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Test Input Signals
I The transient and steady-state response of a system are often studied for

specific test input signals

Test Signal u(t) U(s)

Impulse u(t) = δ(t) =

{
∞, t = 0,

0, t 6= 0
U(s) = 1

Step u(t) = H(t) =
∫ t

−∞ δ(τ)dτ =

{
1, t ≥ 0,

0, t < 0
U(s) = 1

s

Ramp u(t) = tH(t) =

{
t, t ≥ 0,

0, t < 0
U(s) = 1

s2

Parabola u(t) = t2

2 H(t) =

{
t2

2 , t ≥ 0,

0, t < 0
U(s) = 1

s3

Sine u(t) =

{
sin(ωt), t ≥ 0,

0, t < 0
U(s) = ω

s2+ω2

Cosine u(t) =

{
cos(ωt), t ≥ 0,

0, t < 0
U(s) = s

s2+ω2
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Impulse Response
I LTI ODE System:

ẋ = Ax + Bu

y = Cx + Du
G (s) = C(sI− A)−1B + D

I Impulse response: response to an impulse input u(t) = δ(t):

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bδ(τ)dτ + Dδ(t)

= CeAtx(0) + CeAtB + Dδ(t)

I The impulse response with zero initial conditions reveals the transfer function:

Y (s) = G (s)��
�*1

U(s) ⇒ y(t) = L−1 {G (s)} = g(t) = CeAtB + Dδ(t)

I By superposition, the forced response to any input u(t) is the convolution of
the input with the impulse response:

y(t) = CeAtx(0)︸ ︷︷ ︸
natural response

+

∫ t

0

g(t − τ)u(τ)dτ︸ ︷︷ ︸
forced response
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Exponential Response

I LTI ODE System:

ẋ = Ax + Bu

y = Cx + Du
G (s) = C(sI− A)−1B + D

I Exponential response: response to exponential input u(t) = est for t ≥ 0
such that s ∈ C is not an eigenvalue of A:

y(t) = CeAt
(
x(0)− (sI− A)−1B

)︸ ︷︷ ︸
transient response

+
(
C(sI− A)−1B + D

)
est︸ ︷︷ ︸

steady-state response

I The transfer function G (s) is a complex number:

G (s) = |G (s)|e j∠G(s)

I Steady-state exponential response:

yss(t) = |G (s)|e j∠G(s)est = |G (s)|est+j∠G(s)
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Step Response

I LTI ODE system:

ẋ = Ax + Bu

y = Cx + Du
G (s) = C(sI− A)−1B + D

I Step response: response to a step input u(t) = 1 for t ≥ 0, which is a
special case of u(t) = est with s = 0:

y(t) = CeAt(x(0) + A−1B)︸ ︷︷ ︸
transient response

+ G (0)︸︷︷︸
steady-state response
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Step Response Performance Measures

I Rise time: from 10% to 90% of steady-state value: tr ≈ 2.16ζ+0.6
ωn

I Peak time: time at which the response is maximum: tp = π

ωn

√
1−ζ2

I Overshoot: overshoot as percent of steady-state: p.o. = 100 exp
(
− ζπ√

1−ζ2

)
%

I Settling time: response settles within 2% of steady-state: ts ≈ 4
ζωn

I Steady-state error: ess = 1− limt→∞ y(t) = 1− G (0)
8



Frequency Response

I LTI ODE System:

ẋ = Ax + Bu

y = Cx + Du
G (s) = C(sI− A)−1B + D

I Frequency response: response to a sinusoidal input u(t) = sin(ωt + φ)

Frequency Response

The steady-state response of a system with transfer function G (s) to a sinusoidal
input u(t) = sin(ωt + φ) is a sinusoid of the same frequency with amplitude
scaled by |G (jω)| and phase shifted by ∠G (jω):

yss(t) = |G (jω)| sin(ωt + φ+ ∠G (jω))

I The magnitude |G (jω)| is determined from the ratio of the amplitudes of
the output versus the input sinusoids

I The phase ∠G (jω) is determined from the ratio of the time of the output
versus the input zero crossings
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Frequency Response Proof

I Euler’s Formula: sin(ωt + φ) = Im(e j(ωt+φ)) =
e j(ωt+φ) − e−j(ωt+φ)

2j

I Complex conjugate of G (s): G∗(s) = |G (s)|e−j∠G(s)

I Conjugate symmetry of G (s):

