ECE171A: Linear Control System Theory Lecture 3: System Modeling

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

System Modeling

- ▶ A **model** is a mathematical representation of a dynamical system
- ▶ Models allow us to make predictions about how a system will behave
- ▶ There may be multiple models for a single dynamical system
- All models are approximations of the real system behavior
- ▶ Whether we choose a simple coarse model or a complex precise model depends on the questions we wish to answer

System Modeling

- Dynamic behavior can be described in several ways:
 - ordinary differential equations (ODEs) in continuous time
 - **partial differential equations** (PDEs) when the system behavior is determined by other variables in addition to time
 - difference equations (DEs) in discrete time
- ▶ The relationships among the variables and their derivatives in these equations may be linear or nonlinear
- ► The coefficients of these equations may be invariant or varying
- We will focus on linear time-invariant (LTI) ordinary differential equations (ODEs)

Why LTI ODEs?

- Many practically relevant systems can be modeled as LTI ODEs:
 - ► Electric circuits (e.g., RLC circuits), mechanical systems (e.g., spring-mass systems, rigid-body robots), thermal systems, fluid systems, etc.
- Many techniques have been developed for LTI ODE analysis and design:
 - Classical control analysis tools: step, impulse, and frequency response, Bode/Nyquist/Nichols plots, gain/phase margins
 - Classical control design tools: loop shaping, PID control, pole placement
 - Optimal estimation and control: Kalman filter and linear quadratic regulator (LQR)
 - ▶ Robust control design: \mathcal{H}_2 and \mathcal{H}_∞ control design and μ analysis for structural uncertainty
- ► LTI ODE techniques provide a foundation for nonlinear system analysis and control (e.g., via linearization)

Differential Equations

A differential equation is any equation involving a function and its derivatives

 $Example: \frac{d}{dt}y(t) = -y(t)$

- ► A **solution to a differential equation** is any function that satisfies the equation and its initial conditions
 - Example: a solution to the differential equation above is:

$$y(t) = e^{-t}$$

Another solution is

$$y(t) = 2e^{-t}$$

A general solution is

$$y(t) = e^{-t}y(0).$$

where $y(0) \in \mathbb{R}$ is the initial value of y(t) at t = 0.

▶ When the variable is time *t*, we will use short-hand derivative notation:

$$\frac{d}{dt}y(t) \equiv \dot{y}(t) \qquad \frac{d^2}{dt^2}y(t) \equiv \ddot{y}(t) \qquad \cdots \qquad \frac{d^n}{dt^n}y(t) \equiv y^{(n)}(t)$$

Ordinary Differential Equations

nth-order linear time-invariant ordinary differential equation:

$$\frac{d^{n}}{dt^{n}}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_{1}\frac{d}{dt}y(t) + a_{0}y(t) = u(t)$$

- ▶ If $u(t) \equiv 0$, then the *n*th-order LTI ODE is called **homogeneous**
- \blacktriangleright A particular solution is a solution y(t) that contains no arbitrary constants
- \blacktriangleright A **general solution** is a solution y(t) that contains n arbitrary constants
- An initial value problem is an LTI ODE with initial value constraints:

$$y(t_0) = y_0, \quad \dot{y}(t_0) = y_1, \quad \dots, \quad y^{(n-1)}(t_0) = y_{n-1}.$$

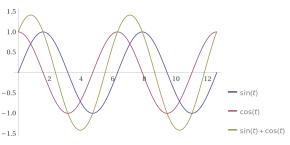
Theorem: Existence and Uniqueness of Solutions

Let u(t) be continuous on an interval $\mathcal{I}=[t_1,t_2]$. Then, for any $t_0\in\mathcal{I}$, a solution y(t) of the initial value problem exists on \mathcal{I} and is unique.

- Consider the homogeneous linear ODE: $\frac{d^2}{dt^2}y(t) + y(t) = 0$
- ► Two particular solutions are:

$$y_1(t) = \cos(t)$$
 \Rightarrow $\frac{d^2}{dt^2}\cos(t) = -\cos(t)$
 $y_2(t) = \sin(t)$ \Rightarrow $\frac{d^2}{dt^2}\sin(t) = -\sin(t)$

▶ In fact, any linear combination $y(t) = c_1y_1(t) + c_2y_2(t)$ with $c_1, c_2 \in \mathbb{R}$ is also a solution



Superposition Principle for Homogeneous Linear ODEs

Let $y_1, y_2, ..., y_k$ be solutions to a homogeneous nth-order linear ODE on an interval \mathcal{I} . Then, any linear combination:

$$y(t) = c_1y_1(t) + c_2y_2(t) + \ldots + c_ky_k(t)$$

is also a solution, where c_1, c_2, \ldots, c_k are constants.

