{1}} \Rightarrow \quad y(t)=\mathcal{L}^{-1}\{G(s)\}=g(t)=\mathbf{C} e^{\mathbf{A} t} \mathbf{B}+\mathbf{D} \delta(t)
$$

- By superposition, the forced response to any input $u(t)$ is the convolution of the input with the impulse response:

$$
y(t)=\underbrace{\mathbf{C} e^{\mathbf{A} t} \mathbf{x}(0)}_{\text {natural response }}+\underbrace{\int_{0}^{t} g(t-\tau) u(\tau) d \tau}_{\text {forced response }}
$$

## Exponential Response

- LTI ODE System:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

$$
G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- Exponential response: response to exponential input $u(t)=e^{s t}$ for $t \geq 0$ such that $s \in \mathbb{C}$ is not an eigenvalue of $\mathbf{A}$ :

$$
y(t)=\underbrace{\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)-(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}\right)}_{\text {transient response }}+\underbrace{\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right) e^{s t}}_{\text {steady-state response }}
$$

- The transfer function $G(s)$ is a complex number:

$$
G(s)=|G(s)| e^{j \angle G(s)}
$$

- Steady-state exponential response:

$$
y_{s s}(t)=|G(s)| e^{j \angle G(s)} e^{s t}=|G(s)| e^{s t+j \angle G(s)}
$$

## Step Response

- LTI ODE system:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

$$
G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- Step response: response to a step input $u(t)=1$ for $t \geq 0$, which is a special case of $u(t)=e^{s t}$ with $s=0$ :

$$
y(t)=\underbrace{\mathbf{C} e^{\mathbf{A} t}\left(\mathbf{x}(0)+\mathbf{A}^{-1} \mathbf{B}\right)}_{\text {transient response }}+\underbrace{G(0)}_{\text {steady-state response }}
$$

## Step Response Performance Measures



- Rise time: from $10 \%$ to $90 \%$ of steady-state value: $t_{r} \approx \frac{2.16 \zeta+0.6}{\omega_{n}}$
- Peak time: time at which the response is maximum: $t_{p}=\frac{\omega_{n} \pi}{\omega_{n} \sqrt{1-\zeta^{2}}}$
- Overshoot: overshoot as percent of steady-state: p.o. $=100 \exp \left(-\frac{\zeta \pi}{\sqrt{1-\zeta^{2}}}\right) \%$
- Settling time: response settles within $2 \%$ of steady-state: $t_{s} \approx \frac{4}{\zeta \omega_{n}}$
- Steady-state error: $e_{s s}=1-\lim _{t \rightarrow \infty} y(t)=1-G(0)$


## Frequency Response

- LTI ODE System:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

$$
G(s)=\mathbf{C}(s \mathbf{l}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

- Frequency response: response to a sinusoidal input $u(t)=\sin (\omega t+\phi)$


## Frequency Response

The steady-state response of a system with transfer function $G(s)$ to a sinusoidal input $u(t)=\sin (\omega t+\phi)$ is a sinusoid of the same frequency with amplitude scaled by $|G(j \omega)|$ and phase shifted by $\angle G(j \omega)$ :

$$
y_{s s}(t)=|G(j \omega)| \sin (\omega t+\phi+\angle G(j \omega))
$$

- The magnitude $|G(j \omega)|$ is determined from the ratio of the amplitudes of the output versus the input sinusoids
- The phase $\angle G(j \omega)$ is determined from the ratio of the time of the output versus the input zero crossings


## Frequency Response Proof

- Euler's Formula: $\sin (\omega t+\phi)=\operatorname{Im}\left(e^{j(\omega t+\phi)}\right)=\frac{e^{j(\omega t+\phi)}-e^{-j(\omega t+\phi)}}{2 j}$
- Complex conjugate of $G(s): G^{*}(s)=|G(s)| e^{-j \angle G(s)}$
- Conjugate symmetry of $G(s)$ :

$$
\begin{aligned}
G^{*}(s) & =\left(\int_{0}^{\infty} g(t) e^{-s t} d t\right)^{*}=\int_{0}^{\infty} g^{*}(t) e^{-s^{*} t} d t \\
& \xlongequal{g(t) \text { is real }} \int_{0}^{\infty} g(t) e^{-s^{*} t} d t=G\left(s^{*}\right)
\end{aligned}
$$

- Proof: by superposition the steady-state response to $u(t)=\sin (\omega t+\phi)$ is:

$$
\begin{aligned}
y_{s s}(t) & =\frac{1}{2 j} G(j \omega) e^{j(\omega t+\phi)}-\frac{1}{2 j} G(-j \omega) e^{-j(\omega t+\phi)} \\
& =\frac{1}{2 j}|G(j \omega)| e^{j \angle G(j \omega)} e^{j(\omega t+\phi)}-\frac{1}{2 j}|G(j \omega)| e^{-j \angle G(j \omega)} e^{-j(\omega t+\phi)} \\
& =|G(j \omega)| \sin (\omega t+\phi+\angle G(j \omega))
\end{aligned}
$$

## Empirical Transfer Function Determination

- The frequency response can be obtained empirically by applying a sinusoidal test signal at various frequencies and recording the magnitude and phase of the response. This can be used to identify the system's transfer function.

