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Advantages of Feedback Control

I Disturbance attenuation:
I Closed-loop control reduces the effect of disturbances and noise in the system

response

I Robustness to parameter variations:
I Closed-loop control reduces the sensitivity of the system response to variations

in the model parameters
I Accurate control may be achieved with imprecise components

I Dynamic behavior shaping:
I Closed-loop control may widen the range in which a system behaves linearly
I Closed-loop control allows the system output to track a desired reference signal
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Disadvantages of Feedback Control

I Increased system complexity:
I Sensing components are necessary for feedback control, which may be

expensive and introduces noise

I Loss of gain:
I The forward gain in a closed-loop system is smaller by a certain factor than

the forward gain of an open-loop system
I The gain is decreased by the same factor that reduces the sensitivity to

parameter variations and disturbances
I In practice, the advantage of increased robustness outweighs the loss of

control gain

I Potential for instability:
I Closed-loop control may lead to system instability, even if the open-loop

system is stable
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Examples of Feedback Control Use

I Feedback control was used by James Watt to make steam engines run at
constant speed in spite of varying load (industrial revolution)

I Feedback control was used by electrical engineers to make water-turbine
generators deliver electricity with constant frequency and voltage.

I Feedback control is commonly used to alleviate effects of disturbances in the
process industry, for machine tools, and for engine and cruise control in cars.

I The human body exploits feedback to keep body temperature, blood
pressure, and other important variables constant.

I Servo problem: a major application of feedback control is to make a
system’s output follow a desired reference signal
I Examples: car steering, satellite tracking with an antenna, audio amplifiers,

industrial robots
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Example: Nonlinear Static System

I Automatic control has had significant impact on industrial automation, e.g.,
for process control in chemical plants

I The dynamical system to be controlled is often referred to as plant

I Reference signal: r(t)

I Controller: C

I Plant: P

I Summing point: Σ

I Input: u(t)

I Disturbance: v(t)

I Output: y(t)

I Error: e(t)
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Example: Nonlinear Static System

I Plant P: consider a static system (no dynamics and no ODE description):

y = sat(x) :=


−1 if x ≤ −1

x if |x | < 1

1 if x ≥ 1

I Controller C : consider a controller with constant gain k > 0:

u = ke

9



Dynamic Behavior Shaping

I Assume no disturbances for now: v ≡ 0

I Open-loop system: combination of C and P with no feedback:

y = sat(kr) ⇒ linear range: |r | < 1/k

I Closed-loop system: combination of C and P with feedback:

y = sat(u)

u = k(r − y)

}
⇒ y = sat(k(r − y))

⇒ y = sat

(
k

k + 1
r

)
⇒ linear range: |r | < k + 1

k

Observation 1: Feedback control widens the linear range of the system by a
factor of k + 1 compared to the open-loop system
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Robustness to Parameter Variations

Parameter sensitivity: quantifies
the change in system behavior due to
change in the system parameters

I Open-loop system:
I In the linear range: y = kr

I It follows that
dy

dk
= r =

y

k
⇒ dy

y
=

dk

k

I Sensitivity: 10% change in k leads to 10% change in output

I Closed-loop system:

I In the linear range: y =
k

k + 1
r

I It follows that
dy

dk
=

1

(k + 1)2
r =

1

(k + 1)

y

k
⇒ dy

y
=

1

(k + 1)

dk

k

I Sensitivity: for k = 100, 10% change in k leads to ≈ 0.1% change in output

Observation 2: Feedback control reduces the sensitivity to gain variations by a
factor of k + 1.
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Disturbance Attenuation

I Suppose now that the system is subject to a disturbance signal v

I Assume r ≡ 0 for simplicity

I Open-loop system:
I With r ≡ 0, y = sat(v)

I In the linear range, disturbances are passed through with no attenuation

I Closed-loop system:

I With r ≡ 0, y = sat(v − ky) ⇒ y = sat

(
v

k + 1

)
I In the linear range, disturbances are attenuated by a factor of k + 1

Observation 3: Feedback control reduces the effect of disturbances in the
linear range by a factor of k + 1.
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Summary
I Static plant P:

y = sat(x) :=


−1 if x ≤ −1

x if |x | < 1

1 if x ≥ 1

I Constant-gain controller C :
u = ke, k > 0

Feedback control

I 1) increases the range of linearity of the system,

I 2) decreases the sensitivity of the system response to parameter variations,

I 3) attenuates the effect of disturbances.

