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Nonlinear Systems

▶ Nonlinear state-space model:{
ẋ(t) = f(x(t),u(t))

y(t) = h(x(t),u(t))
v.s.

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) +Du(t)

▶ Control problem: design a function u = k(x), called feedback control law,
such that:
▶ Regulation problem: the state converges to zero: x(t) → 0

▶ Servo problem: the state tracks a reference signal: x(t) → r(t)

▶ Closed-loop system:

ẋ = f(x, k(x)) = F(x)
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Phase Portrait
▶ The state trajectory x(t) of a dynamical system ẋ = F(x) may be visualized

as a time plot or a phase portrait

▶ Time plot: plots state components xi (t) as a function of time t

▶ Vector field: plots the vector F(x) as an arrow at different states x in Rn

▶ Phase portrait: plots state components relative to each other, e.g., x2 vs x1,
by following the vector field associated with different initial conditions
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Equilibrium Points

An equilibrium point xe ∈ Rn of a dynamical system ẋ = F(x) satisfies:

F(xe) = 0.

▶ An equilibrium point is a stationary operating condition for the system

▶ If started at an equilibrium point, a system remains there for all time:

x(t0) = xe ⇒ x(t) = xe, for all t ≥ t0

▶ Nonlinear dynamical systems ẋ = F(x) can have zero, one, or more equilibria

▶ Linear dynamical systems ẋ = Ax can have one (xe = 0 when A is
nonsingular) or infinitely many (null space of A when A is singular) equilibria

6



Example: Pendulum

▶ Consider a pendulum with mass m, length l , and angle θ under the influence
of gravity acceleration g :

ml2θ̈ = mgl sin θ

▶ State-space model with x1 = θ, x2 = θ̇:

ẋ =

[
ẋ1
ẋ2

]
= F(x) =

[
x2

g
l sin(x1)

]
▶ An ODE system with two state variables x ∈ R2 is called planar dynamical

system

▶ Pendulum equilibria:

F(x) =

[
x2

g
l sin(x1)

]
=

[
0
0

]
⇒ xe =

[
±kπ
0

]
, k = 0, 1, 2 . . .
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Example: Pendulum

▶ Equilibria: xe =

[
±kπ
0

]
, k = 0, 1, 2 . . .

Equilibrium 1 (unstable) Equilibrium 2 (stable)

▶ Phase portrait:
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Limit Cycles
▶ Besides an equilibrium point, nonlinear systems may exhibit a stationary

periodic solution called limit cycle

▶ A limit cycle corresponds to an oscillatory periodic trajectory in the time
domain and a circular trajectory in the phase domain

▶ Example:
ẋ1 = x2 + x1(1− x21 − x22 )

ẋ2 = −x1 + x2(1− x21 − x22 )
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Stability

▶ Aleksandr Lyapunov made many important contributions
to the theory of dynamical system stability

▶ An equilibrium point is stable if, when the system is
started near the equilibrium point, its state remains near
the equilibrium point over time

▶ An equilibrium point is asymptotically stable if, when
the system is started near the equilibrium point, its state
converges to the equilibrium point A. Lyapunov
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Stable Equilbrium

An equilibrium xe of ẋ = F(x) is stable if, for all t0 and all ϵ > 0, there exists δ
such that:

∥x(t0)− xe∥ < δ ⇒ ∥x(t)− xe∥ < ϵ, ∀t ≥ t0

Figure: The equilibrium point xe = 0 is stable since all trajectories that start near xe
remain near xe
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Asymptotically Stable Equilibrium

An equilibrium xe of ẋ = F(x) is asymptotically stable if

▶ xe is a stable equilibrium,

▶ for all t0 there exists δ such that:

∥x(t0)− xe∥ < δ ⇒ lim
t→∞

∥x(t)− xe∥ = 0

Figure: The equilibrium point xe = 0 is asymptotically stable since all trajectories that
start near xe converge to xe as t → ∞
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Unstable Equilibrium