G∗(s) =

(∫ ∞
0

g(t)e−stdt

)∗
=

∫ ∞
0

g∗(t)e−s
∗tdt

g(t) is real
=======

∫ ∞
0

g(t)e−s
∗tdt = G (s∗)

I Proof: by superposition the steady-state response to u(t) = sin(ωt + φ) is:

yss(t) =
1

2j
G (jω)e j(ωt+φ) − 1

2j
G (−jω)e−j(ωt+φ)

=
1

2j
|G (jω)|e j∠G(jω)e j(ωt+φ) − 1

2j
|G (jω)|e−j∠G(jω)e−j(ωt+φ)

= |G (jω)| sin(ωt + φ+ ∠G (jω))
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Empirical Transfer Function Determination
I The frequency response can be obtained empirically by applying a sinusoidal

test signal at various frequencies and recording the magnitude and phase of
the response. This can be used to identify the system’s transfer function.

1. Apply a sinusoidal signal at a fixed frequency ω

2. Measure response amplitude ratio and phase lag at steady state

3. Repeat as ω varies from 0 to ∞

Figure: Gain computed by measuring system response to individual sinusoid inputs
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Frequency Domain Plots

I Plotting the magnitude and phase of the transfer function G (jω) versus the
input frequency ω provides insight about the behavior of a linear control
system

I The following frequency-domain plots of the transfer function are used:

I Bode plot: plot of magnitude 20 log10 |G(jω)| in decibels (dB) and phase
∠G(jω) in degrees versus log10 ω as ω varies from 0 to ∞

I Polar plot: plot of Im(G(jω)) versus Re(G(jω)) as ω varies from 0 to ∞
I Magnitude-phase plot: plot of magnitude 20 log10 |G(jω)| in decibels (dB)

versus phase ∠G(jω) in degrees as ω varies from 0 to ∞
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Decibel Units
I Bel: relative measurement unit of log-ratio of measured power P to reference

power P0

Log-power ratio = log10

(
P

P0

)
Bels

I Decibel: ten Bels:

Log-power ratio = 10 log10

(
P

P0

)
dB

I The power spectral density of y(t) is the Fourier transform Syy (jω) of the
autocorrelation function

I The input-output power spectral density relationship for an LTI system with
input U(s), transfer function G (s), and output Y (s) is:

Syy (jω) = |Y (jω)|2 = |G (jω)|2|U(jω)|2 = |G (jω)|2Suu(jω)

I The log-power ratio at ω in dB is:

10 log10

(
Syy (jω)

Suu(jω)

)
= 10 log10 |G (jω)|2 = 20 log10 |G (jω)|
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Bode Plot

I Hendrik Bode: a pioneer of modern control theory and
electronic telecommunications

I Bode plot: represents the frequency response of a linear
system with transfer function G (s) by two plots:

I Plot of magnitude 20 log10 |G(jω)| in dB versus log10 ω

I Plot of phase G(jω) in degrees versus log10 ω
H. Bode

I Logarithmic scale is used for the input frequency ω to capture the system
behavior over a wide frequency range

I The log-scale intervals are known as decades (base 10) or octaves (base 2):
I The number of decades between ω1 and ω2 is log10

ω2
ω1

I The number of octaves between ω1 and ω2 is log2
ω2
ω1

I There are log2(10) ≈ 3.32 octaves in one decade

I A slope of 20 dB/decade is the same as 20 dB/decade
log2(10) octave/decade

≈ 6 dB/octave
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Transfer Function Magnitude and Phase

I The magnitude and phase of G (s) are needed to draw a Bode plot

I Consider a transfer function G (s) =
b1(s)b2(s)

a1(s)a2(s)

I Magnitude of G (s) in log-scale is the sum/difference of magnitudes
corresponding to terms in the numerator/denominator:

log |G (s)| = log |b1(s)|+ log |b2(s)| − log |a1(s)| − log |a2(s)|

I Phase of G (s) is the sum/difference of phases corresponding to terms in the
numerator/denominator:

∠G (s) = ∠b1(s) + ∠b2(s)− ∠a1(s)− ∠a2(s).
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Transfer Function in Bode Form
I Instead of computing the magnitude and phase of G (s) directly, it is

preferable to obtain rules for drawing Bode plots of individual terms

I Transfer function in Bode form: a transfer function with m1 real zeros, m2

complex conjugate zero pairs, n0 poles at the origin, n1 real poles, and n2
complex conjugate pole pairs:

G (s) = κ

∏m1

i=1

(
s
zi

+ 1
)∏m2

l=1

((
s
ωnl

)2
+ 2ζl

(
s
ωnl

)
+ 1

)
sn0
∏n1

i=1

(
s
pi

+ 1
)∏n2

k=1

((
s
ωnk

)2
+ 2ζk

(
s
ωnk

)
+ 1

)
I A transfer function may contain only four kinds of factors:

I Constant term: κ
I Poles s−q or zeros sq at the origin

I Real poles
(

s
p

+ 1
)−1

or zeros
(
s
z

+ 1
)

I Complex conjugate poles or zeros:

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)±1

I If we determine the magnitude and phase plots for these four factors, we can
add them together graphically to obtain a Bode plot for any transfer function
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Bode Plot for a Constant Term κ

I Magnitude: 20 log |κ|

I Phase: κ =

{
0◦ if κ > 0

180◦ if κ < 0

I Example: Bode plot for G (s) = 1
10 and G (s) = −10
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Bode Plot for Pole or Zero at the Origin: sq

I Magnitude: straight line (log scale) through the origin with slope 20q:

20 log |(jω)q| = 20q log |ω|

I Phase: a horizontal line at q90◦:

(jω)q = q (jω) = q90◦
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Bode Plot for Real Zero
(
s
z
+ 1
)

I Magnitude: 20 log
∣∣j ωz + 1

∣∣ = 20 log
√

1 +
(
ω
z

)2
I Phase:

(
j ωz + 1

)
= tan−1 ωz

I Extreme ω values:
I Case 1: ω � z : horizontal line at 0:

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 0

(
j ω
z

+ 1
)
≈ 0◦

I Case 2: ω � z : log-scale line of slope 20 going through 0 when ω = z :

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 20 log

1

z
+ 20 logω

(
j ω
z

+ 1
)
≈ 90◦

I Case 3: ω = z (corner frequency):

20 log
∣∣∣j ω
z

+ 1
∣∣∣ ≈ 3dB

(
j ω
z

+ 1
)

= 45◦
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Bode Plot for Real Pole
(

s
p
+ 1
)−1

I Magnitude: 20 log

∣∣∣∣(j ωp + 1
)−1∣∣∣∣ = −20 log

√
1 +

(
ω
p

)2
I Phase:

(
j ωp + 1

)−1
= − tan−1 ωp

I Extreme ω values:
I Case 1: ω � p: horizontal line at 0:

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ 0
(
j ω
p

+ 1
)−1

≈ 0◦

I Case 2: ω � p: log-scale line of slope −20 going through 0 when ω = p:

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ −20 log
1

p
− 20 logω

(
j ω
p

+ 1
)−1

≈ −90◦

I Case 3: ω = p (corner frequency):

−20 log

∣∣∣∣j ωp + 1

∣∣∣∣ ≈ −3dB
(
j ω
p

+ 1
)−1

≈ −45◦
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Bode Plot for Real Pole
(

s
p
+ 1
)−1

I A real pole behaves like a constant at low frequencies and like an integrator
at high frequencies
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Bode Plot Example 1

I Draw a Bode plot for G (s) = 10 s+10
(s+1)(s+100) = (s/10+1)

(s+1)(s/100+1)

Step 1 : Find frequency break points (poles and zeros): 1, 10, 100

Step 2 : Calculate |G (0)| and ∠G (0) to determine the starting points

Step 3 : Sketch the Bode plot by the rules:

I Magnitude increases with a zero: the slope is +20
dB/decade for a real zero

I Magnitude decreases with a pole: the slope is −20
dB/decade for a real pole

I Phases increases with a zero: by +90◦ starting from z/10
and ending at 10z

I Phases decreases with a pole: by −90◦ starting from p/10
and ending at 10p

23



Bode Plot Example 1
I Draw a Bode plot for G (s) = 10 s+10

(s+1)(s+100) = (s/10+1)
(s+1)(s/100+1)
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Bode Plot for Complex Conjugate Zeros

I Consider G (s) =

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)
I Magnitude:

|G (jω)| =

∣∣∣∣−ω2

ω2
n

+ 2ζ
ω

ωn
j + 1

∣∣∣∣ =

√√√√(1−
(
ω

ωn

)2
)2

+ 4ζ2
(
ω

ωn

)2

I Phase:

G (jω) = −ω
2

ω2
n

+ 2ζ ωωn
j + 1 = tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2

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Bode Plot for Complex Conjugate Zeros

|G (jω)| =

√√√√(1−
(
ω

ωn

)2
)2

+ 4ζ2
(
ω

ωn

)2

G (jω) = tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2


I Extreme ω values:
I Case 1: ω � ωn: horizontal line at 0:

20 log |G(jω)| ≈ 0 G(jω) ≈ 0◦

I Case 2: ω � ωn: log-scale line of slope 40 going through 0 when ω = ωn:

20 log |G(jω)| ≈ 20 log

√(
ω

ωn

)4

= 40 logω − 40 logωn G(jω) ≈ 180◦

I Case 3: ω = ωn:

20 log |G(jω)| = 20 log(2ζ) G(jω) = 90◦

26



Bode Plot for Complex Conjugate Poles

I Consider G (s) =

((
s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

)−1

|G (jω)| =
1√(

1−
(
ω
ωn

)2)2

+ 4ζ2
(
ω
ωn

)2 G (jω) = − tan−1

 2ζ
(
ω
ωn

)
1−

(
ω
ωn

)2


I Extreme ω values:
I Case 1: ω � ωn: horizontal line at 0:

20 log |G(jω)| ≈ 0 G(jω) ≈ 0◦

I Case 2: ω � ωn: log-scale line of slope −40 going through 0 when ω = ωn

20 log |G(jω)| ≈ −20 log

√(
ω

ωn

)4

= −40 logω+ 40 logωn G(jω) ≈ −180◦

I Case 3: ω = ωn:

20 log |G(jω)| = −20 log(2ζ) G(jω) = −90◦
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Bode Plot for Complex Conjugate Poles

I G (s) =
1(

s
ωn

)2
+ 2ζ

(
s
ωn

)
+ 1

I Resonant frequency: the largest
gain maxω |G (jω)| ≈ 1

2ζ occurs at
ω ≈ ωn

I The asymptotic approximation is
poor near ω = ωn and the
magnitude and phase depend on ζ
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Bode Plot Approximations for Basic Transfer Function Terms
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Bode Plot Approximations for Basic Transfer Function Terms
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Bode Plot Approximations for Basic Transfer Function Terms
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LTI Systems as Filters

I A Bode plot allows viewing a stable linear system as a filter that changes
input signals depending on the frequency range

I Low-pass filter:

G (s) =
ω2
0

s2 + 2ζω0s + ω2
0

I Band-pass filter:

G (s) =
2ζω0s

s2 + 2ζω0s + ω2
0

I High-pass filter:

G (s) =
s2

s2 + 2ζω0s + ω2
0
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LTI Systems as Filters

Figure: Bode plots for low-pass, band-pass, and high-pass filters. Each system passes
frequencies in a specific range and attenuates the frequencies outside of that range.
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Bode Plot Example 2

I Draw a Bode plot for G (s) =
k(s + b)

(s + a)(s2 + 2ζω0s + ω2
0)

with a� b � ω0

I Magnitude plot:
I Begin with G(0) = kb

aω2
0

I At ω = a, the effect of the real pole begins and the gain decreases with slope
−20 dB/decade

I At ω = b, the real zero increases the slope by 20 dB/decade, leaving a net
slope of 0 dB/decade

I This slope is used until the second-order pole affects it at ω = ω0 by −40
dB/decade

I Phase plot:
I The approximation process is similar but effect of the poles and zeros on the

phase begin one decade earlier and terminate one decade later.
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Bode Plot Example 2
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Bode Plot Example 3

I Draw a Bode plot for G (s) =
4(1 + 0.1s)

s(1 + 0.5s)(1 + 0.6(s/50) + (s/50)2)

I Factors in order of their occurrence as s = jω increases:

1. A constant gain κ = 4

2. A pole at the origin

3. A pole at ω = 2

4. A zero at ω = 10

5. A pair of complex poles at ω = ωn = 50
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Bode Plot Example 3

I Consider the approximate magnitude plots:

1. Constant gain: 20 log |κ| = 14 dB

2. Pole at the origin: a line with slope −20 dB/decade through 0 when ω = 1

3. Pole at ω = 2: horizontal line at 0 dB until the corner frequency at ω = 2 and
a line with slope −20 dB/decade after

4. Zero at ω = 10: horizontal line at 0 dB until the corner frequency at ω = 10
and a line with slope 20 dB/decade after

5. Complex pole pair at ω = ωn = 50: horizontal line at 0 dB until the corner
frequency at ω = 50 and a line with slope −40 dB/decade after

