ECE171A: Linear Control System Theory Lecture 4: ODE Solutions

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

Outline

Examples

Linear Properties of LTI Systems

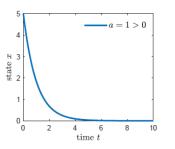
LTI ODE Solution

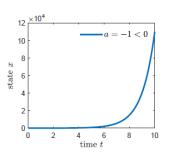
Example 1: Scalar System

Consider the scalar system:

$$\dot{x} = -ax, \qquad x(0) = x_0$$

▶ The unique solution is $x(t) = e^{-at}x_0$





Example 2: Decoupled Two-Dimensional System

Consider the system:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} -a & 0 \\ 0 & -b \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

► The unique solution is:

$$x_1(t) = e^{-at}x_1(0), \qquad x_2(t) = e^{-bt}x_2(0)$$

Note the vector form of the solution:

$$\mathbf{x}(t) = \begin{bmatrix} e^{-at} & 0 \\ 0 & e^{-bt} \end{bmatrix} \mathbf{x}(0)$$

Example 3: Double Integrator

▶ Consider the following system with constant $a \in \mathbb{R}$:

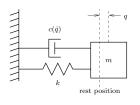
$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ a \end{bmatrix}$$

- ▶ Interpret the system state as position $x_1(t)$ and velocity $x_2(t)$
- Determine the velocity solution first
- ► The unique solution is:

$$x_1(t) = x_1(0) + x_2(0)t + \frac{1}{2}at^2$$

 $x_2(t) = x_2(0) + at$

Example 4: Damped Oscillator (Spring-Mass System)



$$m = mass$$
 $F = external force$
 $c = friction (damper)$
 $k = spring stiffness$
 $q = position$

System model: from Newton's second law:

$$m\ddot{q} + c\dot{q} + kq = F$$

Free response: let F = 0:

$$m\ddot{q} + c\dot{q} + kq = 0 \quad \Rightarrow \quad \ddot{q} + \frac{c}{m}q + \frac{k}{m}q = 0$$

▶ Introduce damping ratio ζ and natural frequency ω_0 parameters:

$$2\zeta\omega_0 = \frac{c}{m}, \quad \omega_0^2 = \frac{k}{m} \quad \Rightarrow \quad \ddot{q} + 2\zeta\omega_0\dot{q} + \omega_0^2q = 0$$

Example 4: Damped Oscillator (Spring-Mass System)

► State variables:

$$x_1 = q, \qquad x_2 = rac{\dot{q}}{\omega_0}$$

State-space model:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \omega_0 x_2 \\ -\omega_0 x_1 - 2\zeta\omega_0 x_2 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & -2\zeta\omega_0 \end{bmatrix}}_{A} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Assume $\zeta < 1$ (underdamped oscillator) and define the damped frequency:

$$\omega_{\rm d} = \omega_0 \sqrt{1-\zeta^2}$$

► The unique solution is:

$$\begin{aligned} x_1(t) &= e^{-\zeta\omega_0 t} \left(x_1(0) \cos(\omega_{\mathrm{d}} t) + a_1 \sin(\omega_{\mathrm{d}} t) \right) \\ x_2(t) &= e^{-\zeta\omega_0 t} \left(x_2(0) \cos(\omega_{\mathrm{d}} t) + a_2 \sin(\omega_{\mathrm{d}} t) \right) \end{aligned}$$

where a_1, a_2 are constants depending on the initial conditions $x_1(0), x_2(0)$:

$$a_1 = rac{1}{\omega_{
m d}}(\omega_0\zeta x_1(0) + x_2(0)), \qquad a_2 = -rac{1}{\omega_{
m d}}(\omega_0^2x_1(0) + \omega_0\zeta x_2(0))$$

Example 4: Damped Oscillator (Spring-mass System)

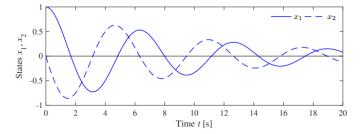


Figure 5.1: Response of the damped oscillator to the initial condition $x_0 = (1,0)$. The solution is unique for the given initial conditions and consists of an oscillatory solution for each state, with an exponentially decaying magnitude.

Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

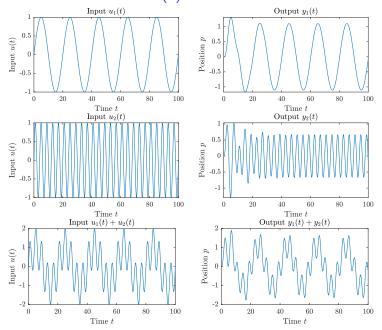
LTI ODE System

Consider the LTI ODE system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$
 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

- ▶ The output y(t) satisfies **linear properties**:
 - **Case 1**: Zero initial state $\mathbf{x}(0) = \mathbf{0}$: the output $\mathbf{y}(t)$ is linear in input $\mathbf{u}(t)$
 - ▶ Case 2: Zero input $\mathbf{u}(t) \equiv 0$: the output $\mathbf{y}(t)$ is linear in initial state $\mathbf{x}(0)$

Case 1: Zero Initial State x(0) = 0



Case 1: Zero Initial State x(0) = 0

Zero initial state $\mathbf{x}(0) = \mathbf{0}$: the output $\mathbf{y}(t)$ is linear in input $\mathbf{u}(t)$

$$\begin{cases} \mathbf{u}_1(t) \to \mathbf{y}_1(t) \\ \mathbf{u}_2(t) \to \mathbf{y}_2(t) \end{cases} \implies \alpha \mathbf{u}_1(t) + \beta \mathbf{u}_2(t) \to \alpha \mathbf{y}_1(t) + \beta \mathbf{y}_2(t)$$

Proof:

▶ Denote the state trajectory for $\mathbf{u}_1(t)$ as $\mathbf{x}_1(t)$, and for $\mathbf{u}_2(t)$ as $\mathbf{x}_2(t)$:

$$\dot{\mathbf{x}}_1(t) = \mathbf{A}\mathbf{x}_1(t) + \mathbf{B}\mathbf{u}_1(t), \qquad \dot{\mathbf{x}}_2(t) = \mathbf{A}\mathbf{x}_2(t) + \mathbf{B}\mathbf{u}_2(t)$$

- Let $\mathbf{u}(t) = \alpha \mathbf{u}_1(t) + \beta \mathbf{u}_2(t)$ and verify $\mathbf{x}(t) = \alpha \mathbf{x}_1(t) + \beta \mathbf{x}_2(t)$ is a solution:

 Initial condition: $\mathbf{x}(0) = \alpha \mathbf{x}_1(0) + \beta \mathbf{x}_2(0) = 0$
 - ODE:

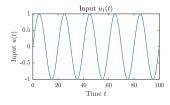
$$\dot{\mathbf{x}} = \alpha \dot{\mathbf{x}}_1 + \beta \dot{\mathbf{x}}_2 = \alpha (\mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{u}_1) + \beta (\mathbf{A}\mathbf{x}_2 + \mathbf{B}\mathbf{u}_2)
= \mathbf{A}(\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) + \mathbf{B}(\alpha \mathbf{u}_1 + \beta \mathbf{u}_2)
= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

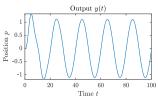
• Hence, the output corresponding to $\mathbf{u} = \alpha \mathbf{u}_1 + \beta \mathbf{u}_2$ is:

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u} = \mathbf{C}(\alpha\mathbf{x}_1 + \beta\mathbf{x}_2) + \mathbf{D}(\alpha\mathbf{u}_1 + \beta\mathbf{u}_2)$$
$$= \alpha(\mathbf{C}\mathbf{x}_1 + \mathbf{D}\mathbf{u}_1) + \beta(\mathbf{C}\mathbf{x}_2 + \mathbf{D}\mathbf{u}_2) = \alpha\mathbf{y}_1 + \beta\mathbf{y}_2$$

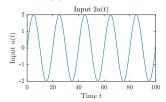
Case 1: Zero Initial State x(0) = 0

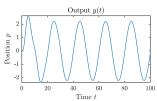
- ► Consider an LTI ODE with zero initial condition
- ▶ Suppose that with input $\mathbf{u}(t)$, the output is $\mathbf{y}(t)$





▶ If the input is $2\mathbf{u}(t)$, what is the output?





If the input amplitude is doubled, then the output amplitude is also doubled

Case 2: Zero Input $u(t) \equiv 0$

Zero input $\mathbf{u}(t) \equiv \mathbf{0}$: the output $\mathbf{y}(t)$ is linear in the initial state $\mathbf{x}(0)$

$$\begin{cases} \mathbf{x}_1(0) = \boldsymbol{\xi}_1 \to \mathbf{y}_1(t) \\ \mathbf{x}_2(0) = \boldsymbol{\xi}_2 \to \mathbf{y}_2(t) \end{cases} \implies \mathbf{x}_3(0) = \alpha \boldsymbol{\xi}_1 + \beta \boldsymbol{\xi}_2 \to \alpha \mathbf{y}_1(t) + \beta \mathbf{y}_2(t)$$

