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Frequency Response
» LTI ODE System:

x = Ax + Bu

G(s)=C(sl—A)"'B+D
y = Cx + Du (s)=C(s ) B+

> Frequency response: response to a sinusoidal input u(t) = sin(wt + ¢)

Frequency Response

The steady-state response of a system with transfer function G(s) to a sinusoidal
input u(t) = sin(wt + ¢) is a sinusoid of the same frequency with amplitude
scaled by |G(jw)| and phase shifted by /G (jw):

Ys(t) = [G(jw)]sin(wt + ¢ + ZG(jw))

» The magnitude |G(jw)| is determined from the ratio of the amplitudes of
the output versus the input sinusoids

» The phase ZG(jw) is determined from the ratio of the time of the output
versus the input zero crossings



Frequency Response Proof
eiwt+e) _ g—j(wt+9)

> Euler's Formula: sin(wt + ¢) = Im(/@t+9)) = 5
-J

» Complex conjugate of G(s): G*(s) = |G(s)|e /¢

> Conjugate symmetry of G(s):
G*(s) = (/ g(t)e“dt) :/ g*(t)e " tdt
0 0
g(t) is real o _s*t *
0

> Proof: by superposition the steady-state response to u(t) = sin(wt + ¢) is:

1 1
Yss(t) = ZG(JW)e’( o) — ZG(—JW)G jotr)

1 gy 1 o ]
Z‘G(jwne,zc(;w)e/(www _ 27‘G(jw)|eﬁéc(]w)eﬂ(wt+¢)

|G(jw)|sin(wt + ¢ + LG (jw))



Empirical Transfer Function Determination

» The frequency response can be obtained empirically by applying a sinusoidal
test signal at various frequencies and recording the magnitude and phase of
the response. This can be used to identify the system’s transfer function.

1. Apply a sinusoidal signal at a fixed frequency w

2. Measure response amplitude ratio and phase lag at steady state

3. Repeat as w varies from 0 to co

Gain (log scale)

0 0 20 30 40 50 107" 10° 10’

Time [s] Frequency [rad/sec] (log scale)
(a) Time domain simulations (b) Frequency response

Figure: Gain computed by measuring system response to individual sinusoid inputs



Frequency Domain Plots

> Plotting the magnitude and phase of the transfer function G(jw) versus the
input frequency w provides insight about the behavior of a linear control
system

» The following frequency-domain plots of the transfer function are used:

> Bode plot: plot of magnitude 20log;, |G(jw)| in decibels (dB) and phase
ZG(jw) in degrees versus log;yw as w varies from 0 to co

> Polar plot: plot of Im(G(jw)) versus Re(G(jw)) as w varies from 0 to oo

> Magnitude-phase plot: plot of magnitude 20 log;, | G(jw)| in decibels (dB)
versus phase ZG(jw) in degrees as w varies from 0 to oo



Decibel Units

» Bel: relative measurement unit of log-ratio of measured power P to reference
power Py

P
Log-power ratio = log;, () Bels
Po
» Decibel: ten Bels:

P
Log-power ratio = 10log;, <P> dB
0

» The power spectral density of y(t) is the Fourier transform S, (jw) of the
autocorrelation function

» The input-output power spectral density relationship for an LTI system with
input U(s), transfer function G(s), and output Y(s) is:

Sy(jw) = Y (jw)? = |6 (jw) *|U(w)? = |G (jw)* Suu(jw)
» The log-power ratio at w in dB is:

Sy (w)

— ) = 10logyo |G(jw)|* = 20logyq | G (jw
22028 ) = 100089 |G (i) 2 = 2010810/ (i)

10logyq (
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Bode Plot

>

Hendrik Bode: a pioneer of modern control theory and
electronic telecommunications

Bode plot: represents the frequency response of a linear
system with transfer function G(s) by two plots:
> Plot of magnitude 20 log;, |G(jw)| in dB versus log;qw