1. Apply a sinusoidal signal at a fixed frequency $\omega$
2. Measure response amplitude ratio and phase lag at steady state
3. Repeat as $\omega$ varies from 0 to $\infty$

(a) Time domain simulations

(b) Frequency response

Figure: Gain computed by measuring system response to individual sinusoid inputs

## Frequency Domain Plots

- Plotting the magnitude and phase of the transfer function $G(j \omega)$ versus the input frequency $\omega$ provides insight about the behavior of a linear control system
- The following frequency-domain plots of the transfer function are used:
- Bode plot: plot of magnitude $20 \log _{10}|G(j \omega)|$ in decibels $(d B)$ and phase $\angle G(j \omega)$ in degrees versus $\log _{10} \omega$ as $\omega$ varies from 0 to $\infty$
- Polar plot: plot of $\operatorname{Im}(G(j \omega))$ versus $\operatorname{Re}(G(j \omega))$ as $\omega$ varies from 0 to $\infty$
- Magnitude-phase plot: plot of magnitude $20 \log _{10}|G(j \omega)|$ in decibels (dB) versus phase $\angle G(j \omega)$ in degrees as $\omega$ varies from 0 to $\infty$


## Decibel Units

- Bel: relative measurement unit of log-ratio of measured power $P$ to reference power $P_{0}$

$$
\text { Log-power ratio }=\log _{10}\left(\frac{P}{P_{0}}\right) \text { Bels }
$$

- Decibel: ten Bels:

$$
\text { Log-power ratio }=10 \log _{10}\left(\frac{P}{P_{0}}\right) \mathrm{dB}
$$

- The power spectral density of $y(t)$ is the Fourier transform $S_{y y}(j \omega)$ of the autocorrelation function
- The input-output power spectral density relationship for an LTI system with input $U(s)$, transfer function $G(s)$, and output $Y(s)$ is:

$$
S_{y y}(j \omega)=|Y(j \omega)|^{2}=|G(j \omega)|^{2}|U(j \omega)|^{2}=|G(j \omega)|^{2} S_{u u}(j \omega)
$$

- The log-power ratio at $\omega$ in dB is:

$$
10 \log _{10}\left(\frac{S_{y y}(j \omega)}{S_{u u}(j \omega)}\right)=10 \log _{10}|G(j \omega)|^{2}=20 \log _{10}|G(j \omega)|
$$

## Outline

## System Response to Test Input Signals

Bode Plot

Non-minimum Phase Systems

Polar Plot

Magnitude-Phase Plot

## Bode Plot

- Hendrik Bode: a pioneer of modern control theory and electronic telecommunications
- Bode plot: represents the frequency response of a linear system with transfer function $G(s)$ by two plots:
- Plot of magnitude $20 \log _{10}|G(j \omega)|$ in dB versus $\log _{10} \omega$
- Plot of phase $\angle G(j \omega)$ in degrees versus $\log _{10} \omega$

H. Bode
- Logarithmic scale is used for the input frequency $\omega$ to capture the system behavior over a wide frequency range
- The log-scale intervals are known as decades (base 10) or octaves (base 2):
- The number of decades between $\omega_{1}$ and $\omega_{2}$ is $\log _{10} \frac{\omega_{2}}{\omega_{1}}$
- The number of octaves between $\omega_{1}$ and $\omega_{2}$ is $\log _{2} \frac{\omega_{2}}{\omega_{1}}$
- There are $\log _{2}(10) \approx 3.32$ octaves in one decade
- A slope of $20 \mathrm{~dB} /$ decade is the same as $\frac{20 \mathrm{~dB} / \text { decade }}{\log _{2}(10) \text { octave/decade }} \approx 6 \mathrm{~dB} /$ octave


## Transfer Function Magnitude and Phase

- The magnitude and phase of $G(s)$ are needed to draw a Bode plot
- Consider a transfer function $G(s)=\frac{b_{1}(s) b_{2}(s)}{a_{1}(s) a_{2}(s)}$
- Magnitude of $G(s)$ in log-scale is the sum/difference of magnitudes corresponding to terms in the numerator/denominator:

$$
\log |G(s)|=\log \left|b_{1}(s)\right|+\log \left|b_{2}(s)\right|-\log \left|a_{1}(s)\right|-\log \left|a_{2}(s)\right|
$$