Superposition Principle for Nonhomogeneous Linear ODEs

For i = 1, ..., k, let $y_{p_i}(t)$ denote particular solutions to the linear ODEs:

$$\frac{d^n}{dt^n}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_1\frac{d}{dt}y(t) + a_0y(t) = u_i(t).$$

Then, $y_p(t) = c_1 y_{p_1}(t) + c_2 y_{p_2}(t) + \ldots + c_k y_{p_k}(t)$ is a particular solution of:

$$\frac{d^n}{dt^n}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_1\frac{d}{dt}y(t) + a_0y(t)$$

$$= c_1u_1(t) + c_2u_2(t) + \ldots + c_ku_k(t),$$

where c_1, c_2, \ldots, c_k are constants.

Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

First-Order Homogeneous LTI ODE

First-order homogeneous LTI ODE:

$$\dot{y}(t) = ay(t), \qquad y(0) = b$$

- ► Ansatz ("attempt" in German): an educated guess or an additional assumption made to help solve a problem, which may later be verified
- Guess the solution to the LTI ODE above:

$$y(t) = e^{at}b$$

- ► Proof:
 - 1. Initial condition: $y(0) = e^{a0}b = b$
 - 2. Differential equation:

$$\frac{d}{dt}y(t) = \frac{d}{dt}e^{at}b = ae^{at}b = ay(t)$$

First-Order Homogeneous LTI ODE

First-order homogeneous LTI ODE:

$$\dot{y}(t) = ay(t), \qquad y(0) = b$$

- Can we obtain a solution without an Ansatz?
- ► Suppose $y(t) \neq 0$:

$$\frac{1}{y(t)}\frac{dy(t)}{dt} = a$$

Recall that by the chain rule:

$$\frac{d}{dt}\log y(t) = \frac{1}{y(t)}\frac{dy(t)}{dt}$$

Now, we can integrate both sides:

$$\frac{d}{dt}\log y(t) = a$$
 \Rightarrow $\int_0^t \frac{d}{d\tau}\log y(\tau)d\tau = \int_0^t ad\tau$

▶ By the fundamental theorem of Calculus:

$$\log y(t) - \log y(0) = at$$
 \Rightarrow $y(t) = e^{at}b$

First-Order Nonhomogeneous LTI ODE

First-order nonhomogeneous LTI ODE:

$$\dot{y}(t) + ay(t) = u(t),$$

where $a \in \mathbb{R}$ is a given constant and u(t) is a given function

- ▶ Integrating factor: multiply both sides by $\mu(t) = e^{at}$
- ► Since $\dot{\mu}(t) = a\mu(t)$, we have:

$$rac{d}{dt}(\mu(t)y(t))=\dot{\mu}(t)y(t)+\mu(t)\dot{y}(t)=\mu(t)(ay(t)+\dot{y}(t))=\mu(t)u(t)$$

Let $\mu(t)y(t)=g(t)$ and $\mu(t)u(t)=h(t)$ and integrate both sides:

$$\dot{g}(t) = h(t) \quad \Rightarrow \quad \int_0^t \dot{g}(\tau) d\tau = \int_0^t h(\tau) d\tau \quad \Rightarrow \quad g(t) = \int_0^t h(\tau) d\tau + g(0)$$

► Thus, the general solution is:

$$y(t) = \frac{1}{\mu(t)} \left(\int_0^t \mu(\tau) u(\tau) d\tau + y(0) \right) = e^{-at} \left(\int_0^t e^{a\tau} u(\tau) d\tau + y(0) \right)$$

Example 2: First-Order Nonhomogeneous LTI ODE

► Consider a first-order nonhomogeneous LTI ODE with positive input:

$$\dot{y}(t) + 2y(t) = 5, \qquad y(0) = 1$$

- ▶ Integrating factor: $\mu(t) = e^{2t}$
- ► The solution is

$$y(t) = e^{-2t} \left(\int_0^t 5e^{2\tau} d\tau + y(0) \right) = e^{-2t} \left(\frac{5}{2} e^{2t} - \frac{5}{2} + y(0) \right) = \frac{5}{2} - \frac{3}{2} e^{-2t}$$