▶ An equilibrium point is unstable if it is not stable

Figure: The equilibrium point xe = 0 is unstable since not all trajectories that start near
xe remain near xe
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Sink, Source, Saddle

▶ Equilibrium points have names based on their stability type

▶ Sink: an asymptotically stable equilibrium point

▶ Source: an unstable equilibrium point with all trajectories leading away

▶ Saddle: an unstable equilibrium point with some trajectories leading away

▶ Center: a stable but not asymptotically stable equilibrium point

(a) Sink (b) Source (c) Saddle (d) Center
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LTI ODE Stability

▶ Consider an LTI ODE system:
ẋ = Ax

▶ An eigenvalue of A ∈ Rn×n is a complex number λ ∈ C such that:

det(λI− A) = 0

▶ The stability of xe = 0 is determined by the eigenvalues of A

Example
▶ System:

ẋ =

[
λ1 0
0 λ2

]
x

▶ Solution:
xi (t) = eλi txi (0), i = 1, 2

▶ xe = 0 is stable if λi ≤ 0, and asymptotically stable if λi < 0

16



LTI ODE Stability

Lyapunov Stability of LTI ODE Systems

The following statements about an LTI ODE system, ẋ = Ax, are equivalent:

▶ xe = 0 is a unique equilibrium and is asymptotically stable

▶ all eigenvalues λi of A have strictly negative real parts: Re(λi ) < 0

▶ If any eigenvalue λi of A has Re(λi ) > 0, then xe = 0 is an unstable
equilibrium

▶ If Re(λi ) ≤ 0 for all eigenvalues but some Re(λi ) = 0, then xe = 0 may or
may not be stable
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Example: Second-Order System

▶ Second-order system:

ÿ + 2ζωnẏ + ω2
ny = 0

▶ State-space model with x1 = y and x2 = ẏ/ωn:

ẋ =

[
0 ωn

−ωn −2ζωn

]
x

▶ Eigenvalues of A:

det(λI− A) = det

([
λ −ωn

ωn λ+ 2ζωn

])
= λ2 + 2ζωnλ+ ω2

n = 0

λ1,2 = −ζωn ± ωn

√
ζ2 − 1

▶ If ζ > 0, the eigenvalues have negative real parts and the origin is
asymptotically stable
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Stability Analysis in the Complex Domain

▶ LTI ODE Transfer Function:

ẋ = Ax+ Bu,

y = Cx+Du
⇐⇒ G (s) = C(sI− A)−1B+D

▶ The eigenvalues s of A satisfy det(sI− A) = 0 and hence are related to the
poles G (s)

▶ If G (s) contains a pole p in the right half-plane of C, then the natural
respose y(t) contains a term rept , which will go to infinity

▶ If all poles of G (s) are in the left half-plane of C, then all terms rept in the
natural response y(t) will settle to a steady-state value

▶ The poles of G (s) are the same as the eigenvalues of A if both are in
minimal form:
▶ G(s) does not have pole-zero cancelations,
▶ the state-space model is controllable and observable.
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BIBO Stability
▶ A signal y(t) is bounded if |y(t)| ≤ M for some constant M and all t

▶ An LTI ODE system is bounded-input bounded-output (BIBO) stable if
every bounded input u(t) leads to a bounded output y(t)

▶ A system is BIBO unstable if there exists at least one bounded input that
produces an unbounded output

BIBO Stability of LTI ODE Systems

An LTI ODE system with transfer function G (s) is:

▶ BIBO stable, if all poles of G (s) are in the open left half-plane (OLHP) of C,

▶ marginally BIBO stable, if all poles of G (s) are in the closed left half-plane
of C and all poles with zero real part are simple (multiplicity 1),

▶ BIBO unstable, otherwise.

Lyapunov stability ⇒ BIBO stability

BIBO stability, controllability, observability ⇒ Lyapunov stability
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No Pole-Zero Cancellation!
▶ Important: common poles and zeros in G (s) should not be canceled before

checking BIBO stability!