- Phase of $G(s)$ is the sum/difference of phases corresponding to terms in the numerator/denominator:

$$
\angle G(s)=\angle b_{1}(s)+\angle b_{2}(s)-\angle a_{1}(s)-\angle a_{2}(s) .
$$

## Transfer Function in Bode Form

- Instead of computing the magnitude and phase of $G(s)$ directly, it is preferable to obtain rules for drawing Bode plots of individual terms
- Transfer function in Bode form: a transfer function with $m_{1}$ real zeros, $m_{2}$ complex conjugate zero pairs, $n_{0}$ poles at the origin, $n_{1}$ real poles, and $n_{2}$ complex conjugate pole pairs:

$$
G(s)=\kappa \frac{\prod_{i=1}^{m_{1}}\left(\frac{s}{z_{i}}+1\right) \prod_{l=1}^{m_{2}}\left(\left(\frac{s}{\omega_{n_{l}}}\right)^{2}+2 \zeta_{l}\left(\frac{s}{\omega_{n_{l}}}\right)+1\right)}{s^{n_{0}} \prod_{i=1}^{n_{1}}\left(\frac{s}{p_{i}}+1\right) \prod_{k=1}^{n_{2}}\left(\left(\frac{s}{\omega_{n_{k}}}\right)^{2}+2 \zeta_{k}\left(\frac{s}{\omega_{n_{k}}}\right)+1\right)}
$$

- A transfer function may contain only four kinds of factors:
- Constant term: $\kappa$
- Poles $s^{-q}$ or zeros $s^{q}$ at the origin
- Real poles $\left(\frac{s}{p}+1\right)^{-1}$ or zeros $\left(\frac{s}{z}+1\right)$
- Complex conjugate poles or zeros: $\left(\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1\right)^{ \pm 1}$
- If we determine the magnitude and phase plots for these four factors, we can add them together graphically to obtain a Bode plot for any transfer function


## Bode Plot for a Constant Term $\kappa$

- Magnitude: $20 \log |\kappa|$
- Phase: $\measuredangle \kappa= \begin{cases}0^{\circ} & \text { if } \kappa>0 \\ 180^{\circ} & \text { if } \kappa<0\end{cases}$
- Example: Bode plot for $G(s)=\frac{1}{10}$ and $G(s)=-10$




## Bode Plot for Pole or Zero at the Origin: $s^{q}$

- Magnitude: straight line (log scale) through the origin with slope 20q:

$$
20 \log \left|(j \omega)^{q}\right|=20 q \log |\omega|
$$

- Phase: a horizontal line at $q 90^{\circ}$ :

$$
\angle(j \omega)^{q}=q \angle(j \omega)=q 90^{\circ}
$$




## Bode Plot for Real Zero $\left(\frac{s}{z}+1\right)$

- Magnitude: $20 \log \left|j \frac{\omega}{z}+1\right|=20 \log \sqrt{1+\left(\frac{\omega}{z}\right)^{2}}$
- Phase: $\angle\left(j \frac{\omega}{z}+1\right)=\tan ^{-1} \frac{\omega}{z}$
- Extreme $\omega$ values:
- Case 1: $\omega \ll z$ : horizontal line at 0 :

$$
20 \log \left|j \frac{\omega}{z}+1\right| \approx 0 \quad \angle\left(j \frac{\omega}{z}+1\right) \approx 0^{\circ}
$$

- Case 2: $\omega \gg z$ : log-scale line of slope 20 going through 0 when $\omega=z$ :

$$
20 \log \left|j \frac{\omega}{z}+1\right| \approx 20 \log \frac{1}{z}+20 \log \omega \quad \quad\left\langle\left(j \frac{\omega}{z}+1\right) \approx 90^{\circ}\right.
$$

- Case 3: $\omega=z$ (corner frequency):

$$
20 \log \left|j \frac{\omega}{z}+1\right| \approx 3 d B \quad \angle\left(j \frac{\omega}{z}+1\right)=45^{\circ}
$$

## Bode Plot for Real Pole $\left(\frac{s}{p}+1\right)^{-1}$

- Magnitude: $20 \log \left|\left(j \frac{\omega}{p}+1\right)^{-1}\right|=-20 \log \sqrt{1+\left(\frac{\omega}{p}\right)^{2}}$
- Phase: $\angle\left(j \frac{\omega}{p}+1\right)^{-1}=-\tan ^{-1} \frac{\omega}{p}$
- Extreme $\omega$ values:
- Case 1: $\omega \ll p$ : horizontal line at 0 :

$$
-20 \log \left|j \frac{\omega}{p}+1\right| \approx 0 \quad /\left(j \frac{\omega}{p}+1\right)^{-1} \approx 0^{\circ}
$$