- Initial condition: $y(0) = \frac{5}{2} \frac{3}{2} = 1$
- ► Verify the LTI ODE:

$$\dot{y}(t) + 2y(t) = -\frac{3}{2}(-2)e^{-2t} + 5 - 3e^{-2t} = 5$$

Example 3: First-Order Nonhomogeneous LTI ODE

► Consider a first-order nonhomogeneous LTI ODE with negative input:

$$\dot{y}(t) + 2y(t) = -5, \qquad y(0) = 1$$

▶ Integrating factor $\mu(t) = e^{2t}$ and solution:

$$y(t) = e^{-2t} \left(\int_0^t -5e^{2\tau} d\tau + y(0) \right) = e^{-2t} \left(-\frac{5}{2}e^{2t} + \frac{5}{2} + 1 \right)$$

- ▶ Initial condition: $y(0) = -\frac{5}{2} + \frac{7}{2} = 1$
- ► Check that $y(t) = \frac{7}{2}e^{-2t} \frac{5}{2}$ is a solution:

$$\dot{y}(t) + 2y(t) = -\frac{7}{2}(-2)e^{-2t} - 7e^{-2t} - 5 = -5$$

Integration by Parts

Indefinite integral form:

$$\int u(t)\dot{v}(t)dt = u(t)v(t) - \int \dot{u}(t)v(t)dt$$

Definite integral form:

$$\int_a^b u(t)\dot{v}(t)dt = u(b)v(b) - u(a)v(a) - \int_a^b \dot{u}(t)v(t)dt$$

▶ Integration by parts is useful to find antiderivatives of terms such as te^{2t} and e^{2t} sin t

Example 4: First-Order LTI ODE with Polynomial Input

Consider a first-order nonhomogeneous LTI ODE with polynomial input:

$$\dot{y}(t) + 2y(t) = t, \qquad y(0) = 1$$

▶ Integration by parts with u(t) = t and $v(t) = \frac{1}{2}e^{2t}$:

$$y(t) = e^{-2t} \left(\int_0^t e^{2\tau} \tau d\tau + y(0) \right) = e^{-2t} \left(\frac{te^{2t}}{2} - \frac{e^{2t}}{4} + \frac{1}{4} + 1 \right)$$
$$= \frac{1}{2}t - \frac{1}{4} + \frac{5}{4}e^{-2t}$$

- Initial condition: $y(0) = -\frac{1}{4} + \frac{5}{4} = 1$
- Verify the LTI ODE:

$$\dot{y}(t) + 2y(t) = \frac{1}{2} + \frac{5}{4}(-2)e^{-2t} + t - \frac{1}{2} + \frac{5}{2}e^{-2t} = t$$

Example 5: First-Order LTI ODE with Trigonometric Input

Consider a first-order nonhomogeneous LTI ODE with trigonometric input:

$$\dot{y}(t) + 2y(t) = \sin(t), \qquad y(0) = 1$$

▶ Integration by parts with $u(t) = \sin(t)$ and $v(t) = \frac{1}{2}e^{2t}$:

$$I = \int_0^t e^{2\tau} \sin(\tau) d\tau \frac{\frac{u(t) = \sin(t)}{v(t) = e^{2t}/2}}{\frac{u(t) = \cos(t)}{v(t) = e^{2t}/4}} \frac{1}{2} e^{2t} \sin(t) - \int_0^t \frac{1}{2} e^{2\tau} \cos(\tau) d\tau$$

$$\frac{\frac{u(t) = \cos(t)}{v(t) = e^{2t}/4}}{\frac{1}{2}} e^{2t} \sin(t) - \frac{1}{4} e^{2t} \cos(t) + \frac{1}{4} - \int_0^t \frac{1}{4} e^{2\tau} \sin(\tau) d\tau$$

$$= \frac{1}{2}e^{2t}\sin(t) - \frac{1}{4}e^{2t}\cos(t) + \frac{1}{4} - \frac{1}{4}I \quad \Rightarrow I = \frac{1}{5}e^{2t}(2\sin(t) - \cos(t)) + \frac{1}{5}$$