I The approximations must be corrected at the corner frequencies:
I Real zero/pole: ±3dB

I Complex pair of zeros/poles: based on ζ

37



Bode Plot Example 3

I Complex pole pair correction:
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Bode Plot Example 3
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Bode Plot Example 3

I Consider the approximate phase plots:

1. Constant gain: κ = 0◦

2. Pole at the origin: −90◦

3. Pole at ω = 2: a line with slope −45 deg/decade from ω = 0.2 to ω = 20

4. Zero at ω = 10: a line with slope 45 deg/decade from ω = 1 to ω = 100

5. Complex pole pair at ω = ωn = 50: phase shift of −90 deg/decade from
ω = 5 to ω = 500

I The phase characteristic for the complex pole pair should be obtained from:
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Bode Plot Example 3

I The exact phase shift can be evaluated at important frequencies:

G (jω) = κ +
m1∑
i=1

tan−1
(
ω

zi

)
+

m2∑
l=1

tan−1
(

2ζlωnlω

ω2
nl − ω2

)
− n0

π

2
−

n1∑
i=1

tan−1
(
ω

pi

)
−

n2∑
k=1

tan−1
(

2ζkωnkω

ω2
nk − ω2

)
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Bode Plot Example 4

I Draw a Bode plot for

G (s) =
(s + 1)(s2 + 3s + 100)

s2(s + 10)(s + 100)
=

(s + 1)((s/10)2 + 2(0.15)(s/10) + 1)

10s2(s/10 + 1)(s/100 + 1)

I Magnitude and phase at ω = 0.1:

20 log |G (jω)| ≈ 20dB G (jω) ≈ −180◦

I Magnitude slope in dB/decade:
ω Zero at −1 Zeros with ωn = 10 Double pole at 0 Pole at −10 Pole at −100

0.1 - 1 0 0 -40 0 0
1 - 10 20 0 -40 0 0

10 - 100 20 40 -40 -20 0
100 - 1000 20 40 -40 -20 -20

I Phase slope in degrees/decade:
ω Zero at −1 Zeros with ωn = 10 Double pole at 0 Pole at −10 Pole at −100

0.1 - 1 45 0 0 0 0
1 - 10 45 90 0 -45 0

10 - 100 0 90 0 -45 -45
100 - 1000 0 0 0 0 -45

42



Bode Plot Example 4
I Draw a Bode plot for

G (s) =
(s + 1)(s2 + 3s + 100)

s2(s + 10)(s + 100)
=

(s + 1)((s/10)2 + 2(0.15)(s/10) + 1)

10s2(s/10 + 1)(s/100 + 1)
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Bode Plot in Matlab
I Bode plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 bodeplot(G);
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Non-minimum Phase Systems

I Minimum phase system: a system whose transfer function poles and zeros
are in the closed left half-plane

I Non-minimum phase system: a system whose transfer function has zeros
or poles in the right half-plane

I Bode plots can also be drawn for non-minimum phase systems

I The magnitude of a transfer function does not depend on whether the zeros
and poles are in the left or right half-plane

I The phase contribution of a zero or pole in the right half-plane is always at
least as large as the phase contribution of a zero or pole in the left half-plane
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Non-minimum Phase Systems

I To understand the difference between minimum and non-minimum phase
systems compare the transfer functions:

G1(s) =
s + z

s + p
G2(s) =

s − z

s + p

I Magnitude: |G1(jω)| = |G2(jω)| =
√
ω2+z2√
ω2+p2

I Phase: G1(jω1) vs G2(jω1)
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Non-minimum Phase Systems

I A minimum phase system has the smallest phase lag of all systems with the
same magnitude curve
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Non-minimum Phase Systems: Example 1
I Draw a Bode plot for G1(s) = 10 s+1

s+10 and G2(s) = 10 s−1
s+10
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Non-minimum Phase Systems: Example 2

G (s) =
s + 1

(s + 0.1)(s + 10)
Grhpp(s) =

s + 1

(s − 0.1)(s + 10)
Grhpz(s) =

−s + 1

(s + 0.1)(s + 10)