▶ A canceled pole will not show up in the forced response but will still appear
in the natural response when the initial conditions are non-zero

Example
▶ Consider the system: ÿ + 2ẏ − 3y = u̇ − u

▶ Transfer function: G (s) =
Y (s)

U(s)
=

s − 1

s2 + 2s − 3
=

s − 1

(s + 3)(s − 1)

▶ Total response:

Y (s) =
s + 2

s2 + 2s − 3
y(0) +

1

s2 + 2s − 3
ẏ(0) +

s − 1

s2 + 2s − 3︸ ︷︷ ︸
G(s)

U(s)

▶ With bounded u(t) ≡ 0 but non-zero initial conditions y(t) is unbounded:

y(t) =
y(0)

4
(3et + e−3t) +

ẏ(0)

4
(et − e−3t)
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BIBO Stability Without Computing Poles
▶ A system with transfer function G (s) = b(s)

a(s) is BIBO stable if all poles are in

the OLHP of C

▶ Computing the poles p1, . . . , pn might not always be easy, e.g., for high-order
or symbolic characteristic polynomial:

a(s) = ans
n + . . .+ a1s + a0 = an(s − p1) · · · (s − pn)

▶ Whether the poles are in the OLHP can be verified from the coefficients of
a(s) rather than from the actual pole values

▶ Vieta’s formulas relate the coefficients of a polynomial to its roots

n∑
i=1

pi = −an−1

an

n∏
i=1

pi = (−1)n
a0
an

∑
1≤i1<i2<···<ik≤n

k∏
j=1

pij = (−1)k
an−k

an

Necessary Condition for BIBO Stability of LTI ODE Systems

If all poles of a transfer function G (s) = b(s)/a(s) are in the open left half-plane
of C, then all coefficients of the characteristic polynomial a(s) will be non-zero
and have the same sign.
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Example

▶ Consider an LTI ODE system with transfer function G (s) = b(s)/a(s) and
characteristic polynomial a(s) shown below. Is this system BIBO stable?

▶ a(s) = s3 − 2s2 + s + 1

▶ a(s) = s4 + s2 + s + 1

▶ a(s) = s3 + 2s2 + 2s + 1

▶ a(s) = s3 + 2s2 + s + 12
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Necessary and Sufficient Condition for BIBO Stability

▶ In the 1870s-1890s, Edward Routh and Adolf Hurwitz
independently developed a method for determining the
locations in C but not the actual values of the roots of a
complex polynomial with constant real coefficients

▶ Characteristic polynomial:

a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s + a0

▶ Routh-Hurwitz method
▶ construct a table with n + 1 rows from the coefficients ai

of a(s)

▶ relate the number of sign changes in the first column of
the table to the number of roots in the closed right
half-plane

E. Routh

A. Hurwitz
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Routh Table

▶ a(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s + a0

sn an an−2 an−4 · · · a0

sn−1 an−1 an−3 an−5 · · · 0

sn−2 bn−1 = −

∣∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣∣
an−1

bn−3 = −

∣∣∣∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣∣∣∣
an−1

bn−5 · · · 0

sn−3 cn−1 = −

∣∣∣∣∣∣∣∣
an−1 an−3

bn−1 bn−3

∣∣∣∣∣∣∣∣
bn−1

cn−3 = −

∣∣∣∣∣∣∣∣
an−1 an−5

bn−1 bn−5

∣∣∣∣∣∣∣∣
bn−1

cn−5 · · · 0

...
...

...
... · · ·

...

s0 a0 0 0 · · · 0

▶ Any row can be multiplied by a positive constant without changing the result
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Routh-Hurwitz BIBO Stability Criterion

Theorem: Routh-Hurwitz

Consider a Routh table constructed from a polynomial a(s). The number of sign
changes in the first column of the Routh table is equal to the number of roots of
a(s) in the closed right half-plane of C.