► Solution:
$$y(t) = e^{-2t} (I + y(0)) = \frac{1}{\epsilon} (2\sin(t) - \cos(t)) + \frac{6}{\epsilon} e^{-2t}$$

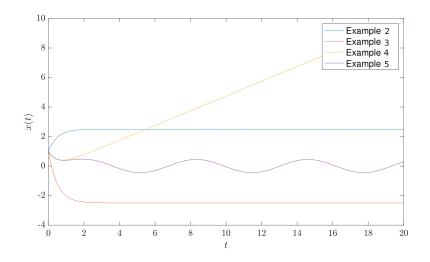
Initial condition:
$$y(0) = -\frac{1}{5} + \frac{6}{5} = 1$$

► Verify the LTI ODE:

$$\dot{y}(t) + 2y(t) = \frac{1}{5}(2\cos t + \sin t) + \frac{6}{5}(-2)e^{-2t} + \frac{1}{5}(4\sin t - 2\cos t) + \frac{12}{5}e^{-2t}$$

$$= \sin t$$

Simulation of First-Order LTI ODE Solutions



Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAE

State-Space Model

► An *n*th-order LTI ODE:

$$\frac{d^{n}}{dt^{n}}y(t) + a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t) + \ldots + a_{1}\frac{d}{dt}y(t) + a_{0}y(t) = u(t)$$

can be reformulated into a first-order vector LTI ODE of the form:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

Define variables:

$$x_1(t) = y(t),$$
 $x_2(t) = \frac{d}{dt}y(t),$..., $x_n(t) = \frac{d^{n-1}}{dt^{n-1}}y(t)$

▶ The *n*th-order linear ODE specifies the following relationships:

$$\dot{x}_{1}(t) = x_{2}(t)
\dot{x}_{2}(t) = x_{3}(t)
\vdots
\dot{x}_{n-1}(t) = x_{n}(t)
\dot{x}_{n}(t) = -a_{0}x_{1}(t) - a_{1}x_{2}(t) - \dots - a_{n-1}x_{n}(t) + u(t)$$

State-Space Model

- Let $\mathbf{x}(t) := \begin{bmatrix} x_1(t) & x_2(t) & \cdots & x_n(t) \end{bmatrix}^{\top}$ be a vector called system **state**
- ightharpoonup The forcing function u(t) is called system **control input**
- ▶ A **state-space model** of the *n*th-order linear ODE is obtained by rewriting the equations in vector-matrix form:

$$\dot{\mathbf{x}}(t) = \underbrace{\begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & \cdots & -a_{n-1} \end{bmatrix}}_{\mathbf{A}} \mathbf{x}(t) + \underbrace{\begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}}_{\mathbf{B}} u(t)$$

▶ The system **output** y(t) can be obtained from the state $\mathbf{x}(t)$ as:

$$y(t) = \underbrace{\begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}}_{\mathbf{c}} \mathbf{x}(t)$$

State-Space Model

► An LTI ODE state-space model of a dynamical system is:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

with:

state: x ∈ ℝⁿ
 input: u ∈ ℝ^m

output: $\mathbf{y} \in \mathbb{R}^p$

> parameters: $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{D} \in \mathbb{R}^{p \times m}$

- **Single-input single-output (SISO) system**: m = p = 1
- ▶ Multi-input multi-output (MIMO) system: m, p > 1

State-Space Model Variables

- State-space model variables:
 - State: consists of variables that capture information from the past motion of the system sufficient to predict the future motion
 - ▶ Input: consists of external effects acting on the system
 - Output: consists of measured variables
 - ▶ Parameters: describe the state evolution in the form of an update rule
- ► The choice of state is not unique:
 - There may be many choices of variables that are sufficient to describe the system evolution
- ► The choice of input and output depends on the point of view
 - ▶ Inputs in one model might be outputs of another model (e.g., the output of a cruise controller provides the input to the vehicle model)
 - Outputs are variables (often states) that can be measured and depend on what components of the system interact with external system components

Historical Perspective

- ▶ In the 1940s, when control theory emerged as a discipline, modeling was strongly influenced by *input-output models* used in electrical engineering
- ▶ An algebraic relationship, called **transfer function**, between the input and the output of an LTI ODE system can be obtained by transforming it from the time domain to the complex domain via a **Laplace transform**
- ▶ In the 1950s, a second wave of control developments, inspired by mechanics, focused on *state-space models*
- ▶ Both perspectives provide useful and often distinct information about the system behavior and offer different tools for control analysis and design
- State-space techniques generalize more directly and are easier to use for MIMO systems