> Plot of phase /G(jw) in degrees versus log;yw

H. Bode

Logarithmic scale is used for the input frequency w to capture the system
behavior over a wide frequency range

The log-scale intervals are known as decades (base 10) or octaves (base 2):
» The number of decades between w; and ws is log;, i—f

» The number of octaves between w; and w- is log, :—i

> There are log,(10) =~ 3.32 octaves in one decade

20 dB/decade

log,(10) octave/decade ~ 6 dB/OCtave

> A slope of 20 dB/decade is the same as

10



Transfer Function Magnitude and Phase

» The magnitude and phase of G(s) are needed to draw a Bode plot

bi(s)ba(s)

» Consider a transfer function G(s) = a1(s)ax(s)
1 2

» Magpnitude of G(s) in log-scale is the sum/difference of magnitudes
corresponding to terms in the numerator/denominator:

log [G(s)| = log |b1(s)| + log [b2(s)| — log [a1(s)| — log |az(s)]

> Phase of G(s) is the sum/difference of phases corresponding to terms in the
numerator/denominator:

ZG(s) = £bi(s) + £Lby(s) — ZLai(s) — ZLax(s).

11



Transfer Function in Bode Form

> Instead of computing the magnitude and phase of G(s) directly, it is
preferable to obtain rules for drawing Bode plots of individual terms

» Transfer function in Bode form: a transfer function with m; real zeros, m,
complex conjugate zero pairs, ny poles at the origin, n; real poles, and ny
complex conjugate pole pairs:

T2 (2 +1) I ((w)2 vag(2) + 1)
K
s [T, (pi + 1) m ((ws"k)z L2 (i) B 1)

» A transfer function may contain only four kinds of factors:
> Constant term: &
» Poles s™9 or zeros s? at the origin

—1
> Real poles (% + 1) or zeros (£ +1)

G(s) =

) +1
» Complex conjugate poles or zeros: ((i) +2¢ (wi,,) + 1)

» If we determine the magnitude and phase plots for these four factors, we can
add them together graphically to obtain a Bode plot for any transfer function
12



Bode Plot for a Constant Term &

» Magnitude: 20 log ||

0° if k>0

> Phase: 5= 1800 if k<0

> Example: Bode plot for G(s) = 5 and G(s) = —10

Bode Diagram for T(s) = 110

Bode Diagram for T(s) = 10

" N
" 205

s 8

g = g

s s

E E

= 20. = 19.
o o

Frequency (rad/s)

Frequency (rads)
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Bode Plot for Pole or Zero at the Origin: s9

Magnitude (dB)

> Magnitude: straight line (log scale) through the origin with slope 20g:

» Phase: a horizontal line at g90°:

20log|(jw)?| = 20q log |w|

/(jw)9 = q/(jw) = q90°

40 -
(jw), ;
(jw)
0
(o)
—40 Ger®
0.1 1 10 100

Frequency (rad/s)

Phase (deg)

180

90

-90

—180

(jw)?

(jw)

(jo)°

(joy™!

2

(jw) ™~

1 10
Frequency (rad/s)

100
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S

Bode Plot for Real Zero (2 + 1)

» Magnitude: 20log {jf + 1’ = 20log m

> Phase: /(j£+1)=tan"1¥

» Extreme w values:
» Case 1: w < z: horizontal line at 0:

20l0g|j +1| ~ 0 (£ +1) ~ 0°
> Case 2: w > z: log-scale line of slope 20 going through 0 when w = z:

. 1 ) .
20|og’1§+1’%20|og;—|—20|0gw (/£ +1) ~ 90

> Case 3: w = z (corner frequency):

20log|j% + 1| ~ 3dB (j£ +1) = 45°

15



~1
Bode Plot for Real Pole (g n 1)

(j% + 1)_1 = —20log /1 + (%)2

-1
» Phase: (j% + 1) =—tan"'%

» Magnitude: 20 log

» Extreme w values:
> Case 1: w < p: horizontal line at 0:

2 1] ~0 /(i5+1) ~0

» Case 2: w > p: log-scale line of slope —20 going through 0 when w = p:

j£+1‘~720|og1720|ogw f(jﬁ+1)71~7900
p p P

»> Case 3: w = p (corner frequency):

o) o -1 °
j% 1)~ ~3dB f(1;+1) ~ 45

—20log

—20log

—20log

16



Bode Plot for Real Pole (;

> A real pole behaves like a constant at low frequencies and like an integrator

at high frequencies

-1
T 1)

10
0 - Asymptotic
) Exact curve
Z 10 curve
L
=
g, —20
<
=
=30
—40
0

Phase (deg)
&
wn

=90

Linear

approximation

Exact

0.01p

0.1p

Ip

10p

Frequency (rad/s)

100p
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Bode Plot Example 1

» Draw a Bode plot for G(s) = 100 =

Step 1

Step 2 :

Step 3 :

(s/10+1)
(s+1)(s+100) — (s+1)(s/100+1)

: Find frequency break points (poles and zeros): 1, 10, 100

Calculate |G(0)| and ZG(0) to determine the starting points
Sketch the Bode plot by the rules:

» Magnitude increases with a zero: the slope is +20
dB/decade for a real zero

» Magnitude decreases with a pole: the slope is —20
dB/decade for a real pole

> Phases increases with a zero: by +90° starting from z/10
and ending at 10z

> Phases decreases with a pole: by —90° starting from p/10
and ending at 10p

18



Bode Plot Example 1

1041
> Draw a Bode plot for G(s) = 10(s+13'{5f100) = (s+(15)/(s/100)+1)

Magnitude (dB)

Phase (deg)

-90

Bode Diagram

107"

10° 10" 102 108
Frequency (rad/s)
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Bode Plot for Complex Conjugate Zeros

> Consider G(s) = ((w) +2<(i) 1>

» Magnitude:

w? w w\? 2 w2
|G(jw):'w%+2<wnj+1‘: <1<wn> ) + 42 (wn)

» Phase:

/G(jw) /——+2< “j4+1=tan" (1%%:’%2)

20



Bode Plot for Complex Conjugate Zeros

fle

x(z)

- (2)

n

6] = (1 - (;"H)Q>2+4<2 (2) fets = en

fle

» Extreme w values:
> Case 1: w < wy,: horizontal line at 0:

20log |G(jw)| ~ 0 /G(jw) ~ 0°

> Case 2: w > wn: log-scale line of slope 40 going through 0 when w = wp:

4
20 log | G(jw)| ~ 20 log (g) = 40logw —40logw,  /G(jw) ~ 180°

n

> Case 3: w = wp:

20log |G (jw)| = 20log(2¢) /G (jw) = 90°

21



Bode Plot for Complex Conjugate Poles
—1
» Consider G(s) = <(:n)2 +2¢ (wi) + 1>

) 1 . 1 % (“’g)
|G(Jw)‘: ~ ; G(jw):—tan 71_ <£)2
[ ) :

» Extreme w values:
» Case 1: w < wy: horizontal line at 0:

20 log |G (jw)| ~ 0 /G(jw) ~ 0°

» Case 2: w > wy: log-scale line of slope —40 going through 0 when w = w,

4
20log |G(jw)| =~ —20log (wi) = —40logw+40logw, /G(jw) =~ —180°
> Case 3: w = wp:

20log |G(jw)| = —201log(2¢) G(jw) = —90°

22



Bode Plot for Complex Conjugate Poles

(=005
0.10
0.15

10 0.20
025

1
034 05T > G(S) = 2
(2) +2¢(2)+1

» Resonant frequency: the largest

. . o1
0.1 02 03 04 0506 08 1.0 2 304 56 8 10 gain maxy, |G(jUJ)| ~ 2 occurs at
— w X Wp