Corollary

An LTI ODE system with transfer function G (s) = b(s)/a(s) is BIBO stable if
and only if there are no sign changes in the first column of the Routh table of a(s).

▶ There are two special cases related to the Routh table:
1. The first element of a row is 0 but some of the other elements are not

▶ Solution: replace the 0 with an arbitrary small ϵ

2. All elements of a row are 0
▶ Solution: replace the zero row with the coefficients of dA(s)

ds
, where A(s) is an

auxiliary polynomial with coefficients from the row just above the zero row
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Example: Second-order System

▶ Consider the characteristic polynomial of a second-order system:

a(s) = as2 + bs + c

▶ The Routh table is:

s2 a c

s1 b 0

s0 − 1
b (0− bc) = c 0

▶ A necessary and sufficient condition for BIBO stability of a second-order
system is that all coefficients of the characteristic polynomial are non-zero
and have the same sign.
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Example: Third-order System

▶ Consider the characteristic polynomial of a third-order system:

a(s) = a3s
3 + a2s

2 + a1s + a0

▶ The Routh table is:

s3 a3 a1

s2 a2 a0

s1 − 1
a2
(a3a0 − a1a2) 0

s0 a0 0

▶ A necessary and sufficient condition for BIBO stability of a third-order system
is that all coefficients of the characteristic polynomial are non-zero, have the
same sign, and a1a2 > a0a3.

▶ If a1a2 = a0a3, one pair of roots lies on the imaginary axis in the s plane and
the system is marginally stable. This results in an all zero row in the Routh
table.
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Example: Higher-order System
▶ Consider the characteristic polynomial of a fifth-order system:

a(s) = s5 + s4 + 10s3 + 72s2 + 152s + 240

▶ The Routh table is:

s5 1 10 152

s4 1 72 240

s3 −62 −88 0

s2 70.6 240 0

s1 122.6 0 0

s0 240 0 0

▶ Since there are two sign changes in the first column, there are two roots in
the right half-plane and the system is unstable

▶ The roots of a(s) are:

a(s) = (s + 3)(s + 1± j
√
3)(s − 2± j4)
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Example: Special Case 1

▶ Consider the polynomial:

a(s) = s5 + 2s4 + 2s3 + 4s2 + 11s + 10

▶ The Routh table is:

s5 1 2 11

s4 2 4 10

s3 ���
ϵ

0 6 0

s2 c4 =
1
ϵ (4ϵ− 12) 10 0

s1 d4 =
1
c4
(6c4 − 10ϵ) 0 0

s0 10 0 0

▶ For 0 < ϵ ≪ 1, we see that c4 < 0 and d4 > 0

▶ Since there are two sign changes in the first column, there are two roots in
the right half-plane and the system is unstable
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Example: Special Case 1

▶ Consider the polynomial:

a(s) = s4 + s3 + 2s2 + 2s + 3

▶ The Routh table is:

s4 1 2 3

s3 1 2 0

s2 ���
ϵ

0 3 0

s1 2− 3
ϵ 0 0

s0 3 0 0

▶ For 0 < ϵ ≪ 1, we see that 2− 3
ϵ < 0

▶ Since there are two sign changes in the first column, there are two roots in
the right half-plane and the system is unstable
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Example: Special Case 2

▶ Consider the polynomial:

a(s) = s3 + 2s2 + 4s + 8

▶ The Routh table is:

s3 1 4

s2 2 8

s1 0 0

s0 8 0

▶ There is an all-zero row at s1

▶ The auxiliary polynomial is: A(s) = 2s2 + 8 = 2(s + j2)(s − j2)

▶ There are two roots on the jω-axis and the system is marginally stable
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Example: Special Case 2
▶ Consider the polynomial:

a(s) = s5 + s4 + 2s3 + 2s2 + s + 1

▶ The Routh table is:

s5 1 2 1

s4 1 2 1

s3 0 0 0

s2 1 1 0

s1 0 0 0

s0 1 0 0

▶ There is an all-zero row at s3 and s1

▶ The auxiliary polynomial at the s3 row is:

A(s) = s4 + 2s2 + 1 = (s2 + 1)2 = (s + j)(s − j)(s + j)(s − j)

▶ There are repeated roots on the jω-axis and the system is unstable

33



Example: Special Case 2

▶ Consider the polynomial:

a(s) = s5 + 4s4 + 8s3 + 8s2 + 7s + 4

▶ The Routh table is:

s5 1 8 7

s4 4 8 4

s3 6 6 0

s2 4 4 0

s1 ���
8

0 0 0

s0 4 0 0

▶ There is an all-zero row at s1 with auxiliary polynomial

A(s) = 4s2 + 4 = 4(s2 + 1) = 4(s + j)(s − j)

▶ There are two roots on the jω-axis and the system is marginally stable
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Example: Parametric System

▶ The Routh-Hurwitz stability criterion can be used to determine the range of
system parameters for which the system is stable

▶ Transfer function: T (s) = K
s3+8s2+9s+(K−18)

▶ Characteristic polynomial: a(s) = s3 + 8s2 + 9s + (K − 18)
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Example: Parametric System

▶ Characteristic polynomial: a(s) = s3 + 8s2 + 9s + (K − 18)

▶ The Routh table is:

s3 1 9

s2 8 (K − 18)

s1 90−K
8 0

s0 (K − 18) 0

▶ There will be no sign changes in the first column of the Routh table if
(90− K ) > 0 and (K − 18) > 0

▶ The system is BIBO stable if and only if 18 < K < 90
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Nonlinear Systems

▶ Most practical systems are nonlinear:
▶ No control input:

ẋ = F(x)

▶ With control input:
ẋ = f(x, u)

y = g(x, u)

▶ Common approach for nonlinear system analysis and control design:

▶ Approximate the system by a linear one around an equilibrium point xe

▶ Study the behavior of the approximate linear model:
▶ analyze the closed-loop system stability if a control law is given,

▶ design a control law using the linear open-loop model.

▶ Verify the results in the original closed-loop nonlinear system
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Linearization

▶ Linearization: linear approximation of a function f (x) in the neighborhood
of a point xe usually based on a Taylor series expansion

▶ Taylor series of infinitely differentiable function f (x) around point xe:

f (x) = f (xe)+ f ′(xe)(x− xe)+
f ′′(xe)

2!
(x− xe)

2+ . . .+
f (n)(xe)

n!
(x− xe)

n+ . . .

Examples
▶ Taylor series of f (x) around xe = 0:

ex = 1 + x +
x2

2!
+

x3

3!
+ . . .+

xn

n!
+ . . .

sin(x) = x − x3

3!
+

x5

5!
− . . .

cos(x) = 1− x2

2!
+

x4

4!
− . . .
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Linearization: No Control Input

▶ Consider a nonlinear system with equilibrium xe:

ẋ = F(x) F(xe) = 0

▶ Taylor series expansion of F(x) around xe:

F(x) =�
��*0

F(xe) +
∂F

∂x

∣∣∣∣
xe

(x− xe) + higher-order terms in (x− xe)

▶ Define a new state x̃ = x− xe to obtain a linear approximation around xe:

˙̃x ≈ Ax̃ with A =
∂F

∂x

∣∣∣∣
xe
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Example: Inverted Pendulum
▶ Consider a damped inverted pendulum:[

ẋ1
ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x2

sin(x1)− cx2

]
▶ Step 1: find equilibrium points:[

x1
x2

]
=

[
0
0

]
,

[
x1
x2

]
=

[
π
0

]
▶ Step 2: Linearize the system around an equilibrium, e.g., xe = (0, 0)

f1(x1, x2) = x2

f2(x1, x2) = sin x1 − cx2 ≈ f2(0, 0) +
∂f2
∂x1

∣∣∣∣
(0,0)