- Case 2: $\omega \gg p$ : log-scale line of slope -20 going through 0 when $\omega=p$ :

$$
-20 \log \left|j \frac{\omega}{p}+1\right| \approx-20 \log \frac{1}{p}-20 \log \omega \quad /\left(j \frac{\omega}{p}+1\right)^{-1} \approx-90^{\circ}
$$

- Case 3: $\omega=p$ (corner frequency):

$$
-20 \log \left|j \frac{\omega}{p}+1\right| \approx-3 d B \quad \quad /\left(j \frac{\omega}{p}+1\right)^{-1} \approx-45^{\circ}
$$

Bode Plot for Real Pole $\left(\frac{s}{p}+1\right)^{-1}$

- A real pole behaves like a constant at low frequencies and like an integrator at high frequencies




## Bode Plot Example 1

- Draw a Bode plot for $G(s)=10 \frac{s+10}{(s+1)(s+100)}=\frac{(s / 10+1)}{(s+1)(s / 100+1)}$

Step 1 : Find frequency break points (poles and zeros): 1, 10, 100
Step 2 : Calculate $|G(0)|$ and $\angle G(0)$ to determine the starting points
Step 3: Sketch the Bode plot by the rules:

- Magnitude increases with a zero: the slope is +20 $\mathrm{dB} /$ decade for a real zero
- Magnitude decreases with a pole: the slope is -20 $\mathrm{dB} /$ decade for a real pole
- Phases increases with a zero: by $+90^{\circ}$ starting from $z / 10$ and ending at $10 z$
- Phases decreases with a pole: by $-90^{\circ}$ starting from $p / 10$ and ending at $10 p$


## Bode Plot Example 1

- Draw a Bode plot for $G(s)=10 \frac{s+10}{(s+1)(s+100)}=\frac{(s / 10+1)}{(s+1)(s / 100+1)}$



## Bode Plot for Complex Conjugate Zeros

- Consider $G(s)=\left(\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1\right)$
- Magnitude:

$$
|G(j \omega)|=\left|-\frac{\omega^{2}}{\omega_{n}^{2}}+2 \zeta \frac{\omega}{\omega_{n}} j+1\right|=\sqrt{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}}
$$

- Phase:

$$
\angle G(j \omega)=\angle-\frac{\omega^{2}}{\omega_{n}^{2}}+2 \zeta \frac{\omega}{\omega_{n}} j+1=\tan ^{-1}\left(\frac{2 \zeta\left(\frac{\omega}{\omega_{n}}\right)}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right)
$$

## Bode Plot for Complex Conjugate Zeros

$$
|G(j \omega)|=\sqrt{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}} \quad \angle G(j \omega)=\tan ^{-1}\left(\frac{2 \zeta\left(\frac{\omega}{\omega_{n}}\right)}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right)
$$

- Extreme $\omega$ values:
- Case 1: $\omega \ll \omega_{n}$ : horizontal line at 0 :

$$
20 \log |G(j \omega)| \approx 0
$$

$$
\angle G(j \omega) \approx 0^{\circ}
$$

- Case 2: $\omega \gg \omega_{n}$ : log-scale line of slope 40 going through 0 when $\omega=\omega_{n}$ :

$$
20 \log |G(j \omega)| \approx 20 \log \sqrt{\left(\frac{\omega}{\omega_{n}}\right)^{4}}=40 \log \omega-40 \log \omega_{n} \quad \angle G(j \omega) \approx 180^{\circ}
$$

- Case 3: $\omega=\omega_{n}$ :

$$
20 \log |G(j \omega)|=20 \log (2 \zeta)
$$

$$
\angle G(j \omega)=90^{\circ}
$$

## Bode Plot for Complex Conjugate Poles

- Consider $G(s)=\left(\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1\right)^{-1}$

$$
|G(j \omega)|=\frac{1}{\sqrt{\left(1-\left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2}+4 \zeta^{2}\left(\frac{\omega}{\omega_{n}}\right)^{2}}} \quad \angle G(j \omega)=-\tan ^{-1}\left(\frac{2 \zeta\left(\frac{\omega}{\omega_{n}}\right)}{1-\left(\frac{\omega}{\omega_{n}}\right)^{2}}\right)
$$