Magnitude (dB)
|
s

» The asymptotic approximation is
poor near w = w, and the
magnitude and phase depend on (

0.1 02 03 04 0506 0810 2 34 56 810

= who, = Frequency ratio
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Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 log;o|G(jw)| Phase ¢(w)
1. Gain, 40 90°
G(jw) = K
o 20 ~  45°
S 201og K g
R 3 o
b1 <
£ =
& -2 K _gse
=
—40 —90°
Frequency (rad/s) Frequency (rad/s)
2. Zero, 40 90°
G(jo) = =
1+ jw/w g 2 o 45°
sy
2 i)
3 0 5 0
5 £
o A _gs0
S -20 45
—40 —90°

0.1w, N 10w,
Frequency (rad/s)

‘Copyright ©2017 pearson Education,

0.1w; e 10w,
Frequency (rad/s)

Al Rights Reserved
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Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 log;o|G(jw)| Phase ¢ (o)
3. Pole, 40 90°
G(jo) = =
(1 + jw/w)™ 2 20 5 45
=4 ()
o =
ER - 0
< ~ o
g -20 —45
—40 -90°
0.1w, [N 10w, 0.1w, [N 10w,
Frequency (rad/s) Frequency (rad/s)
4. Pole at 40 90°
the origin, _
G(jw) = 1/jo £ 20 o &
3 3
g 0 3 0
< A~ _g50
s —20 45
—40 —90°
0.01 0.1 1 10 100 0.01 0.1 1 10 100

Frequency (rad/s)

Copyright ©2017 earson Education,

Al Rights Reserved

Frequency (rad/s)
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Bode Plot Approximations for Basic Transfer Function Terms

Table 8.1 Asymptotic Curves for Basic Terms of a Transfer Function

Term Magnitude 20 log;o|G(jw)| Phase ¢(w)
5. Two complex 40 180°
poles, _
01<¢<1, 8 20 o 90
G(jw) = (1 + _g 3
j2lu — u?)! £ 0 ] 0°
U= wlw, 2] £ o
< -2 —90
—40 —180°
0.01 0.1 1 10 100 0.01 0.1 1 10 100
Frequency ratio, u Frequency ratio, u

Copyright ©2017 Pearsen Education, All Rights Reserved
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LTI Systems as Filters

» A Bode plot allows viewing a stable linear system as a filter that changes
input signals depending on the frequency range

» Low-pass filter:
2

W,
)= ot 2
» Band-pass filter: %
woS
) = o atns R
» High-pass filter:
O ——

s% 4 2Cwos + w3

27



LTI Systems as Filters

_ 10 ] _ 10’ _ 10
2 107" 5 107 /_\ 3 107
IS} S IS
107 107 107
180 q 180 180 q
5 OX g o g o
N 1 N N 1
—-180 —-180 -180
w(/100 wo 100wo wp/100  wo 100wo w(/100 wo 100wo
Frequency w [rad/s] Frequency w [rad/s] Frequency w [rad/s]
2 2 2
G(s):% G(s):&z ()2572
s2 4+ 2¢wos + wg 52 + 2Cwos + wg 52 + 2Cwos + wj
(a) Low-pass filter (b) Band-pass filter (c) High-pass filter

Figure: Bode plots for low-pass, band-pass, and high-pass filters. Each system passes
frequencies in a specific range and attenuates the frequencies outside of that range.

28



Bode Plot Example 2

k(s + b)
(s + a)(s? + 2¢wos + w?)

> Draw a Bode plot for G(s) = with a < b < wo

» Magnitude plot:
> Begin with G(0) = 2%

> At w = a, the effect o% the real pole begins and the gain decreases with slope
—20 dB/decade

> At w = b, the real zero increases the slope by 20 dB/decade, leaving a net
slope of 0 dB/decade

» This slope is used until the second-order pole affects it at w = wo by —40
dB/decade

» Phase plot:
» The approximation process is similar but effect of the poles and zeros on the
phase begin one decade earlier and terminate one decade later.