(x1 − 0) +
∂f2
∂x2

∣∣∣∣
(0,0)

(x2 − 0)

= 0 + x1 − cx2

▶ Step 3: Define a new state x̃ = x− xe to obtain a linear model:

˙̃x =

[
0 1
1 −c

]
x̃

41



Example: Inverted Pendulum
▶ Consider a damped inverted pendulum:[

ẋ1
ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
=

[
x2

sin(x1)− cx2

]
▶ Step 1: find equilibrium points:[

x1
x2

]
=

[
0
0

]
,

[
x1
x2

]
=

[
π
0

]
▶ Step 2: Linearize the system around an equilibrium, e.g., xe = (π, 0)

f1(x1, x2) = x2

f2(x1, x2) = sin x1 − cx2 ≈ f2(π, 0) +
∂f2
∂x1

∣∣∣∣
(π,0)

(x1 − π) +
∂f2
∂x2

∣∣∣∣
(π,0)

(x2 − 0)

= 0− (x1 − π)− cx2

▶ Step 3: Define a new state x̃ = x− xe to obtain a linear model:

˙̃x =

[
0 1
−1 −c

]
x̃
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Lyapunov’s First Method for Stability

▶ Lyapunov’s first method is an approach to test the stability of a nonlinear
system equilibrium by considering the system’s linearization

Theorem

Consider a nonlinear system ẋ = F(x) with equilibrium xe = 0.

▶ If all eigenvalues of A = ∂F
∂x

∣∣
xe

have negative real parts, then xe = 0 is locally
asymptotically stable.

▶ If one or more eigenvalues of A = ∂F
∂x

∣∣
xe

have positive real parts, then xe = 0
is unstable.
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Example: Inverted Pendulum Stability

▶ Consider a damped inverted pendulum with c > 0:[
ẋ1
ẋ2

]
=

[
x2

sin(x1)− cx2

]
▶ Equilibrium (0, 0): Unstable

˙̃x =

[
0 1
1 −c

]
x̃ ⇒ det

([
λ −1
−1 λ+ c

])
= λ2 + cλ− 1 = 0

▶ Equilibrium (π, 0): Stable

˙̃x =

[
0 1
−1 −c

]
x̃ ⇒ det

([
λ −1
1 λ+ c

])
= λ2 + cλ+ 1 = 0
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Example: Inverted Pendulum Linearization around (π, 0)

Figure: Comparison between the phase portraits of (a) the nonlinear system and (b) its
linear approximation around the origin. Notice that near the equilibrium point, the phase
portraits are almost identical.
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Linearization: With Control Input
▶ Consider a nonlinear system with equilibrium (xe,ue):

ẋ = f(x,u) f(xe,ue) = 0

y = h(x,u) h(xe,ue) = ye

▶ Define new state, input, and output:

x̃ = x− xe, ũ = u− ue, ỹ = y − ye

▶ Taylor series expansion of f(x,u) and h(x,u) around (xe,ue):

f(x,u) ≈�����:0
f(xe,ue) +

∂f

∂x

∣∣∣∣
xe,ue

x̃+
∂f

∂u

∣∣∣∣
(xe,ue)

ũ

h(x,u) ≈�����:ye
h(xe,ue) +

∂h

∂x

∣∣∣∣
xe,ue

x̃+
∂h

∂u

∣∣∣∣
(xe,ue)

ũ

▶ LTI system approximation:

˙̃x = Ax̃+ Bũ A =
∂f

∂x

∣∣∣∣
(xe,ue)

B =
∂f

∂u

∣∣∣∣
(xe,ue)

ỹ = Cx̃+Dũ C =
∂h

∂x

∣∣∣∣
(xe,ue)

D =
∂h

∂u

∣∣∣∣
(xe,ue)
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Linearization: Summary

Figure: General control design approach

Figure: Model linearization procedure
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