Nonlinear ODEs

▶ In general, we may have a nonlinear ODE initial value problem:

$$\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t)), \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

lacktriangle A function ${f s}(t)$ is a **solution** to the initial value problem on interval $[t_0,t_{
m f}]$ if:

$$\mathbf{s}(t_0) = \mathbf{x}_0$$
 and $\frac{d}{dt}\mathbf{s}(t) = \mathbf{F}(\mathbf{s}(t)), \ orall t_0 < t < t_{\mathrm{f}}$

- If the function F(x) is well-behaved (Lipschitz continuous), then the initial value problem has a **unique solution**
- ► A nonlinear ODE initial value problem:
 - ▶ may not have a solution (Example 5.2 in Åström & Murray: $\dot{x} = x^2$)
 - lacktriangle may not have a unique solution (Example 5.3 in Åström & Murray: $\dot{x}=2\sqrt{x}$)

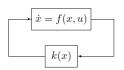
Nonlinear Systems

Nonlinear state-space model:

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), \mathbf{u}(t)) \end{cases} \qquad \text{v.s.} \qquad \begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases}$$

- **Control problem**: design a function $\mathbf{u} = \mathbf{k}(\mathbf{x})$, called **feedback control law**, such that:
 - **Regulation problem**: the state converges to zero: $\mathbf{x}(t) \rightarrow \mathbf{0}$
 - **Servo problem**: the state tracks a reference signal: $\mathbf{x}(t) \rightarrow \mathbf{r}(t)$
- Closed-loop system:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{k}(\mathbf{x})) = \mathbf{F}(\mathbf{x})$$



Discrete-Time Systems

- It some situations, it is natural to describe the evolution of a system at discrete instants of time rather than continuously in time
- ► Time step: k = 0, 1, 2, ...
- ▶ **Discrete-time nonlinear system**: modeled by nonlinear difference equation:

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k, \mathbf{u}_k)$$

 $\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k, \mathbf{u}_k)$

▶ Discrete-time linear system: modeled by linear difference equation:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$$
 $\mathbf{y}_k = \mathbf{C}\mathbf{x}_k + \mathbf{D}\mathbf{u}_k$

Outline

System Modeling

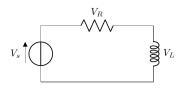
Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

RL Circuit



R : Resistance

L: Inductance

 $V_R = Ri$: Resistor

 $V_L = L \frac{di}{dt}$: Inductor

Kirchhoff's voltage law:

$$V_S - V_R - V_L = 0$$

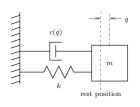
System model:

$$L\frac{di}{dt} = V_S - Ri$$

- State-space model:
 - Variables: x = i, $u = V_S$, $y = V_R$
 - ► Model:

$$\dot{x} = -\frac{R}{L}x + \frac{1}{L}u$$
$$y = Rx$$

Spring-Mass System



m = mass

F =external force

c = friction (damper)

k =spring stiffness

q = deviation from rest position

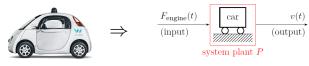
System model: from Newton's second law:

$$m\ddot{q} + c\dot{q} + kq = F$$

- State-space model:
 - ▶ Variables: $x_1 = q$, $x_2 = \dot{q}$, $y = x_1 = q$, u = F
 - ► Model:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{1}{m}(-cx_2 - kx_1 + u) \end{bmatrix} \Leftrightarrow \begin{cases} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{c}{m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0u \end{cases}$$

Speed Control



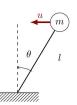
- ▶ **Variables**: position p, velocity v, engine force F_{engine} , mass m, gravity acceleration g, road slope θ
- **System model**: from Newton's second law:

$$\dot{p} = v$$
 $m\dot{v} = F_{\text{engine}} - mg \sin \theta$

- State-space model:
 - ▶ Variables: $x_1 = p$, $x_2 = \dot{p}$, $y = x_2 = v$, $u_1 = F_{\text{engine}}$, $u_2 = g \sin(\theta)$
 - ► Model:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{1}{m}u_1 - u_2 \end{bmatrix} & \Leftrightarrow \begin{cases} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{1}{m} & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \\ y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \end{cases}$$