29



Bode Plot Example 2

102 gl T T EHH
Exact
_ ¢ =0 — — Approx H
3 F
= 1’k |
© 3
Ww=a El
102 =
0( T T T i
o
[}
=
.’é‘ 90 Fw = a/10 w=b/10 4
<1 w=10b
N
-180 il L L@ T L]
X 10! 10°

107!

Frequency w [rad/s|

Figure 9.15: Asymptotic approximation to a Bode plot. The solid curve is the
Bode plot for the transfer function G(s) = k(s+b)/(s+a)(s* +2¢wos +wj), where
a & b < wg. Each segment in the gain and phase curves represents a separate
portion of the approximation, where either a pole or a zero begins to have effect.
Each segment of the approximation is a straight line between these points at a
slope given by the rules for computing the effects of poles and zeros.
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Bode Plot Example 3

» Draw a Bode plot for G(s) =

4(1+0.1s)

~ s(140.5s)(1 + 0.6(s/50) + (5/50)2)

» Factors in order of their occurrence as s = jw increases:

o &~ W o

A constant gain k = 4
A pole at the origin

A pole at w =2

A zero at w =10

A pair of complex poles at w = w, = 50

31



Bode Plot Example 3

» Consider the approximate magnitude plots:

1.
2.
3.

Constant gain: 20log |x| = 14 dB
Pole at the origin: a line with slope —20 dB/decade through 0 when w =1

Pole at w = 2: horizontal line at 0 dB until the corner frequency at w = 2 and
a line with slope —20 dB/decade after

. Zero at w = 10: horizontal line at 0 dB until the corner frequency at w = 10

and a line with slope 20 dB/decade after

. Complex pole pair at w = w, = 50: horizontal line at 0 dB until the corner

frequency at w = 50 and a line with slope —40 dB/decade after

» The approximations must be corrected at the corner frequencies:
> Real zero/pole: +3dB

» Complex pair of zeros/poles: based on ¢

32



Bode Plot Example 3

20

Magnitude (dB)
=)

~10
-20
01 02 I 2 10 50 100
Frequency (rad/s)
20
=005
0.10
10 02
0.25
_ 0
g
» Complex pole pair correction: = " iie
= -2
=30
—40
0.1 0.2 03 04 0506 08 1.0 4
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Bode Plot Example 3

20 \
% —20 dB/dec

10

— —40 dB/dec
—10

/ Exact curve

Y
N

=20

Magnitude (dB)

Approximate curve —

—30

—40

-50
0.1 1 10

Frequency (rad/s)

Copyright ©2017 Pearson Education, All Rights Reserved



Bode Plot Example 3

» Consider the approximate phase plots:

1.

2
3
4.
5. Complex pole pair at w = w, = 50: phase shift of —90 deg/decade from

Constant gain: /x = 0°

. Pole at the origin: —90°
. Pole at w = 2: a line with slope —45 deg/decade from w = 0.2 to w = 20

Zero at w = 10: a line with slope 45 deg/decade from w =1 to w = 100

w =05 tow =500

» The phase characteristic for the complex pole pair should be obtained from:

Phase (deg)

0.2 03 04 0506 0810

= wle, = Trequency ratio
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Bode Plot Example 3

90

60
Zero at o = 10

30

0 ——

—30
Pole at w =2
—60

Complex poles

)
o
=
3 =90
< il s el
£ _120 Pole at origin
—150
—180
Approximate ¢(w)
-210
—240
-270
0.1 0.2 1.0 2.0 10 60 100

Frequency (rad/s)
» The exact phase shift can be evaluated at important frequencies:
/G(jw) = +Ztan’1 < ) Jthan’1 <M> —nos 7Ztan’1 ( ) Ztan (M>
—w? 0 w2 —w?