Proof:

▶ Denote the state trajectory for ξ_1 as $\mathbf{x}_1(t)$, and for ξ_2 as $\mathbf{x}_2(t)$:

$$\dot{\mathbf{x}}_1(t) = \mathbf{A}\mathbf{x}_1(t), \qquad \dot{\mathbf{x}}_2(t) = \mathbf{A}\mathbf{x}_2(t)$$

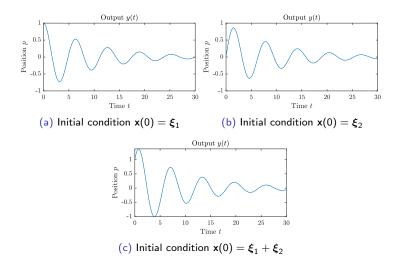
- Verify that $\mathbf{x}_3(t) = \alpha \mathbf{x}_1(t) + \beta \mathbf{x}_2(t)$ is a solution:
 - ▶ Initial condition: $\mathbf{x}_3(0) = \alpha \mathbf{x}_1(0) + \beta \mathbf{x}_2(0) = \alpha \boldsymbol{\xi}_1 + \beta \boldsymbol{\xi}_2$
 - ODE:

$$\dot{\mathbf{x}}_3 = \alpha \dot{\mathbf{x}}_1 + \beta \dot{\mathbf{x}}_2 = \alpha \mathbf{A} \mathbf{x}_1 + \beta \mathbf{A} \mathbf{x}_2 = \mathbf{A} (\alpha \mathbf{x}_1 + \beta \mathbf{x}_2) = \mathbf{A} \mathbf{x}_3$$

► Hence, the output corresponding to $\mathbf{x}_3(t) = \alpha \mathbf{x}_1(t) + \beta \mathbf{x}_2(t)$ is:

$$\mathbf{y}_3(t) = \mathbf{C}\mathbf{x}_3(t) = \mathbf{C}(\alpha\mathbf{x}_1(t) + \beta\mathbf{x}_2(t)) = \alpha\mathbf{y}_1(t) + \beta\mathbf{y}_2(t)$$

Case 2: Zero Input $u(t) \equiv 0$



Outline

Examples

Linear Properties of LTI Systems

LTI ODE Solution

Homogeneous LTI ODE Solution

Consider the homogeneous scalar LTI ODE:

$$\dot{x} = ax, \qquad x(0) = x_0$$

► The solution is:

$$x(t) = e^{at}x_0$$

Consider the homogeneous vector LTI ODE:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \qquad \mathbf{x}(0) = \mathbf{x}_0$$

▶ What is the solution?

Homogeneous LTI ODE Solution

Theorem

The homogeneous vector linear time-invariant ordinary differential equation:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

has a unique solution:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}_0$$

Definition

The exponential function of a matrix $\mathbf{X} \in \mathbb{R}^{n \times n}$ is defined as:

$$e^{\mathbf{X}} = \mathbf{I} + \mathbf{X} + \frac{1}{2}\mathbf{X}^2 + \frac{1}{3!}\mathbf{X}^3 + \ldots = \sum_{k=0}^{\infty} \frac{1}{k!}\mathbf{X}^k,$$

where I is the $n \times n$ identity matrix.

Note: the solution $\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}_0$ is linear in the initial condition \mathbf{x}_0

Proof

Initial condition:

$$\mathbf{x}(t_0) = e^{\mathbf{A}(t_0 - t_0)} \mathbf{x}_0 = e^{\mathbf{0}} \mathbf{x}_0 = \mathbf{x}_0$$

► ODE:

$$\begin{split} \frac{d}{dt}\mathbf{x}(t) &= \frac{d}{dt} \left(e^{\mathbf{A}(t-t_0)} \mathbf{x}_0 \right) \\ &= \frac{d}{dt} \left(\mathbf{I} + \mathbf{A}(t-t_0) + \frac{1}{2} \mathbf{A}^2 (t-t_0)^2 + \frac{1}{3!} \mathbf{A}^3 (t-t_0)^3 \cdots \right) \mathbf{x}_0 \\ &= \left(\mathbf{0} + \mathbf{A} + \mathbf{A}^2 (t-t_0) + \frac{1}{2!} \mathbf{A}^3 (t-t_0)^2 + \cdots \right) \mathbf{x}_0 \\ &= \mathbf{A} \left(\mathbf{I} + \mathbf{A}(t-t_0) + \frac{1}{2!} \mathbf{A}^2 (t-t_0)^2 + \frac{1}{3!} \mathbf{A}^3 (t-t_0)^3 \cdots \right) \mathbf{x}_0 \\ &= \mathbf{A} e^{\mathbf{A}(t-t_0)} \mathbf{x}_0 \\ &= \mathbf{A} \mathbf{x}(t) \end{split}$$