- Extreme $\omega$ values:
- Case 1: $\omega \ll \omega_{n}$ : horizontal line at 0 :

$$
20 \log |G(j \omega)| \approx 0
$$

$$
\angle G(j \omega) \approx 0^{\circ}
$$

- Case 2: $\omega \gg \omega_{n}$ : log-scale line of slope -40 going through 0 when $\omega=\omega_{n}$

$$
20 \log |G(j \omega)| \approx-20 \log \sqrt{\left(\frac{\omega}{\omega_{n}}\right)^{4}}=-40 \log \omega+40 \log \omega_{n} \quad \angle G(j \omega) \approx-180^{\circ}
$$

- Case 3: $\omega=\omega_{n}$ :

$$
20 \log |G(j \omega)|=-20 \log (2 \zeta)
$$

$$
\angle G(j \omega)=-90^{\circ}
$$

## Bode Plot for Complex Conjugate Poles




- $G(s)=\frac{1}{\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1}$
- Resonant frequency: the largest gain $\max _{\omega}|G(j \omega)| \approx \frac{1}{2 \zeta}$ occurs at $\omega \approx \omega_{n}$
- The asymptotic approximation is poor near $\omega=\omega_{n}$ and the magnitude and phase depend on $\zeta$


## Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term

1. Gain,
$G(j \omega)=K$
Magnitude $20 \log _{10}|G(j \omega)|$
Phase $\phi(\omega)$


2. Zero,
$G(j \omega)=$
$1+j \omega / \omega_{1}$


## Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function


## Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function


## LTI Systems as Filters

- A Bode plot allows viewing a stable linear system as a filter that changes input signals depending on the frequency range
- Low-pass filter:

$$
G(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

- Band-pass filter:

$$
G(s)=\frac{2 \zeta \omega_{0} s}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

- High-pass filter:

$$
G(s)=\frac{s^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

## LTI Systems as Filters



Frequency $\omega[\mathrm{rad} / \mathrm{s}]$

$$
G(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

(a) Low-pass filter


Frequency $\omega$ [rad/s]

$$
G(s)=\frac{2 \zeta \omega_{0} s}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

(b) Band-pass filter



Frequency $\omega$ [rad/s]

$$
G(s)=\frac{s^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}}
$$

(c) High-pass filter

Figure: Bode plots for low-pass, band-pass, and high-pass filters. Each system passes frequencies in a specific range and attenuates the frequencies outside of that range.

## Bode Plot Example 2

- Draw a Bode plot for $G(s)=\frac{k(s+b)}{(s+a)\left(s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}\right)}$ with $a \ll b \ll \omega_{0}$
- Magnitude plot:
- Begin with $G(0)=\frac{k b}{a \omega_{0}^{2}}$
- At $\omega=a$, the effect of the real pole begins and the gain decreases with slope $-20 \mathrm{~dB} /$ decade
- At $\omega=b$, the real zero increases the slope by 20 dB /decade, leaving a net slope of $0 \mathrm{~dB} /$ decade
- This slope is used until the second-order pole affects it at $\omega=\omega_{0}$ by -40 dB/decade
- Phase plot:
- The approximation process is similar but effect of the poles and zeros on the phase begin one decade earlier and terminate one decade later.


## Bode Plot Example 2



Figure 9.15: Asymptotic approximation to a Bode plot. The solid curve is the Bode plot for the transfer function $G(s)=k(s+b) /(s+a)\left(s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}\right)$, where $a \ll b \ll \omega_{0}$. Each segment in the gain and phase curves represents a separate portion of the approximation, where either a pole or a zero begins to have effect. Each segment of the approximation is a straight line between these points at a slope given by the rules for computing the effects of poles and zeros.

## Bode Plot Example 3

- Draw a Bode plot for $G(s)=\frac{4(1+0.1 s)}{s(1+0.5 s)\left(1+0.6(s / 50)+(s / 50)^{2}\right)}$
- Factors in order of their occurrence as $s=j \omega$ increases:

1. A constant gain $\kappa=4$
2. A pole at the origin
3. A pole at $\omega=2$
4. A zero at $\omega=10$
5. A pair of complex poles at $\omega=\omega_{n}=50$

## Bode Plot Example 3

- Consider the approximate magnitude plots:

1. Constant gain: $20 \log |\kappa|=14 \mathrm{~dB}$
2. Pole at the origin: a line with slope $-20 \mathrm{~dB} /$ decade through 0 when $\omega=1$
3. Pole at $\omega=2$ : horizontal line at 0 dB until the corner frequency at $\omega=2$ and a line with slope $-20 \mathrm{~dB} /$ decade after
4. Zero at $\omega=10$ : horizontal line at 0 dB until the corner frequency at $\omega=10$ and a line with slope $20 \mathrm{~dB} /$ decade after
5. Complex pole pair at $\omega=\omega_{n}=50$ : horizontal line at 0 dB until the corner frequency at $\omega=50$ and a line with slope $-40 \mathrm{~dB} /$ decade after

