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LTI ODE Solution

» Consider the LTI ODE system:

x = Ax + Bu, x(tp) = xo
y = Cx+ Du

» The system output satisfies the convolution equation:
t
y(t) = CePlt—0)xy + / CePrt=7)Bu(r)d7 + Du(t)
to

> Observations:
» Using the convolution equation directly for control design can be challenging

> A simpler relationship between u(t) and y(t) can be obtained by transforming
the LTI ODE from the time domain to the complex domain using a Laplace

transform



Laplace Transform

The Laplace transform £ maps a real function f : R>g — R to a complex
function F : C — C:

F(s) = L{f(t)} = /OOO F(t)etdt

» The Laplace transform £ converts an LTI ODE in the time domain into a
linear algebraic equation in the complex domain

» Example:
y(£) +y(1) =0 £y 2Y(s) — sy(0) — 9(0) + Y(s) = 0
1
y(t) = y(0) cos(t) + y(0)sin(t) £ Y (s) Sy(gz 1}1/(0)
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Complex Numbers C

>

>

The space of real numbers is denoted by R

The space of complex numbers is denoted by C

A complex number has the form: A
s=0+jw, 3

where o,w € R and j =+/—1

> The real part of s is Re(s) = o

1

I
Cartesian coordinates: s = 0 + jw 0 ' o

1

» The imaginary part of s is Im(s) = w

Polar coordinates: s = re/’ = r(cos(6) + jsin(#))
» The magnitude of s is |s| = r = Vo2 + w?

» The phase of s is arg(s) = /s = 0 = atan2(w, o)

The complex conjugate of s =0 + jw is s* =0 — jw



Complex Polynomial

» A complex polynomial of order n is a function a: C — C:
a(s) = aps" + ap 18" 4 ... 4 as® + a1s + ag
where ag, a1, ..., a, € C are constants.
> A root of a complex polynomial a(s) is a number A € C such that:
a(A\)=0
> A root A of multiplicity m of a complex polynomial a(s) satisfies:

Iim£<oo

s=A (s = A)m

> Fundamental theorem of algebra: a complex polynomial a(s) of degree n
has exactly n roots, counting multiplicities, and can be factorized as:

a(S):ans”+...+ao:an(s—)\l)...(s_)\n)

where A1, ..., A, are the n roots of a(s)



Complex Polynomial with Real Coefficients
» A complex polynomial of order n with real coefficients is a function:

a(s) = aps" + ap 18" 4 ... 4 282 + a15 + ag

where ag, a1, ...,a, € R are constants.

» The roots of a complex polynomial with real coefficients are either real,
A = o, or come in complex conjugate pairs, A = o £ jw.

» Every complex polynomial with real coefficients can be factorized into
polynomials of degree one or two:

m n

a(s)=aps"+...+a = a, H(s - \) H (s2 + 2(kwis + wi)
i=1 k=1

where n; and np are the numbers of real roots and complex conjugate pairs.

» Vieta’s formulas relate the coefficients a; to the roots \;:

n

n k
D | Ca e D DR | EC
i=1 n n

i=1 n 1< <ih<--<ik<n j=1



Rational Function

» A rational function F : C — C is a ratio of complex polynomials:

b(s)  bms™ 4 ...+ bis+ by
Ca(s)  aps"+...+a1s+ao

» Rational functions remain rational functions under addition, subtraction,
multiplication, division (except by 0)

> The characteristic equation of a rational function F(s) = Fol
a(s)=0
> A zero z € C of a rational function F(s) is a root of the numerator: b(z) =0

> A pole p € C of a rational function F(s) is a root of the characteristic
equation: a(p) =0



Pole-Zero Map

> The pole-zero form of a rational function F(s) is:

F(s) = bms™ 4+ ...+ bis+ by :k(sle)...(sfzm)
aps" 4+ ...+ a1s+ apg (s—p1)--(s—pn)
where k = by, /an, z1,. .., 2Zm are the zeros of F(s), and py, ..., p, are the

poles of F(s)