Example: Double Integrator

Consider a second-order scalar LTI ODE:

$$\ddot{q} = u, \qquad q(0) = q_0, \ \dot{q}(0) = v_0$$

- It is called **double integrator** because u(t) is integrated twice before it affects q
- **State-space model**: let $\mathbf{x} = (q, \dot{q})$:

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\mathbf{A}} \mathbf{x} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{B}} u, \qquad \mathbf{x}(0) = \mathbf{x}_0 := \begin{bmatrix} q_0 \\ v_0 \end{bmatrix}$$

► Matrix exponential of **A**:

$$\mathbf{A}^2 = \mathbf{0}$$
 \Rightarrow $e^{\mathbf{A}t} = \mathbf{I} + \mathbf{A}t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$

▶ When $u(t) \equiv 0$, the solution of the double integrator system is:

$$\mathbf{x}(t) = \mathbf{e}^{\mathbf{A}t}\mathbf{x}_0 = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} q_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} q_0 + tv_0 \\ v_0 \end{bmatrix}$$

Example: Undamped Oscillator

► Consider a spring-mass system with zero damping:

$$\ddot{q} + \omega_0^2 q = u, \qquad q(0) = q_0, \ \dot{q}(0) = v_0$$

▶ State-space model: let $\mathbf{x} = (q, \dot{q}/\omega_0)$:

$$\dot{\mathbf{x}} = \underbrace{\begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & 0 \end{bmatrix}}_{\mathbf{A}} \mathbf{x} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{B}} u, \qquad \mathbf{x}(0) = \mathbf{x}_0 := \begin{bmatrix} q_0 \\ v_0 \end{bmatrix}$$

- Matrix exponential of $\mathbf{A}t$: $e^{\mathbf{A}t} = \begin{bmatrix} \cos(\omega_0 t) & \sin(\omega_0 t) \\ -\sin(\omega_0 t) & \cos(\omega_0 t) \end{bmatrix}$
- ► This can be verified by differentiation:

$$\frac{d}{dt}e^{\mathbf{A}t} = \begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & 0 \end{bmatrix} \begin{bmatrix} \cos(\omega_0 t) & \sin(\omega_0 t) \\ -\sin(\omega_0 t) & \cos(\omega_0 t) \end{bmatrix} = \mathbf{A}e^{\mathbf{A}t}$$

▶ When $u(t) \equiv 0$, the solution of the undamped oscillator is:

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0 = \begin{bmatrix} \cos(\omega_0 t) & \sin(\omega_0 t) \\ -\sin(\omega_0 t) & \cos(\omega_0 t) \end{bmatrix} \begin{bmatrix} q_0 \\ v_0 \end{bmatrix}$$

Where Does the Homogeneous LTI ODE Solution Come From?

▶ The solution to $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ with $\mathbf{x}(t_0) = \mathbf{x}_0$ should satisfy:

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_{t_0}^t \mathbf{A}\mathbf{x}(\tau)d\tau$$

▶ This is an implicit equation. Replace the expression above into the integral:

$$\begin{split} \mathbf{x}(t) &= \mathbf{x}_0 + \int_{t_0}^t \mathbf{A} \left(\mathbf{x}_0 + \int_{t_0}^\tau \mathbf{A} \mathbf{x}(\tau_1) d\tau_1 \right) d\tau \\ &= \left(\mathbf{I} + \mathbf{A} (t - t_0) \right) \mathbf{x}_0 + \int_{t_0}^t \int_{t_0}^\tau \mathbf{A}^2 \mathbf{x}(\tau_1) d\tau_1 d\tau \end{split}$$

Repeat the step above:

$$\mathbf{x}(t) = (\mathbf{I} + \mathbf{A}(t - t_0)) \, \mathbf{x}_0 + \int_{t_0}^t \int_{t_0}^{\tau} \mathbf{A}^2 \left(\mathbf{x}_0 + \int_{t_0}^{\tau_1} \mathbf{A} \mathbf{x}(\tau_2) d\tau_2 \right) d\tau_1 d\tau$$

$$= \left(\mathbf{I} + \mathbf{A}(t - t_0) + \frac{1}{2} \mathbf{A}^2 (t - t_0)^2 \right) \mathbf{x}_0 + \int_{t_0}^t \int_{t_0}^{\tau} \int_{t_0}^{\tau_1} \mathbf{A}^3 \mathbf{x}(\tau_2) d\tau_2 d\tau_1 d\tau$$

$$= \dots = \left(\mathbf{I} + \mathbf{A}(t - t_0) + \frac{1}{2!} \mathbf{A}^2 (t - t_0)^2 + \frac{1}{3!} \mathbf{A}^3 (t - t_0)^3 + \dots \right) \mathbf{x}_0$$