Inverted Pendulum



m = mass I = length u = external force

 $\theta = \mathsf{angle}$

- ► **Torque**: $T = mgl\sin\theta ul\cos\theta$
- ▶ Moment of inertia: $J = ml^2$
- **System model**: from Newton's second law:

$$ml^2\ddot{\theta} = mgl\sin\theta - ul\cos\theta$$

- ► State-space model:
 - Variables: $x_1 = \theta$, $x_2 = \dot{\theta}$, $y = \theta$
 - Model (nonlinear):

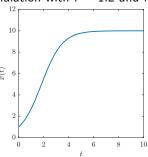
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{x_2}{mgl\sin(x_1) - ul\cos(x_1)} \\ \frac{ml^2}{ml^2} \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 0u$$

Population Dynamics

- ▶ Population growth is a complex dynamic process that involves the interaction of one or more species with their environment and the larger ecosystem
- **Variables**: x(t): species population at time t, b: birth rate, d: death rate, r = (b d): differential birth rate, k: carying capacity of the environment
- Logistic growth model:

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{k}\right), \quad x \ge 0$$

▶ Logistic growth model simulation with r = 1.2 and k = 10:



Outline

System Modeling

Solving First-Order LTI ODEs

State-Space Models

Examples

Solving ODEs in MATLAB

Numerical ODE Solutions: Matlab ode45

Matlab ode45 function:

```
[t,x] = ode45(odefun,tspan,x0)
```

- **odefun**: function f defining the ode $\dot{x} = f(t, x)$
- **tspan**: time interval $[t_0, t_f]$
- **x0**: initial condition x_0
- detailed description:

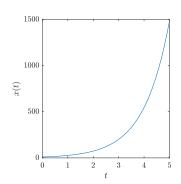
https://www.mathworks.com/help/matlab/ref/ode45.html

Consider the initial value problem:

$$\dot{x}=x, \qquad x(0)=10$$

▶ Determine the solution for $t \in [0, 5]$

```
%---- Example 1 -----
% \dot x = x,
% with x(0) = 10
%-----
f1 = @(t,x)(x); % vector field
[ts,xs] = ode45(f1,[0,5],10);
plot(ts,xs);
```

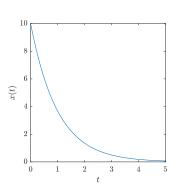


Consider the initial value problem:

$$\dot{x} = -x, \qquad x(0) = 10$$

▶ Determine the solution for $t \in [0, 5]$

```
%---- Example 2 -----
% \dot x = -x,
% with x(0) = 10
%------
f2 = @(t,x)(-x); % vector field
[ts,xs] = ode45(f2,[0,5],10);
plot(ts,xs);
```



► Consider the initial value problem:

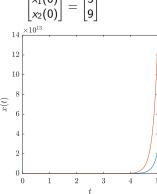
$$\ddot{z} - 3\dot{z} - 18z = 0,$$
 $z(0) = 3, \ \dot{z}(0) = 9$

- ▶ Determine the solution for $t \in [0, 5]$
- State-space model:
 - Variables: $x_1(t) = z(t)$ and $x_2(t) = \dot{z}(t)$
 - Model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 18 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \qquad \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$$

```
%----- Example 3 ------
% \ddot z - 3 \dot z - 18 z = 0
% with z(0) = 3, \dot z(0) = 9
%------
[ts,xs] = ode45(@f3,[0,5],[3;9]);
plot(ts,xs);

function dx = f3(t,x)
   dx = [0 1; 18 3]*x;
end
```



Example 4 & 5

```
%----- Example 4 -----
 \dot z + 6 \det z + 9z = 0
  with z(0) = 2, dot z(0) = -4
[ts, ys] = ode45(@f4, [0,5], 10);
function dx = f4(t,x)
  dotx = [0 1; -9 -6]*x;
end
%----- Example 5 -----
\frac{1}{2} \cdot \frac{1}{2} = 0
  with z(0) = 3, dot z(0) = 17
[ts,ys] = ode45(@f5,[0,20],[3;17]);
function dx = f5(t,x)
  dx = [0 \ 1: -13 \ 6] *x:
end
```