The trade-off is that
I 1) output sensing is required,
I 2) the closed-loop gain is decreased by a factor of k + 1:

open-loop: closed-loop:

y = sat(kr) y = sat

(
k

k + 1
r

)
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Example: Cruise Control System

I A cruise controller aims to maintain
constant velocity in the presence of
disturbances caused by the road slope,
friction, air drag, etc.

I Variables:
I Desired speed (reference): r(t)

I Actual speed (output): y(t)

I Engine force (input): u(t) = Fengine(t)

I Mass (parameter): m

I Disturbances:
I Road slope: Fslope(t) = −mg sin(θ(t))
I Air drag: Fdrag(t) = −δy(t)

I System model:
mẏ(t) = u(t)− δy(t)−mg sin(θ)
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Example: Cruise Control System

I Plant P:
mẏ(t) = u(t)− δy(t)−mg sin(θ(t))

I Controller C : design u(t) using reference r(t) and output y(t)

I Performance criteria:
I Stable response

I Steady-state velocity approaches desired velocity
I Smooth response with no overshoot or oscillations

I Disturbance rejection
I Effect of disturbances (e.g., slope θ) approaches zero over time

I Robustness
I System response is invariant to variations in the parameters (e.g., mass m)
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Closed-Loop Control
I System model:

mẏ(t) = u(t)− δy(t)−mg sin(θ(t))

I Closed-loop control:

I u(t) designed using the error signal e(t) = r(t)− y(t)

I P (Proportional) control:
u(t) = kpe(t)

I I (Integral) control:

u(t) = ki

∫ t

0

e(t)dt

I D (Derivative) control:

u(t) = kd
d

dt
e(t)

I PID control:

u(t) = kpe(t) + ki

∫ t

0

e(t)dt + kd
d

dt
e(t)
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Open-Loop Control

I System model:

mẏ(t) = u(t)− δy(t)−mg sin(θ(t))

I Open-loop control:

I u(t) is designed using reference r(t) and initial condition y(0) = y0 but no
measurements of the output y(t)

I Approximate the error using y0 and some function a(t):

e(t) ≈ r(t)− a(t)y0

I Use PID control with the approximate error
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Open-Loop P Control Simulation
I Parameters: r(t) ≡ 15 m/s, y0 = 10 m/s, m = 500 kg, δ = 0.5, θ = 0◦

I Matlab ODE45 function: [t,y] = ode45(odefun,tspan,y0)

I Case 1:

kp = 160, a(t) =

{
1 0 ≤ t ≤ 5
3
2 t > 5

u(t) =

{
800 0 ≤ t ≤ 5
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I Case 2:

kp = 120, a(t) =

{
1 0 ≤ t ≤ 5
35
24 t > 5

u(t) =

{
600 50 ≤ t ≤ 5

0 t > 5
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Closed-Loop P Control Simulation

I Parameters: r(t) ≡ 15 m/s, y0 = 10 m/s, m = 500 kg, δ = 0.5

I Case 1: flat road θ = 0◦

kp = 250 u(t) = kpe(t)
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I Case 2: uphill θ = 2◦

kp = 250 u(t) = kpe(t)
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Closed-Loop PI Control Simulation

