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LTI ODE Solution

I Consider the LTI ODE system:

ẋ = Ax + Bu, x(t0) = x0

y = Cx + Du

I The system output satisfies the convolution equation:

y(t) = CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ + Du(t)

I Observations:
I Using the convolution equation directly for control design can be challenging

I A simpler relationship between u(t) and y(t) can be obtained by transforming
the LTI ODE from the time domain to the complex domain using a Laplace
transform
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Laplace Transform

The Laplace transform L maps a real function f : R≥0 → R to a complex
function F : C 7→ C:

F (s) = L{f (t)} =

∫ ∞
0

f (t)e−stdt

I The Laplace transform L converts an LTI ODE in the time domain into a
linear algebraic equation in the complex domain

I Example:

ÿ(t) + y(t) = 0
L−−→ s2Y (s)− sy(0)− ẏ(0) + Y (s) = 0

↓

y(t) = y(0) cos(t) + ẏ(0) sin(t)
L−1

←−− Y (s) =
sy(0) + ẏ(0)

s2 + 1
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Complex Numbers C
I The space of real numbers is denoted by R

I The space of complex numbers is denoted by C

I A complex number has the form:

s = σ + jω,

where σ, ω ∈ R and j =
√
−1

I Cartesian coordinates: s = σ + jω
I The real part of s is Re(s) = σ

I The imaginary part of s is Im(s) = ω

I Polar coordinates: s = re jθ = r(cos(θ) + j sin(θ))
I The magnitude of s is |s| = r =

√
σ2 + ω2

I The phase of s is arg(s) = s = θ = atan2(ω, σ)

I The complex conjugate of s = σ + jω is s∗ = σ − jω

6



Complex Polynomial
I A complex polynomial of order n is a function a : C 7→ C:

a(s) = ans
n + an−1s

n−1 + . . .+ a2s
2 + a1s + a0

where a0, a1, . . . , an ∈ C are constants.

I A root of a complex polynomial a(s) is a number λ ∈ C such that:

a(λ) = 0

I A root λ of multiplicity m of a complex polynomial a(s) satisfies:

lim
s→λ

a(s)

(s − λ)m
<∞

I Fundamental theorem of algebra: a complex polynomial a(s) of degree n
has exactly n roots, counting multiplicities, and can be factorized as:

a(s) = ans
n + . . .+ a0 = an(s − λ1) · · · (s − λn)

where λ1, . . . , λn are the n roots of a(s)
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Complex Polynomial with Real Coefficients
I A complex polynomial of order n with real coefficients is a function:

a(s) = ans
n + an−1s

n−1 + . . .+ a2s
2 + a1s + a0

where a0, a1, . . . , an ∈ R are constants.

I The roots of a complex polynomial with real coefficients are either real,
λ = σ, or come in complex conjugate pairs, λ = σ ± jω.

I Every complex polynomial with real coefficients can be factorized into
polynomials of degree one or two:

a(s) = ans
n + . . .+ a0 = an

n1∏
i=1

(s − λi )
n2∏
k=1

(
s2 + 2ζkωks + ω2

k

)
where n1 and n2 are the numbers of real roots and complex conjugate pairs.

I Vieta’s formulas relate the coefficients ai to the roots λi :

n∑
i=1

λi = −an−1
an

n∏
i=1

λi = (−1)n
a0
an

∑
1≤i1<i2<···<ik≤n

k∏
j=1

λij = (−1)k
an−k
an
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Rational Function

I A rational function F : C 7→ C is a ratio of complex polynomials:

F (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + a0

I Rational functions remain rational functions under addition, subtraction,
multiplication, division (except by 0)

I The characteristic equation of a rational function F (s) = b(s)
a(s) is:

a(s) = 0

I A zero z ∈ C of a rational function F (s) is a root of the numerator: b(z) = 0

I A pole p ∈ C of a rational function F (s) is a root of the characteristic
equation: a(p) = 0
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Pole-Zero Map

I The pole-zero form of a rational function F (s) is:

F (s) =
bms

m + . . .+ b1s + b0
ansn + . . .+ a1s + a0

= k
(s − z1) · · · (s − zm)

(s − p1) · · · (s − pn)

where k = bm/an, z1, . . . , zm are the zeros of F (s), and p1, . . . , pn are the
poles of F (s)

I A pole-zero map is a plot of the poles and zeros of F (s) in the s-domain:

I Example:

F (s) = k
(s + 1.5)(s + 1 + 2j)(s + 1− 2j)

(s + 2.5)(s − 2)(s − 1− j)(s − 1 + j)

I × = pole; ◦ = zero; k = not available
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Example: Zeros and Poles

I Consider F (s) = 2s+1
3s2+2s+1

I F (s) has one zero: z = − 1
2

I The roots of a quadratic polynomial a(s) = a2s
2 + a1s + a0 are:

s =
−a1 ±

√
a21 − 4a2a0

2a2

I F (s) has two conjugate poles: p1 = − 1
3 + j

√
2
3 and p2 = − 1

3 − j
√
2
3

I Pole-zero form of F (s):

F (s) =
2(s − z)

3(s − p1)(s − p2)
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Partial Fraction Expansion (no repeated poles)

I Assume that the rational function:

F (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + a0

is strictly proper (m < n) and has no repeated poles (all roots of a(s) have
multiplicity one)

I The residue ri associated with pole pi is:

ri = lim
s→pi

(s − pi )F (s)

I The partial fraction expansion of F (s) is:

F (s) =
r1

s − p1
+ · · ·+ rn

s − pn

where p1, . . . , pn and r1, . . . , rn are the poles and residues of F (s)
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Example: Residues

I Consider F (s) = 2s+1
3s2+2s+1 with zero z = − 1

2 and poles p1,2 = − 1
3 ± j

√
2
3

I The residue associated with p1 is:

r1 = lim
s→p1

(s − p1)F (s) = lim
s→p1

2(s − z)

3(s − p2)
=

2(p1 + 1/2)

3(p1 − p2)

=
2(p1 + 1/2)

j2
√

2
= −j

√
2

2

(
1

6
+ j

√
2

3

)
=

1

3
− j

√
2
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I Residues associated with complex conjugate poles are also complex conjugate!

I The residue associated with p2 = p∗1 is r2 = r∗1 = 1
3 + j

√
2

12

I The partial fraction expansion of F (s) is:

F (s) =
r1

(s − p1)
+

r2
(s − p2)
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Partial Fraction Expansion (repeated poles)
I Assume that the rational function:

F (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

an(s − p1)m1 · · · (s − pk)mk

is strictly proper and has poles p1, . . . , pk with multiplicities m1, . . . ,mk

I The residue ri,mi−j associated with pole pi of multiplicity mi is:

ri,mi−j = lim
s→pi

1

j!

d j

ds j
[(s − pi )

miF (s)] , j = 0, . . . , (mi − 1)

I The partial fraction expansion of F (s) is:

F (s) =
r1,m1

(s − p1)m1
+

r1,m1−1

(s − p1)m1−1
+ · · ·+ r1,1

s − p1

+
r2,m2

(s − p2)m2
+

r2,m2−1

(s − p2)m2−1
+ · · ·+ r2,1

s − p2

+ · · ·

+
rk,mk

(s − pk)mk
+

rk,mk−1

(s − pk)mk−1
+ · · ·+ rk,1

s − pk
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Partial Fraction Expansion (improper rational function)

I Assume that the rational function:

F (s) =
b(s)

a(s)
=

bms
m + . . .+ b1s + b0

ansn + . . .+ a1s + a0

is not strictly proper (m ≥ n)

I The numerator b(s) can be divided by the denominator a(s) to obtain:

F (s) =
b(s)

a(s)
= c(s) +

d(s)

a(s)

where c(s) is of order m − n and d(s) is of order k < n

I
d(s)

a(s)
is now strictly proper and has a partial fraction expansion
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MATLAB Polynomial Functions
I Consider:

p(s) = (s − 11.6219)(s + 0.3110 + 2.6704j)(s + 0.3110− 2.6704j)

I poly: convert roots to polynomial coefficients:

1 r = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

a = poly(r) = [1.0, -11.0, 0.0, -84.0]

I polyval: evaluate a polynomial, e.g., p(1− 2j):

polyval(a, 1-2i) = -62 + 46i

I roots: find polynomial roots:

1 roots(a) = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

I conv: expand the product of two polynomials, e.g., (3s2 + 2s + 1)(s + 4):

1 conv([3, 2, 1], [1, 4]) = [3, 14, 9, 4]
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MATLAB Rational Functions

I SYS = zpk(Z,P,K) creates a continuous-time zero-pole-gain (zpk) model
SYS with zeros Z, poles P, and gains K:

1 dcmotor = zpk([],[-1],200);

fbksys = zpk([-4],[-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i],8);

I P = pole(SYS) returns the poles P of SYS:

sp = pole(fbksys) = [-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i]

I [Z,G] = zero(SYS) computes the zeros Z and gain G of SYS:

1 [sz,k] = zero(fbksys) = [-4, 8]

I pzmap(SYS): computes and plots the poles and zeros of SYS

1 pzmap(fbksys)
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Laplace Transform and Inverse Laplace Transform
I The Laplace transform F (s) of a function f (t) is:

F (s) = L{f (t)} =

∫ ∞
0

f (t)e−stdt,

where s = σ + jω is a complex number.

I The inverse Laplace transform f (t) of a function F (s) is:

f (t) = L−1 {F (s)} =
1

2πj
lim
ω→∞

∫ σ+jω

σ−jω
F (s)estds,

where σ is greater than the real part of all singularities of F (s).

I Cauchy’s Residue Theorem: If F (s) is a strictly proper rational function:

f (t) = L−1 {F (s)} =
∑

s is a pole of F (s)

(
residue of F (s)est at s

)
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Laplace Transform Properties
I The Laplace transform is linear:

L{αf (t) + βg(t)} =

∫ ∞
0

(αf (t) + βg(t))e−stdt

= α

∫ ∞
0

f (t)e−stdt + β

∫ ∞
0

g(t)e−stdt

= αL{f (t)}+ βL{g(t)}
I Convolution: for f (t), g(t) supported on t ∈ [0,∞):

(f ∗ g)(t) =

∫ t

0

f (τ)g(t − τ)dτ

I Convolution in time domain becomes multiplication in the complex domain:

L{(f ∗ g)(t)} =

∫ ∞
0

∫ ∞
0

f (τ)g(t − τ)e−stdτdt

=

∫ ∞
0

∫ ∞
−τ

f (τ)g(µ)e−sτe−sµdµdτ

g(µ)=0,µ<0
=========

∫ ∞
0

f (τ)e−sτdτ

∫ ∞
0

g(µ)e−sµdµ

= L{f (t)}L {g(t)}
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Laplace Transform Properties

I Differentiation:

L
{

d

dt
x(t)

}
= sL{x(t)} − x(0)

I Proof:∫ ∞
0

d

dt

(
x(t)e−st) dt = x(t)e−st

∣∣∞
0

= −x(0)∫ ∞
0

d

dt

(
x(t)e−st) dt =

∫ ∞
0

(
d

dt
x(t)

)
e−stdt +

∫ ∞
0

x(t)

(
d

dt
e−st

)
dt

= L
{

d

dt
x(t)

}
− sL{x(t)}

I Integration:

L
{∫ t

0

f (τ)dτ

}
=

1

s
L{f (t)}

I Note that d
dt

(∫ t

0
f (τ)dτ

)
= f (t)
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Laplace Transform Properties
I Laplace transform of eat :

L
{
eat
}

=

∫ ∞
0

eate−stdt =

∫ ∞
0

e−(s−a)tdt = − 1

(s − a)
e−(s−a)t

∣∣∣∣t=∞
t=0

require
======
Re(s)>a

0−
(
− 1

(s − a)
e0
)

=
1

s − a

I Delta function (Impulse):

δε(t) =


0 if t < 0

1/ε if 0 ≤ t < ε

0 if t ≥ ε
δ(t) = lim

ε→0
δε(t) =

{
∞, t = 0

0, t 6= 0

I Sifting property: for any f (t) continuous at τ ∈ (a, b):∫ b

a

f (t)δ(t − τ)dt = f (τ)

I Laplace transform of δ(t):

L{δ(t)} =

∫ ∞
0

δ(t)e−stdt = e−st
∣∣∣∣
t=0

= 1
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Laplace Transform Properties

I Heaviside step function:

H(t) =

∫ t

−∞
δ(τ)dτ =

{
1, t ≥ 0

0, t < 0
⇒ L{H(t)} =

1

s

I Ramp function:

tH(t) =

{
t, t ≥ 0

0, t < 0
⇒ L{H(t)} =

1

s2

I Parabola function:

t2

2
H(t) =

{
t2

2 , t ≥ 0

0, t < 0
⇒ L{H(t)} =

1

s3
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Laplace Transform Properties
t domain s domain

linearity af (t) + bg(t) aF (s) + bG (s)

convolution (f ∗ g)(t) F (s)G (s)

multiplication f (t)g(t) 1
2πj

∫ Re(σ)+j∞
Re(σ)−j∞ F (σ)G (s − σ)dσ

scaling, a > 0 f (at) 1
aF
(
s
a

)
s-domain derivative tnf (t) (−1)nF (n)(s)

time-domain derivative f (n)(t) snF (s)−
∑n

k=1 s
n−k f (k−1)(0)

s-domain integarion 1
t f (t)

∫∞
s

F (σ)dσ

time-domain integarion
∫ t

0
f (τ)dτ = (H ∗ f )(t) 1

s F (s)

s-domain shift eat f (t) F (s − a)

time-domain shift, a > 0 f (t − a)H(t − a) e−asF (s)

I Heaviside step function H(t) =

{
1, t ≥ 0,

0, t < 0

I Convolution: (f ∗ g)(t) =
∫ t

0
f (τ)g(t − τ)dτ
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Laplace Transform Properties
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Initial and Final Value Theorems

Initial Value Theorem

Suppose that f (t) has a Laplace transform F (s). Then:

lim
t→0

f (t) = lim
s→∞

sF (s)

Final Value Theorem

Suppose that f (t) has a Laplace transform F (s). Suppose that every pole of F (s)
is either in the open left-half plane or at the origin of C. Then:

lim
t→∞

f (t) = lim
s→0

sF (s)

28



Example: Spring-Mass-Damper

I Consider a spring-mass-damper system:

M
d2y(t)

dt2
+ b

dy(t)

dt
+ ky(t) = 0

I This is an example of a second-order system with natural frequency
ωn =

√
k/M and damping ratio ζ = b/(2

√
kM):

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = 0

I Laplace transform:

(s2Y (s)− sy(0)− ẏ(0)) + 2ζωn(sY (s)− y(0)) + ω2
nY (s) = 0

I Natural response:

Y (s) =
(s + 2ζωn)y(0) + ẏ(0)

s2 + 2ζωns + ω2
n
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Example: Spring-Mass-Damper

I Consider the natural response with ω2
n = k/M = 2 and 2ζωn = b/M = 3:

Y (s) =
(s + 3)y(0) + ẏ(0)

s2 + 3s + 2
=

(s + 3)y(0) + ẏ(0)

(s + 1)(s + 2)

=
2y(0) + ẏ(0)

s + 1
− y(0) + ẏ(0)

s + 2

I Poles: p1 = −1 and p2 = −2

I Zeros: z1 = − ẏ(0)
y(0) − 3

I Residues:

r1 =
(s + 3)y(0) + ẏ(0)

(s + 2)

∣∣∣∣
s=−1

r2 =
(s + 3)y(0) + ẏ(0)

(s + 1)

∣∣∣∣
s=−2

= 2y(0) + ẏ(0) = −y(0)− ẏ(0)
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Example: Spring-Mass-Damper

I Spring-Mass-Damper Pole-Zero Map

I Let the initial conditions be y(0) = 1 and ẏ(0) = 0

I The poles and zeros are:

p1 = −1, p2 = −2, z1 = −3

I The residues are:

r1 =
(s + 3)

(s + 2)

∣∣∣∣
s=−1

= 2

r2 =
(s + 3)

(s + 1)

∣∣∣∣
s=−2

= −1
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Example: Spring-Mass-Damper

I The time-domain natural response of the spring-mass-damper system can
be obtained using an inverse Laplace transform:

y(t) = L−1 {Y (s)} = L−1
{

2y(0) + ẏ(0)

s + 1

}
− L−1

{
y(0) + ẏ(0)

s + 2

}
= (2y(0) + ẏ(0)) e−t − (y(0) + ẏ(0)) e−2t

I The steady-state response can be obtained via the Final Value Theorem:

lim
t→∞

y(t) = lim
s→0

sY (s)

= lim
s→0

(s2 + 3s)y(0) + sẏ(0)

s2 + 3s + 2
= 0
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Example: Spring-Mass-Damper