36



Bode Plot Example 4

» Draw a Bode plot for

G(s) =

(s +1)(s® + 3s + 100)

(s + 1)((s/10)? + 2(0.15)(s/10) + 1)

s2(s+ 10)(s + 100)

» Magnitude and phase at w = 0.1:

20log|G(jw)| =~ 20dB

> Magnitude slope in dB/decade:

10s2(s/10 + 1)(s/100 + 1)

/G(jw) ~ —~180°

w Zero at —1 | Zeros with w, = 10 | Double pole at 0 | Pole at —10 | Pole at —100
01-1 0 0 -40 0 0
1-10 20 0 -40 0 0

10 - 100 20 40 -40 -20 0
100 - 1000 20 40 -40 -20 -20
> Phase slope in degrees/decade:

w Zero at —1 | Zeros with w, = 10 | Double pole at 0 | Pole at —10 | Pole at —100
01-1 45 0 0 0 0
1-10 45 90 0 -45 0

10 - 100 0 90 0 -45 -45
100 - 1000 0 0 0 0 -45
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Bode Plot Example 4
» Draw a Bode plot for

(s+1)(s*+3s+100) (s+1)((s/10)2 +2(0.15)(s/10) + 1)

€)= T+ 10) (s +100) ~  10s%(s/10+ 1)(s/100 + 1)

Bode Diagram

Magnitude (dB)

Phase (deg)

-180
107 10° 10’ 102 108

Frequency (rad/s)



Bode Plot in Matlab

> Bode plot for G(s)

1

w

4(s/2+1)

= 5(2s+1)(1+0.4(s/8)+(s/8)2)

s tf(’s?);
G

bodeplot(G);

4x(s/2+1)/s/(1+2%s) /(1+0.4%(s/8) + (s/8)"2);

Bode Diagram

50

o
T

Magnitude (dB)
g
T

-100
-90

-135

-180

Phase (deg)

-225

-270

102

107

10°
Frequency (rad/s)

10!

102
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Non-Minimum Phase Systems

» Minimum phase system: a system whose transfer function poles and zeros
are in the closed left half-plane

» Non-minimum phase system: a system whose transfer function has zeros
or poles in the right half-plane

» Bode plots can also be drawn for non-minimum phase systems

» The magnitude of a transfer function does not depend on whether the zeros
and poles are in the left or right half-plane

» The phase contribution of a zero or pole in the right half-plane is always at
least as large as the phase contribution of a zero or pole in the left half-plane

41



Non-Minimum Phase Systems
» To understand the difference between minimum and non-minimum phase
systems compare the transfer functions:

s+z s—z
Gl(s):s+p Gz(s):s—l-p

> Magnitude: |Gi(jw)| = |G (jw)| = \/7%

» Phase: Gl(jwl) VS Gg(jwl)

Jo, Jo,

e

IS
IS
+

- Gls)

Gy

(a) (b)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
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Non-Minimum Phase Systems

» A minimum phase system has the smallest phase lag of all systems with the
same magnitude curve

Phase (deg)

180°

90°

OO

Nonminimum phase

Minimum
phase

X p
Frequency (rad/s)
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Non-minimum Phase Systems: Example 1

> Draw a Bode plot for G;(s) = 10255 and Gy(s) = 1025

Bode Diagram

25 —rr ——rry

- - N
o o o
T T T

Magnitude (dB)
o
T

-5
180 - —

as)
G2(S) B

135

90 -

Phase (deg)

0 i L L —
1072 107" 10° 10" 102
Frequency (rad/s)



Non-Minimum Phase Systems: Example 2

Ile IGrhppl

ZG, LG rppp [deg]

s+1

—— Nominal
— — —RHP pole

10

|
=)
=
T

-180

=270

Frequency w [rad/s]
(a) Right half-plane pole

10

(5}

LG, LGrhpy [deg)

IGIr IGrhpzl

s+1
G(S) = m Grhpp(s) = m Grhpz(s) = m

—s+1

—— Nominal
— — - RHP zero

10° 10

-180[

=270

Frequency w [rad/s]
(b) Right half-plane zero
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Non-Minimum Phase Systems: Example 3