- The approximations must be corrected at the corner frequencies:
- Real zero/pole: $\pm 3 d B$
- Complex pair of zeros/poles: based on $\zeta$


## Bode Plot Example 3



- Complex pole pair correction:



## Bode Plot Example 3



## Bode Plot Example 3

- Consider the approximate phase plots:

1. Constant gain: $\measuredangle \kappa=0^{\circ}$
2. Pole at the origin: $-90^{\circ}$
3. Pole at $\omega=2$ : a line with slope $-45 \mathrm{deg} /$ decade from $\omega=0.2$ to $\omega=20$
4. Zero at $\omega=10$ : a line with slope $45 \mathrm{deg} /$ decade from $\omega=1$ to $\omega=100$
5. Complex pole pair at $\omega=\omega_{n}=50$ : phase shift of $-90 \mathrm{deg} /$ decade from $\omega=5$ to $\omega=500$

- The phase characteristic for the complex pole pair should be obtained from:



## Bode Plot Example 3



- The exact phase shift can be evaluated at important frequencies:

$$
\angle G(j \omega)=\not \kappa+\sum_{i=1}^{m_{1}} \tan ^{-1}\left(\frac{\omega}{z_{i}}\right)+\sum_{l=1}^{m_{2}} \tan ^{-1}\left(\frac{2 \zeta_{l} \omega_{n_{l}} \omega}{\omega_{n_{l}}^{2}-\omega^{2}}\right)-n_{0} \frac{\pi}{2}-\sum_{i=1}^{n_{1}} \tan ^{-1}\left(\frac{\omega}{p_{i}}\right)-\sum_{k=1}^{n_{2}} \tan ^{-1}\left(\frac{2 \zeta_{k} \omega_{n_{k}} \omega}{\omega_{n_{k}}^{2}-\omega^{2}}\right)
$$

## Bode Plot Example 4

- Draw a Bode plot for

$$
G(s)=\frac{(s+1)\left(s^{2}+3 s+100\right)}{s^{2}(s+10)(s+100)}=\frac{(s+1)\left((s / 10)^{2}+2(0.15)(s / 10)+1\right)}{10 s^{2}(s / 10+1)(s / 100+1)}
$$

- Magnitude and phase at $\omega=0.1$ :

$$
20 \log |G(j \omega)| \approx 20 d B \quad \angle G(j \omega) \approx-180^{\circ}
$$

- Magnitude slope in dB/decade:

| $\omega$ | Zero at -1 | Zeros with $\omega_{n}=10$ | Double pole at 0 | Pole at -10 | Pole at -100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0.1-1$ | 0 | 0 | -40 | 0 | 0 |
| $1-10$ | 20 | 0 | -40 | 0 | 0 |
| $10-100$ | 20 | 40 | -40 | -20 | 0 |
| $100-1000$ | 20 | 40 | -40 | -20 | -20 |

- Phase slope in degrees/decade:

| $\omega$ | Zero at -1 | Zeros with $\omega_{n}=10$ | Double pole at 0 | Pole at -10 | Pole at -100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0.1-1$ | 45 | 0 | 0 | 0 | 0 |
| $1-10$ | 45 | 90 | 0 | -45 | 0 |
| $10-100$ | 0 | 90 | 0 | -45 | -45 |
| $100-1000$ | 0 | 0 | 0 | 0 | -45 |

## Bode Plot Example 4

- Draw a Bode plot for

$$
G(s)=\frac{(s+1)\left(s^{2}+3 s+100\right)}{s^{2}(s+10)(s+100)}=\frac{(s+1)\left((s / 10)^{2}+2(0.15)(s / 10)+1\right)}{10 s^{2}(s / 10+1)(s / 100+1)}
$$



## Bode Plot in Matlab

- Bode plot for $G(s)=\frac{4(s / 2+1)}{s(2 s+1)\left(1+0.4(s / 8)+(s / 8)^{2}\right)}$

```
\(\mathrm{s}=\mathrm{tf}\left(\mathrm{\prime} \mathrm{~s}^{\prime}\right)\);
\(\mathrm{G}=4 *(\mathrm{~s} / 2+1) / \mathrm{s} /(1+2 * \mathrm{~s}) /\left(1+0.4 *(\mathrm{~s} / 8)+(\mathrm{s} / 8)^{\wedge} 2\right) ;\)
bodeplot(G);
```