50



Non-minimum Phase Systems: Example 3

Figure: Bode plots of non-minimum phase systems: (a) Time delay G(s) = e−sT , (b)
system with right half-plane zero G(s) = (a− s)/(a + s), (c) system with right
half-plane pole G(s) = (s + a)/(s − a). The corresponding minimum phase system has
transfer function G(s) = 1 in all cases.
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Non-minimum Phase System Control

I The presence of poles and zeros in the right half-plane imposes limitations on
the achievable control performance

I The extra phase causes difficulty fot control because there is a delay between
applying an input and seeing its effect

I Zeros depend on the relationship of inputs and outputs of a system. They
can be changed by moving or adding sensors and actuators

I Poles are intrinsic to a system and do not depend on sensors or actuators
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Polar Plot

I Polar plot: a plot of Im(G (jω)) versus Re(G (jω)) of a transfer function
G (jω) as ω varies from 0 to ∞

I A polar plot contains less information than a Bode plot because the
frequency values ω are not captured

I The general shape of the polar plot can be determined from:
I Magnitude |G(jω)| and phase G(jω) at ω = 0 and ω =∞
I Intersection of the polar plot with the real and imaginary axes
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Polar Plot: Type 0 System

I Draw a polar plot for G (s) = 1
1+Ts

I Magnitude: |G (jω)| = 1√
1+ω2T 2

I Phase: G (jω) = − tan−1(ωT )

I Polar plot: |G (j0)| = 1, G (j0) = 0; |G (j∞)| = 0, G (j∞) = −90◦
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Polar Plot: Type 0 System

I Draw a polar plot for G (s) = 1+T2s
1+T1s

I Magnitude: |G (jω)| =

√
1+ω2T 2

2√
1+ω2T 2

1

I Phase: G (jω) = tan−1(ωT2)− tan−1(ωT1)

I The polar plot depends on the relative magnitudes of T1 and T2

I If T2 > T1:

|G (jω)| ≥ 1 G (jω) ≥ 0

I If T1 > T2:

|G (jω)| ≤ 1 G (jω) ≤ 0
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Polar Plot: Type 0 System
I Draw a polar plot for G (s) = κ

(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) = κ 0◦ G (j∞) = 0 −180◦
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Polar Plot: Type 1 System
I Draw a polar plot for G (s) = κ

s(1+τs)

I Magnitude |G (jω)| and phase G (jω):

|G (jω)| =
κ√

ω2 + ω4τ 2

G (jω) = −π
2
− tan−1(ωτ)

I Values at ω = 0, ω = 1/τ , ω =∞:

G (j0) =∞ −90◦

G (j
1

τ
) =

κτ√
2
−135◦

G (j∞) = 0 −180◦

I Asymptote as ω → 0:

G (jω) =
κ

jω(1 + τ jω)

small ω
≈ κ

jω
(1− jτω) = −κτ − j

κ

ω

58



Polar Plot: Type 1 System
I Draw a polar plot for G (s) = κ

s(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) =∞ −90◦ G (j∞) = 0 −270◦
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Polar Plot: Type 2 System
I Draw a polar plot for G (s) = κ

s2(1+T1s)(1+T2s)

I Magnitude |G (jω)| and phase G (jω) at ω = 0 and ω =∞:

G (j0) =∞ −180◦ G (j∞) = 0 −360◦
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Polar Plot in Matlab
I Nyquist plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 nyquistplot(G);
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Magnitude-Phase Plot

I Magnitude-phase plot: a plot of the magnitude 20 log10 |G (jω)| in dB
versus the phase G (jω) in degrees as ω varies from 0 to ∞

I A magnitude-phase plot can be obtained from the information on a Bode plot

I A magnitude-phase plot is shifted up or down when the gain factor κ varies

I The Bode plot property of adding plots of individual components does not
carry over
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Magnitude-Phase Plot

(a) G1(s) = 5
s(s/2+1)(s/6+2)

(b) G2(s) = 5(s/10+1)
s(s/2+1)(1+0.6(s/50)+(s/50)2)
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Magnitude-Phase Plot

I Draw a polar plot and a magnitude-phase plot for G (s) = 10(s+10)
s(s+2)(s+5)
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Magnitude-Phase Plot in Matlab
I Nichols plot for G (s) = 4(s/2+1)

s(2s+1)(1+0.4(s/8)+(s/8)2)

1 s = tf(’s’);

G = 4*(s/2+1)/s/(1+2*s)/(1+0.4*(s/8) + (s/8)^2);

3 nicholsplot(G);
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