10' 10' 10'
210 210 210
o) o) o)
107 107 107"
0 = 0 = 0F =
‘0’—180 1 ‘6’—180 3 6/—]80
N N N
-360 ; 5 -360 ; 5 . -360 ; 5 .
10° 10 10 10° 10 10 10° 10 10
Normalized frequency w/a Normalized frequency w/a

Normalized frequency wT'
(c) Right half-plane pole

(a) Time delay (b) Right half-plane zero
Figure: Bode plots of non-minimum phase systems: (a) Time delay G(s) = e™*", (b)

system with right half-plane zero G(s) = (a —s)/(a+ s), (c) system with right
half-plane pole G(s) = (s + a)/(s — a). The corresponding minimum phase system has

transfer function G(s) =1 in all cases.
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Non-Minimum Phase System Control

» The presence of poles and zeros in the right half-plane imposes limitations on
the achievable control performance

» The extra phase causes difficulty fot control because there is a delay between
applying an input and seeing its effect

» Zeros depend on the relationship of inputs and outputs of a system. They
can be changed by moving or adding sensors and actuators

» Poles are intrinsic to a system and do not depend on sensors or actuators
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Outline

Polar Plot
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Polar Plot

> Polar plot: a plot of Im(G(jw)) versus Re(G(jw)) of a transfer function
G(jw) as w varies from 0 to co

» A polar plot contains less information than a Bode plot because the
frequency values w are not captured

» The general shape of the polar plot can be determined from:
> Magnitude |G(jw)| and phase /G(jw) at w =0 and w = 0

» Intersection of the polar plot with the real and imaginary axes

49



Polar Plot: Type 0 System

1

> Draw a polar plot for G(s) = 177

> Magnitude: |G(jw)| = \/ﬁ

» Phase: /G(jw) = —tan H(wT)

> Polar plot: [G(j0)| =1, /G(j0) = 0; |G(joo)| =0, /G(joo) = —90°

jimG 4

G (jw)-plane

0 Jtan’l ol I ReG

Phasor of G(jw)

1+ 'T?
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Polar Plot: Type 0 System

>

v

v

v

v

v

1+ Tos
1+ Tis

Draw a polar plot for G(s) =

. . . - 14+w2 T2
Magnitude: |G(jw)| = \/Tiﬂ'j?

Phase: /G(jw) = tan 1 (wTy) —tan Y (wTy)

The polar plot depends on the relative magnitudes of T; and T,

ImG 4 G( jw)-plane

If T, > Ti: w—
(T,>T))
GUw)>1  /G(jw) >0
If T1 > To: 01 = T/Tm=xR G
w=% 21 e
G(jw)| <1 G(jw) <0 -w
GUe) <1 /6) <
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Polar Plot: Type 0 System

» Draw a polar plot for G(s) = m

> Magnitude |G(jw)| and phase /G(jw) at w = 0 and w = oc:

G(j0) = r/0° G(joo) = 0/-180°
Polar plot of G(s) = 2/((s+2)(s+4))
9
120 60
02
150 o
01
180 0
210 330

240 300

270



Polar Plot: Type 1 System

» Draw a polar plot for G(s) = S(T”Ts)

> Magnitude |G(jw)| and phase /G(jw): .