> A pole-zero map is a plot of the poles and zeros of F(s) in the s-domain:

> Example: © .
F(s) = (s+15)(s+1+2j)(s+1—2)) K 1
(125)(-2)(s—1-))(s1+)) ~ " L

P> x = pole; o = zero; k = not available
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Example: Zeros and Poles

» Consider F(s) = 52551

» F(s) has one zero: z = _%

» The roots of a quadratic polynomial a(s) = a»s® + a;s + ag are:

—a; + /a3 — daag

232

> F(s) has two conjugate poles: p; = f% +j§ and p, = f% —J

S

» Pole-zero form of F(s):

2(s—2z2)
3(s = p1)(s — p2)

F(s) =

11



Partial Fraction Expansion (no repeated poles)

» Assume that the rational function:

F(s) = b(s)  bms™ 4 ...+ bis+ by
a(s)  aps"+...+a1s+ao

is strictly proper (m < n) and has no repeated poles (all roots of a(s) have
multiplicity one)

» The residue r; associated with pole p; is:

ri= lim (s — p;)F(s)

S—pi

> The partial fraction expansion of F(s) is:

n I'n

4+ -+
S—P1 S—Pn

F(s) =

where py,...,p, and ri,..., r, are the poles and residues of F(s)

12



Example: Residues

“S

» Consider F(S) 3522i-551+1 with zero z = _% and poles p;» = _% +

» The residue associated with p; is:

. . 2s—2z)  2(p+1/2)
- — p)F(s) = | -
Jim (s =p)F(s) = Jim 20 =0 = 301 = po)
_2Antl2) V2 (1 v2) 1 V2
v 2 \e ) T3
» Residues associated with complex conjugate poles are also complex conjugate!

» The residue associated with py = pi is r = rj = 1 4 j¥2

» The partial fraction expansion of F(s) is:

G-pm)  (5—p)

F(s) =

13



Partial Fraction Expansion (repeated poles)
» Assume that the rational function:

m
F(S) b(S) _ bmS +...+b15+b0

Ta(s)  als— P (s pO™
is strictly proper and has poles py, .

.., Pk with multiplicities myq, ..., my

» The residue r; ,,_; associated with pole p; of multiplicity m; is:

1 d . .
fimi—j = slgn;fjil@ (s —p)™F(s)], j=0,....(m—1)

» The partial fraction expansion of F(s) is:

n,m nom-1 na
Fe) C(s—p)m™ (5= p)m? T s—p1
2. m, r2,m2—1 + r2,1
(s=p2)™  (s—p2)™! s—p2
Ik, my Ik, mi—1 . rk,1

_l’_
(s=p)™ (s —pe)™ 1 S — Pk



Partial Fraction Expansion (improper rational function)

» Assume that the rational function:

F(s) = b(s) _ bpms™ 4 ...+ bis + by
a(s) aps"+ ...+ a1s+ ap

is not strictly proper (m > n)

» The numerator b(s) can be divided by the denominator a(s) to obtain:

o
—~
0

F(s) = ) :c(s)+ZE:)

~—

QL
—
0n
~

where c(s) is of order m — n and

d(s) . . . . .
> 2(5) is now strictly proper and has a partial fraction expansion

Q.