## Outline

## System Response to Test Input Signals

## Bode Plot

Non-minimum Phase Systems
Polar Plot

Magnitude-Phase Plot

## Non-minimum Phase Systems

- Minimum phase system: a system whose transfer function poles and zeros are in the closed left half-plane
- Non-minimum phase system: a system whose transfer function has zeros or poles in the right half-plane
- Bode plots can also be drawn for non-minimum phase systems
- The magnitude of a transfer function does not depend on whether the zeros and poles are in the left or right half-plane
- The phase contribution of a zero or pole in the right half-plane is always at least as large as the phase contribution of a zero or pole in the left half-plane


## Non-minimum Phase Systems

- To understand the difference between minimum and non-minimum phase systems compare the transfer functions:

$$
G_{1}(s)=\frac{s+z}{s+p} \quad G_{2}(s)=\frac{s-z}{s+p}
$$

- Magnitude: $\left|G_{1}(j \omega)\right|=\left|G_{2}(j \omega)\right|=\frac{\sqrt{\omega^{2}+z^{2}}}{\sqrt{\omega^{2}+p^{2}}}$
- Phase: $\angle G_{1}\left(j \omega_{1}\right)$ vs $\angle G_{2}\left(j \omega_{1}\right)$

(a)

(b)


## Non-minimum Phase Systems

- A minimum phase system has the smallest phase lag of all systems with the same magnitude curve



## Non-minimum Phase Systems: Example 1

- Draw a Bode plot for $G_{1}(s)=10 \frac{s+1}{s+10}$ and $G_{2}(s)=10 \frac{s-1}{s+10}$



## Non-minimum Phase Systems: Example 2

$$
G(s)=\frac{s+1}{(s+0.1)(s+10)} \quad G_{\mathrm{rhpp}}(s)=\frac{s+1}{(s-0.1)(s+10)} \quad G_{\mathrm{rhpz}}(s)=\frac{-s+1}{(s+0.1)(s+10)}
$$




(a) Right half-plane pole

(b) Right half-plane zero

## Non-minimum Phase Systems: Example 3



Figure: Bode plots of non-minimum phase systems: (a) Time delay $G(s)=e^{-s T}$, system with right half-plane zero $G(s)=(a-s) /(a+s)$, (c) system with right half-plane pole $G(s)=(s+a) /(s-a)$. The corresponding minimum phase system has transfer function $G(s)=1$ in all cases.

## Non-minimum Phase System Control

- The presence of poles and zeros in the right half-plane imposes limitations on the achievable control performance
- The extra phase causes difficulty fot control because there is a delay between applying an input and seeing its effect
- Zeros depend on the relationship of inputs and outputs of a system. They can be changed by moving or adding sensors and actuators
- Poles are intrinsic to a system and do not depend on sensors or actuators


## Outline

```
System Response to Test Input Signals
Bode Plot
Non-minimum Phase Systems
```

Polar Plot

Magnitude-Phase Plot

## Polar Plot

- Polar plot: a plot of $\operatorname{Im}(G(j \omega))$ versus $\operatorname{Re}(G(j \omega))$ of a transfer function $G(j \omega)$ as $\omega$ varies from 0 to $\infty$
- A polar plot contains less information than a Bode plot because the frequency values $\omega$ are not captured
- The general shape of the polar plot can be determined from:
- Magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$ at $\omega=0$ and $\omega=\infty$
- Intersection of the polar plot with the real and imaginary axes


## Polar Plot: Type 0 System

- Draw a polar plot for $G(s)=\frac{1}{1+T_{s}}$
- Magnitude: $|G(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} T^{2}}}$
- Phase: $\angle G(j \omega)=-\tan ^{-1}(\omega T)$
- Polar plot: $|G(j 0)|=1, \angle G(j 0)=0 ;|G(j \infty)|=0, \angle G(j \infty)=-90^{\circ}$



## Polar Plot: Type 0 System

- Draw a polar plot for $G(s)=\frac{1+T_{2} s}{1+T_{1} s}$
- Magnitude: $|G(j \omega)|=\frac{\sqrt{1+\omega^{2} T_{2}^{2}}}{\sqrt{1+\omega^{2} T_{1}^{2}}}$
- Phase: $\angle G(j \omega)=\tan ^{-1}\left(\omega T_{2}\right)-\tan ^{-1}\left(\omega T_{1}\right)$
- The polar plot depends on the relative magnitudes of $T_{1}$ and $T_{2}$
- If $T_{2}>T_{1}$ :

$$
|G(j \omega)| \geq 1 \quad \angle G(j \omega) \geq 0
$$

- If $T_{1}>T_{2}$ :

$$
|G(j \omega)| \leq 1 \quad \angle G(j \omega) \leq 0
$$



## Polar Plot: Type 0 System

- Draw a polar plot for $G(s)=\frac{\kappa}{\left(1+T_{1} s\right)\left(1+T_{2} s\right)}$
- Magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$ at $\omega=0$ and $\omega=\infty$ :