I The poles of the system are the roots of the characteristic equation:

a(s) = s2 + 2ζωns + ω2
n = 0

I The natural response is determined by the poles:
I Overdamped (ζ > 1): the poles are real:

p1 = −ζωn − ωn

√
ζ2 − 1 p2 = −ζωn + ωn

√
ζ2 − 1

I Critically damped (ζ = 1): the poles are repeated and real:

p1 = p2 = −ωn

I Underdamped (ζ < 1): the poles are complex:

p1 = −ζωn − jωn

√
1− ζ2 p2 = −ζωn + jωn

√
1− ζ2
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Example: Spring-Mass-Damper Locus of Roots

I s-domain plot of the poles (×) and
zeros (◦) of Y (s) with ẏ(0) = 0

I For constant ωn, as ζ varies, the
complex conjugate roots follow a
circular locus

I The poles and zeros can be expressed either in Cartesian coordinates or Polar
coordinates (e.g., magnitude ωn and angle θ = cos−1(ζ))
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Example: Spring-Mass-Damper Response

I The time-domain natural response can be obtained by determining the
residues and applying an inverse Laplace transform:
I Overdamped (ζ > 1):

y(t) = r1e
p1t + r2e

p2t

where p1 = −ζωn − ωn

√
ζ2 − 1, p2 = −ζωn + ωn

√
ζ2 − 1, r1 = p2y(0)+ẏ(0)

p2−p1
,

and r2 = − p1y(0)+ẏ(0)
p2−p1

I Critically damped (ζ = 1):

y(t) = y(0)e−ωnt + (ẏ(0) + ωny(0))te−ωnt

I Underdamped (ζ < 1):

y(t) = e−ζωnt
(
c1 cos(ωn

√
1− ζ2t) + c2 sin(ωn

√
1− ζ2t)

)
where c1 = y(0) and c2 = ẏ(0)+ζωny(0)

ωn

√
1−ζ2
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Example: Spring-Mass-Damper Natural Response with ẏ(0) = 0

36



Outline

Complex Numbers and Rational Functions

Polynomial and Rational Functions in MATLAB

Laplace Transform

Transfer Function

37



Laplace Transform of LTI ODE
I Consider an LTI ODE with zero initial conditions:

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u

I Let Y (s) = L{y(t)} and U(s) = L{u(t)}

I Recall that L
{

dn

dtn y(t)
}

= snY (s)−
∑n

k=1 s
n−k dk−1

dtk−1 y(t)

∣∣∣∣
t=0

I Laplace transform of the LTI ODE:(
ans

n + an−1s
n−1 + . . .+ a0

)
Y (s) =

(
bms

m + bm−1s
m−1 + . . .+ b0

)
U(s)

I Transfer function: ratio of Laplace transform of output to Laplace
transform of input with zero initial conditions:

G (s) =
Y (s)

U(s)
=

bms
m + bm−1s

m−1 + . . .+ b0
ansn + an−1sn−1 + . . .+ a0
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Transfer Function

Transfer Function

The transfer function G (s) of a single-input single-output LTI ODE is the ratio of
the Laplace transform Y (s) of the output y(t) to the Laplace transform U(s) of
the input u(t) with zero initial conditions:

G (s) =
Y (s)

U(s)

Relative Degree

The relative degree of a single-input single-output LTI ODE with transfer function
G (s) is the difference r = n −m between the number of poles n and number of
zeros m of G (s).

I If r > 0, the transfer function is called strictly proper.

I If r ≥ 0, the transfer function is called proper.

I If r < 0, the transfer function is called improper (there is no state space
realization).
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Example

I A vehicle with position p(t) and acceleration input u(t) satisfies:

mp̈(t) = u(t)

I The transfer function of this system is:

G (s) =
P(s)

U(s)
=

1

ms2

I The transfer function is strictly proper with relative degree r = 2
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Example: Second-order LTI ODE

I Consider a second-order system with natural frequency ωn, damping ratio ζ,
and input u(t):

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) = u(t)

I Laplace transform:

(s2Y (s)− sy(0)− ẏ(0)) + 2ζωn(sY (s)− y(0)) + ω2
nY (s) = U(s)

I Transfer function (set y(0) = ẏ(0) = 0):

G (s) =
Y (s)

U(s)
=

1

s2 + 2ζωns + ω2
n

I Total response:

Y (s) =
(s + 2ζωn)y(0) + ẏ(0)

s2 + 2ζωns + ω2
n︸ ︷︷ ︸

natural response

+ G (s)U(s)︸ ︷︷ ︸
forced response
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Transfer Function of State-Space Model
I Consider an LTI ODE system in state-space:

ẋ = Ax + Bu

y = Cx + Du

I Laplace transform:

sX(s)− x(0) = AX(s) + BU(s)

Y(s) = CX(s) + DU(s)

I The response Y(s) of LTI ODE system consists of natural response due to
the initial conditions x(0) and forced response due to the input U(s):

Y(s) = C (sI− A)−1 x(0) +
(

C (sI− A)−1 B + D
)

︸ ︷︷ ︸
G(s)

U(s)

The transfer function of an LTI ODE system in state-space form is:

G(s) = C (sI− A)−1 B + D
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Response to Periodic Signals

I The idea of a transfer function comes from looking at the response of an LTI
ODE system to periodic input signals with fundamental frequency ωf :

u(t) =
∞∑
k=0

(ak sin(kωft) + bk cos(kωf t))

I Euler’s formula: e jω = cosω + j sinω

I The exponential function est with s = jω can represent periodic signals:

sin(ωt) = Im(e jωt) =
1

2j

(
e jωt − e−jωt

)
cos(ωt) = Re(e jωt) =

1

2

(
e jωt + e−jωt

)
I Thanks to linearity (superposition), it suffices to compute the response to

u(t) = est and then reconstruct the response to a cosine or sine by combining
the responses corresponding to s = jω and s = −jω
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Exponential Input est

I The exponential input est generalizes periodic signals to a broader class:

est = eσte jωt = eσt(cos(ωt) + j sin(ωt))

I Examples of exponential signals:
I Top row: exponential signals with a real exponent s = σ

I Bottom row: exponential signals with a complex exponent s = jω
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Frequency Domain Analysis

I Analyze LTI ODE response to sinusoidal and exponential signals

I State-space model:
ẋ = Ax + Bu, x(0) = x0

y = Cx + Du

I Convolution equation:

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(τ)dτ + Du(t)

I SISO system with input u(t) = est such that s is not an eigenvalue of A:

y(t) = CeAtx0︸ ︷︷ ︸
natural response

+ CeAt(sI− A)−1
(
e(sI−A)t − I

)
B + Dest︸ ︷︷ ︸

forced response

= CeAt
(
x(0)− (sI− A)−1B

)︸ ︷︷ ︸
transient response

+
(
C(sI− A)−1B + D

)
est︸ ︷︷ ︸

steady-state response
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Frequency Domain Analysis

I SISO LTI ODE response to u(t) = est :

y(t) = CeAt
(
x(0)− (sI− A)−1B

)︸ ︷︷ ︸
transient response

+
(
C(sI− A)−1B + D

)
est︸ ︷︷ ︸

steady-state response

The transfer function from u(t) to y(t) of a SISO LTI ODE is the coefficient of
the steady-state response to an exponential input:

G (s) =
Y (s)

U(s)
= C(sI− A)−1B + D

I The transfer function represents the system dynamics in terms of the
generalized frequency s instead of time t

I Analyzing the system in the complex domain uncovers interesting properties
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Example

I Consider a SISO LTI ODE with state-space model:

A =

[
−a1 −a2

1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
, D = 0

I Transfer function:

G (s) = C(sI− A)−1B + D =
[
0 1

] [s + a1 a2
−1 s

]−1 [
1
0

]
=
[
0 1

] 1

s2 + a1s + a2

[
s −a2
1 s + a1

] [
1
0

]
=

1

s2 + a1s + a2
.
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Example
I Consider a Heaviside step input:

u(t) = H(t) =

{
1, t ≥ 0,

0, t < 0

I Note that u(t) = est with s = 0 for t ≥ 0:

y(t) = CeAt
(
x(0) + A−1B

)
+ G (0)u(t)

I Suppose a1 = 1 and a2 = 2: G (s) = 1
s2+s+2

I The steady-state response as t →∞ is G (0) = 1
2
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Controllable Canonical Form

I Consider a general n-th order transfer function (some of bi may be 0):

G (s) =
Y (s)

U(s)
=

bns
n + bn−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

I To convert this transfer function to state-space form multiply by Z (s)/Z (s):

G (s) =
Y (s)/Z (s)

U(s)/Z (s)
=

bns
n + bn−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

I Time-domain LTI ODEs:

y = bnz
(n) + bn−1z

(n−1) + . . .+ b1ż + b0z

u = z (n) + an−1z
(n−1) + . . .+ a1ż + a0z

I This suggests the following choice of state variables:

x1 = z x2 = ż · · · xn = z (n−1)
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Controllable Canonical Form