—kr  —kt/2

66 =~y 7.
’ w? + wir? A | 13

) T . )
G(jw) = —5 —tan (wT)

Im[G]

w=

A=

> Valuessat w =0, w=1/7, w=00:
G(j0) = oo/—90°
1 KT
G i~y — _1 o w—0|
(7) = 5/1%5° |
G(joo) = 0/—180°

» Asymptote as w — 0:

|
I
I
|
|
|
|
I
I
I
|
: Increasing
I
I
|
I
|
I
I

r Smf\\uw_i(l—ij):—m'—jE
w

Gjw)= ———— =
() Jjw(l 4 Tjw) Jjw
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Polar Plot: Type 1 System

» Draw a polar plot for G(s) = m

> Magnitude |G(jw)| and phase /G(jw) at w = 0 and w = oc:

G(j0) = oo/—90° G(joo) = 0/—270°
Polar plot of G(s) = 2/(s(s+2)(s+4))
9
120 60
2
150 30
1
180 0
210 330

240 300

270



Polar Plot: Type 2 System

» Draw a polar plot for G(s) = zrrraarny

> Magnitude |G(jw)| and phase /G(jw) at w = 0 and w = oc:

G(j0) = co/—180° G(joo) = 0/—360°
Polar plot of G(s) = 2/(s"2(s+2)(s+4))
90
120 60
20
150 30
10
w o T 0

210 330

240 300

270
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Polar Plot in Matlab
> Nyquist plot for G(s) = saraymroars 87 /8R)

1

4(s/2+1)

s = tf(’s?);
G

nyquistplot (G);

4% (s/2+1)/s/(1+2%s) /(1+0.4%(s/8) + (s/8)72);

Nyquist Diagram

0.5 T T
6 dB.4 dB2 dED dB2/ dkdB 6 dB
10dB -10d8B
)
20 dB ,?nqzo dB
(
0 + f \
‘if /
@ )
x
<<
£ 05
£
o
8
E
a1k
/
/
s / ‘ ‘
2 15 1 -0.5 0 0.5 1

Real Axis
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Outline

Magnitude-Phase Plot
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Magnitude-Phase Plot

» Magnitude-phase plot: a plot of the magnitude 20 log;o |G(jw)]| in dB
versus the phase /G(jw) in degrees as w varies from 0 to oo

» A magnitude-phase plot can be obtained from the information on a Bode plot
» A magnitude-phase plot is shifted up or down when the gain factor  varies

» The Bode plot property of adding plots of individual components does not
carry over
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Magnitude-Phase Plot

40

0.1
30 I

0.3/
20

0.6
1.0

Magnitude (dB)
o

3644
~10 S
7/
20
104
-30
70 225 180 135 90
Phase (deg)

Copyright £2017 Pearson £t

(@) 61(5) = e

40

30

20

Magnitude (dB)
=

—20

—30

0.1

0.2

0.5

e

40
51 ]

61
70

0
—270 —225

Copyrignt ©2017 Pe

—180 —135 —90
Phase (deg)

(b) Go(s) = S 5(s/10+1)

140.6(s/50)+(s/50)2)
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Magnitude-Phase Plot

. _ 10(s+10)
> Draw a polar plot and a magnitude-phase plot for G(s) = 12515
40 S
i
J
30
20 T T T
jImG 4 =1 rad/sec
10
G-plane 0 Phase crossover ™ Gain crossover
= 5.78 rad/sec = 3.88 rad/sec
5 -10 I ] I
Phase crossover| 2
5.78 rad/sec g 20 =10 rad/sec
0= H
1 0 TRl W
Gain crossover
3.88 rad/sec -40 =30 rd \
=50 \
—-60 =100 rad W
-70
3
|
8

-80
-270.0 -2475 -225.0 -202.5 -180.0 -157.5 -1350 -1125 -90.0
Phase (deg)




Magnitude-Phase Plot in Matlab

. o 4(s/2+1)
» Nichols plot for G(s) = 5(2s+1)(145(5)'4(5/8)“5/8)2)

1 s = t£(’s’);
G = 4x(s/2+1)/s/(1+2%s)/(1+0.4%(s/8) + (s/8)"2);
3 nicholsplot(G);

Nichols Chart
20 T

1dB~

Open-Loop Gain (dB)

40 L L

vo-12.dB]

. -6dB+|

| 2008

-40.dB

20 -225 -180 -135 -90
Open-Loop Phase (deg)

-45
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