Nonhomogeneous LTI ODE Solution

$\mathsf{Theorem}$

The linear time-invariant ordinary differential equation:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

has a unique solution:

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au$$

Proof

Initial condition:

$$\mathbf{x}(t_0) = e^{\mathbf{A}(t_0 - t_0)} \mathbf{x}_0 + \int_{t_0}^{t_0} e^{\mathbf{A}(t_0 - \tau)} \mathbf{B} \mathbf{u}(\tau) d\tau = \mathbf{I} \mathbf{x}_0 + \mathbf{0} = \mathbf{x}_0$$

► ODE:

$$\begin{split} \frac{d}{dt}\mathbf{x}(t) &= \frac{d}{dt}\left(e^{\mathbf{A}(t-t_0)}\mathbf{x}_0\right) + \frac{d}{dt}\left(\int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau\right) \\ &= \mathbf{A}e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \frac{d}{dt}\left(e^{\mathbf{A}t}\int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau\right) \\ &= \mathbf{A}e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \left(\mathbf{A}e^{\mathbf{A}t}\right)\left(\int_{t_0}^t e^{-\mathbf{A}\tau}\mathbf{B}\mathbf{u}(\tau)d\tau\right) + \left(e^{\mathbf{A}t}\right)\left(e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)\right) \\ &= \mathbf{A}\left(e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau\right) + \mathbf{B}\mathbf{u}(t) \\ &= \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \end{split}$$

Nonhomogeneous LTI ODE Solution

Consider the LTI ODE system:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \qquad \mathbf{x}(t_0) = \mathbf{x}_0$$

 $\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

► The system output satisfies the **convolution equation**:

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}(t-t_0)}\mathbf{x}_0 + \int_{t_0}^t \mathbf{C}e^{\mathbf{A}(t- au)}\mathbf{B}\mathbf{u}(au)d au + \mathbf{D}\mathbf{u}(t)$$

- Observations:
 - Due to the linearity of matrix-vector multiplication and integration, the output is **jointly linear** in the initial condition \mathbf{x}_0 and the input $\mathbf{u}(t)$
 - The objective of control design is to choose an input signal $\mathbf{u}(t)$ to shape the output $\mathbf{y}(t)$, e.g., to achieve regulation or tracking without overshoot or oscillations and with robustness to noise
 - ▶ Using the convolution equation directly for control design can be challenging
 - We will look for a simpler relationship between u(t) and y(t) by transforming the LTI ODE from the time domain to the frequency domain using a Laplace transform

LTI Difference Equation Solution

Theorem

The linear time-invariant difference equation:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$$

has a unique solution:

$$\mathbf{x}_k = \mathbf{A}^k \mathbf{x}_0 + \sum_{i=0}^{k-1} \mathbf{A}^{k-j-1} \mathbf{B} \mathbf{u}_j$$

Proof:

- ▶ Base case (time k = 1): $\mathbf{x}_1 = \mathbf{A}\mathbf{x}_0 + \mathbf{B}\mathbf{u}_0$
- ▶ Induction hypothesis (time k): $\mathbf{x}_k = \mathbf{A}^k \mathbf{x}_0 + \sum_{i=0}^{k-1} \mathbf{A}^{k-j-1} \mathbf{B} \mathbf{u}_i$
- Induction step (time k+1):

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k = \mathbf{A}\left(\mathbf{A}^k\mathbf{x}_0 + \sum_{j=0}^{k-1} \mathbf{A}^{k-j-1}\mathbf{B}\mathbf{u}_j\right) + \mathbf{B}\mathbf{u}_k$$
$$= \mathbf{A}^{k+1}\mathbf{x}_0 + \sum_{j=0}^{k-1} \mathbf{A}^{k-j}\mathbf{B}\mathbf{u}_j + \mathbf{B}\mathbf{u}_k = \mathbf{A}^{k+1}\mathbf{x}_0 + \sum_{j=0}^{k} \mathbf{A}^{k-j}\mathbf{B}\mathbf{u}_j$$