I Parameters: r(t) ≡ 15 m/s, y0 = 10 m/s, m = 500 kg, δ = 0.5

I Case 1: flat road θ = 0◦

kp = 250, ki = 50

u(t) = kpe(t) + ki

∫ t

0

e(t)dt
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I Case 2: uphill θ = 2◦

kp = 250, ki = 50

u(t) = kpe(t) + ki

∫ t

0

e(t)dt
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Disturbance Attenuation with PI Control

I Parameters: r(t) ≡ 15 m/s, y0 = 10 m/s, m = 500 kg, δ = 0.5

I Case 1: uphill θ = 5◦

kp = 250, ki = 50

u(t) = kpe(t) + ki

∫ t

0

e(t)dt
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I Case 2: downhill θ = −5◦

kp = 250, ki = 50

u(t) = kpe(t) + ki

∫ t

0

e(t)dt
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Disturbance Attenuation with PI Control

I Parameters: r(t) ≡ 15 m/s, y0 = 10 m/s, m = 500 kg, δ = 0.5

I Case 3: uphill θ = 10◦

kp = 250, ki = 50

u(t) = kpe(t) + ki

∫ t

0

e(t)dt
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Disturbance attenuation: The same PI controller achieves zero steady-state
error, i.e., e(t)→ 0, despite the presence of an unknown disturbance θ.
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Dynamic Behavior Shaping with PI Control
I Parameters: y0 = 10 m/s, m = 500 kg, δ = 0.5, θ = 0◦

I Closed-loop PI control with kp = 250 and ki = 50

I Case 1: piecewise-constant
reference

r(t) =


15m/s t ≤ 30

20m/s 30 < t ≤ 60

10m/s 60 < t
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I Case 2: sinusoidal reference

r(t) = 15 + 2 sin
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Dynamic Behavior Shaping with PI Control
I Parameters: y0 = 10 m/s, m = 500 kg, δ = 0.5, θ = 0◦

I Closed-loop PI control with kp = 250 and ki = 50

I Case 3: sinusoidal reference

r(t) = 15 + 2 sin

(
2π

30
t

)
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I Case 4: sinusoidal reference

r(t) = 15 + 2 sin
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Dynamic Behavior Shaping with PI Control

Reference tracking: The same PI controller can make the closed-loop system
follow a reference signal with small tracking error.

I To analyze the tracking behavior with respect to the frequency of the
reference signal and to quantify the tracking error, we need to understand the
system behavior in the Laplace domain

I The bandwidth of the closed-loop system provides an upper bound on the
frequency of reference signals that can be tracked with small error
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Robustness to Parameter Variations with PI Control

I Parameters: y0 = 10 m/s, m = 500 kg, δ = 0.5, θ = 0◦

I Closed-loop PI control with kp = 250 and ki = 50

I Case 1: mass change: m = 200 kg

piecewise-constant reference

r(t) =


15m/s t ≤ 30

20m/s 30 < t ≤ 60

10m/s 60 < t
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Robustness to Parameter Variations with PI Control

I Parameters: y0 = 10 m/s, m = 500 kg, δ = 0.5, θ = 0◦

I Closed-loop PI control with kp = 250 and ki = 50

I Case 2: mass change: m = 800
kg

piecewise-constant reference

r(t) =


15m/s t ≤ 30

20m/s 30 < t ≤ 60

10m/s 60 < t
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Robustness: The same PI controller can make the closed-loop system follow a
reference signal even when some system parameters are not known exactly.
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Summary
I Plant:

ẏ(t) = − δ
m
y(t) +

1

m
u(t)− g sin(θ(t))

I Error:
e(t) = r(t)− y(t)

I Controller:

u(t) = kpe(t) + ki

∫ t

0

e(t)dt + kd
d

dt
e(t)

Feedback control

I 1) achieves reference signal tracking,

I 2) decreases the sensitivity of the system response to parameter variations,

I 3) attenuates the effect of disturbances.

29


	Advantages and Disadvantages of Feedback Control
	Example: Nonlinear Static System
	Example: Cruise Control System