I Consider a general n-th order transfer function (some of bi may be 0):

G (s) =
Y (s)

U(s)
=

bns
n + bn−1s

n−1 + . . .+ b0
sn + an−1sn−1 + . . .+ a0

I The controllable canonical form is a state-space model with the same
transfer function:

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 x +


0
0
...
0
1

 u

y =
[
(b0 − a0bn) (b1 − a1bn) · · · (bn−1 − an−1bn)

]
x + bnu
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Zero Frequency Gain
I The features of the transfer function reveal important system properties

I Zero frequency gain: the magnitude |G (0)| of the transfer function at s = 0

I Interpretation: the ratio of the steady-state output to a step input

I LTI ODE:

G (s) =
bms

m + bm−1s
m−1 + . . .+ b0

sn + an−1sn−1 + . . .+ a0
⇒ G (0) =

b0
a0

I State-space model:

G (s) = C(sI− A)−1B + D ⇒ G (0) = −CA−1B + D

I Integrator: ẏ = u

G (s) =
1

s
⇒ G (0)→∞ pole

I Differentiator y = u̇

G (s) = s ⇒ G (0) = 0 zero
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Transfer Function Poles
I Consider the LTI ODE:

an
dny

dtn
+ an−1

dn−1y

dtn−1
+ . . .+ a0y = bm

dmu

dtm
+ bm−1

dm−1u

dtm−1
+ . . .+ b0u

I The response Y (s) consists of natural response due to the initial conditions
x(0) and forced response due to the input U(s):

Y (s) =
c(s)

a(s)︸︷︷︸
natural response

+
b(s)

a(s)
U(s)︸ ︷︷ ︸

forced response

I The transfer function G (s) =
b(s)

a(s)
and the natural response have the same

denominator:
a(s) = ans

n + an−1s
n−1 + . . .+ a0

I A pole p of the transfer function G (s) is a solution to the characteristic
equation a(s) = 0. If u(t) ≡ 0, then y(t) = ept is a solution to the LTI ODE.

The poles p of a transfer function G (s) correspond to the natural solutions
y(t) = ept of the LTI ODE called modes.
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Transfer Function Zeros

I SISO LTI ODE response to an exponential input u(t) = est :

y(t) = CeAt
(
x(0)− (sI− A)−1B

)︸ ︷︷ ︸
transient response

+
(
C(sI− A)−1B + D

)
est︸ ︷︷ ︸

steady-state response

I A zero z of the transfer function G (s) = C(sI−A)−1B + D makes G (z) = 0
and hence the steady-state response to u(t) = ezt is zero

The zeros z of a transfer function G (s) block transmission of an
exponential input u(t) = ezt .
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Example: Vibration Damper

Figure: Vibrations of the mass m1 can be damped by providing an auxiliary mass m2,
attached to m1 by a spring with stiffness k2. The parameters m2 and k2 are chosen so
that the frequency

√
k2/m2 matches the frequency of vibration.
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Example: Vibration Damper

I Vibration damper dynamics:

m1q̈1 + c1q̇1 + k1q1 + k2(q1 − q2) = f

m2q̈2 + k2(q2 − q1) = 0

I The Laplace transform with zero initial conditions is:

(m1s
2 + c1s + k1)Q1(s) + k2(Q1(s)− Q2(s)) = F (s)

m2s
2Q2(s) + k2(Q2(s)− Q1(s)) = 0

I The transfer function from F (s) to Q1(s) is obtained by eliminating Q2(s):

G (s) =
Q1(s)

F (s)
=

m2s
2 + k2

m1m2s4 + m2c1s3 + (m1k2 + m2(k1 + k2))s2 + k2c1s + k1k2

I Blocking property: the transfer function has zeros at s = ±j
√

k2/m2
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Example: Vibration Damper
I Blocking property with parameters

m1 = 1, c1 = 1, k1 = 1,m2 = 1, k2 = 1

I Case 1: external input : u = sin(ωt), with ω = 1

(a) Input u = sin(t)

⇒

(b) Position of mass 1

(c) Postion of mass 2
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Example: Vibration Damper
I Other frequency responses

I Case 2: external input : u = sin(ωt), with ω = 1.1

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1

I Case 3: external input :u = sin(ωt), with ω = 0.578

(a) Input u = sin(1.1t)

⇒

(b) Position of mass 1
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