$$
G(j 0)=\kappa \angle 0^{\circ} \quad G(j \infty)=0 \angle-180^{\circ}
$$

Polar plot of $G(s)=2 /((s+2)(s+4))$
90
$120 \quad 60$
0.2


## Polar Plot: Type 1 System

- Draw a polar plot for $G(s)=\frac{\kappa}{s(1+\tau s)}$
- Magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$ :

$$
\begin{aligned}
|G(j \omega)| & =\frac{\kappa}{\sqrt{\omega^{2}+\omega^{4} \tau^{2}}} \\
\angle G(j \omega) & =-\frac{\pi}{2}-\tan ^{-1}(\omega \tau)
\end{aligned}
$$

- Values at $\omega=0, \omega=1 / \tau, \omega=\infty$ :

$$
\begin{aligned}
G(j 0) & =\infty \angle-90^{\circ} \\
G\left(j \frac{1}{\tau}\right) & =\frac{\kappa \tau}{\sqrt{2}} \angle-135^{\circ} \\
G(j \infty) & =0 \angle-180^{\circ}
\end{aligned}
$$



- Asymptote as $\omega \rightarrow 0$ :

$$
G(j \omega)=\frac{\kappa}{j \omega(1+\tau j \omega)} \stackrel{\text { small } \omega}{\approx} \frac{\kappa}{j \omega}(1-j \tau \omega)=-\kappa \tau-j \frac{\kappa}{\omega}
$$

## Polar Plot: Type 1 System

- Draw a polar plot for $G(s)=\frac{\kappa}{s\left(1+T_{1} s\right)\left(1+T_{2} s\right)}$
- Magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$ at $\omega=0$ and $\omega=\infty$ :

$$
G(j 0)=\infty \angle-90^{\circ} \quad G(j \infty)=0 \angle-270^{\circ}
$$



## Polar Plot: Type 2 System

- Draw a polar plot for $G(s)=\frac{\kappa}{s^{2}\left(1+T_{1} s\right)\left(1+T_{2} s\right)}$
- Magnitude $|G(j \omega)|$ and phase $\angle G(j \omega)$ at $\omega=0$ and $\omega=\infty$ :

$$
G(j 0)=\infty \angle-180^{\circ} \quad G(j \infty)=0 \angle-360^{\circ}
$$

Polar plot of $\mathrm{G}(\mathrm{s})=2 /\left(\mathrm{s}^{\wedge} 2(\mathrm{~s}+2)(\mathrm{s}+4)\right)$
90
120
60


## Polar Plot in Matlab

- Nyquist plot for $G(s)=\frac{4(s / 2+1)}{s(2 s+1)\left(1+0.4(s / 8)+(s / 8)^{2}\right)}$

```
s = tf('s');
G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);
nyquistplot(G);
```



## Outline

```
System Response to Test Input Signals
Bode Plot
Non-minimum Phase Systems
```

Polar Plot

Magnitude-Phase Plot

## Magnitude-Phase Plot

- Magnitude-phase plot: a plot of the magnitude $20 \log _{10}|G(j \omega)|$ in dB versus the phase $\angle G(j \omega)$ in degrees as $\omega$ varies from 0 to $\infty$
- A magnitude-phase plot can be obtained from the information on a Bode plot
- A magnitude-phase plot is shifted up or down when the gain factor $\kappa$ varies
- The Bode plot property of adding plots of individual components does not carry over


## Magnitude-Phase Plot



Copyright ©2017 Pearson Education, All Rights Reserved

$$
\text { (a) } G_{1}(s)=\frac{5}{s(s / 2+1)(s / 6+2)}
$$



Copyright e2017 Pearsan Education, All Rights Reserved
(b) $G_{2}(s)=\frac{5(s / 10+1)}{s(s / 2+1)\left(1+0.6(s / 50)+(s / 50)^{2}\right)}$

## Magnitude-Phase Plot

- Draw a polar plot and a magnitude-phase plot for $G(s)=\frac{10(s+10)}{s(s+2)(s+5)}$




## Magnitude-Phase Plot in Matlab

- Nichols plot for $G(s)=\frac{4(s / 2+1)}{s(2 s+1)\left(1+0.4(s / 8)+(s / 8)^{2}\right)}$

```
\(\mathrm{s}=\mathrm{tf}\left(\mathrm{s} \mathrm{s}^{\prime}\right)\);
\(\mathrm{G}=4 *(\mathrm{~s} / 2+1) / \mathrm{s} /(1+2 * \mathrm{~s}) /\left(1+0.4 *(\mathrm{~s} / 8)+(\mathrm{s} / 8)^{\wedge} 2\right) ;\)
nicholsplot(G);
```