(s) is of order k < n

15
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MATLAB Polynomial Functions
» Consider:

p(s) = (s — 11.6219)(s + 0.3110 + 2.6704/)(s + 0.3110 — 2.6704;)

» poly: convert roots to polynomial coefficients:

[11.6219, -0.3110-2.6704i, -0.3110+2.67041i]
poly(r) = [1.0, -11.0, 0.0, -84.0]

1 r
a

> polyval: evaluate a polynomial, e.g., p(1 — 2j):

‘ polyval(a, 1-2i) = -62 + 46i

» roots: find polynomial roots:

w‘ roots(a) = [11.6219, -0.3110-2.6704i, -0.3110+2.6704i]

» conv: expand the product of two polynomials, e.g., (352 + 2s + 1)(s + 4):

‘ conv([3, 2, 11, [1, 41) = [3, 14, 9, 4]

17



MATLAB Rational Functions

» SYS = zpk(Z,P,K) creates a continuous-time zero-pole-gain (zpk) model
SYS with zeros Z, poles P, and gains K:

-

dcmotor = zpk([],[-1],200);
fbksys = zpk([-4],[-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i],8);

» P = pole(SYS) returns the poles P of SYS:

‘ sp = pole(fbksys) = [-8.8426, -2.0787 + 1.7078i, -2.0787 -1.7078i]

» [Z,G] = zero(SYS) computes the zeros Z and gain G of SYS:

w‘ [sz,k] = zero(fbksys) = [-4, 8]

» pzmap(SYS): computes and plots the poles and zeros of SYS

w‘ pzmap (fbksys)

18
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Laplace Transform and Inverse Laplace Transform
» The Laplace transform F(s) of a function 7(t) is:

F(s) = £{f(£)} = /OOC F(t)e—tdt,

where s = 0 + jw is a complex number.

> The inverse Laplace transform f(t) of a function F(s) is:

f(t)=L{F(s)} = i lim /U ” F(s)e*ds,

—jw

where o is greater than the real part of all singularities of F(s).

» Cauchy’s Residue Theorem: If F(s) is a strictly proper rational function:

f(t)=L{F(s)} = Z (residue of F(s)e* at s)

s is a pole of F(s)

20



Laplace Transform Properties
» The Laplace transform is linear:

£{af(e)+ fe(o)} - | " (af(e) + Bg(e))etdt

= / f(t) _Stdt—i—ﬁ/ e *tdt
= aL{f(t)} + BLA{g(t)}
> Convolution: for f(t), g(t) supported on t € [0, c0):

(fxg)(t) /f (t—7)d

» Convolution in time domain becomes multiplication in the complex domain:

LA{(f*g)(t }_/ / g(t—7)e *tdrdt
/ / e e *tdudr

(#)=0,p<0 >~ e " dr > e SH
Lo hud / F(r)emdr | gln)e
— L{F(0)} L 1g(0)) ’



Laplace Transform Properties

» Differentiation:

c {jtx(t)} — 5L {x(t)} — x(0)
> Proof:

[ 2 e ) de= st =7 = )

> Note that & (s f(7)d7) = f(t)

22



Laplace Transform Properties
» Laplace transform of e?t:

> o0 t=o00
£{e} :/ e s dt :/ eGtgr— 1 (-
0 0 (s —a) o
_require (_ 1 e°> _ 1
Re(s)>a (s—a) s—a
> Delta function (Impulse):
0 ift<O
de(t)=4¢1/e if0O<t<e 5(t) = lim 6.(t) = o0, t=0
‘ . - e—0 € 0’ t 7& 0
0 ift>e

> Sifting property: for any f(t) continuous at 7 € (a, b):

/ T {03t — )dt = £(r)

> Laplace transform of §(t):

L{5(t)) = /000 S(t)e~stdt — e=t| =1

t=0

23



Laplace Transform Properties

» Heaviside step function:

t
1
H(t) :/ 5(r)dr = {07
» Ramp function:
t, t>
tH(t) =< =~ 0
0, t<0
» Parabola function:
2 2 >0
—H({t)=4¢2" ~
2 (t) {0, t<0

t>0
t<0

=

= L{H()} =

LA} =

LAH(D) =

24



Laplace Transform Properties

t domain s domain
linearity af (t) + bg(t) aF(s) + bG(s)
convolution (f * g)(t) F(s)G(s)
multiplication f(t)g(t) ZTU fR:(S)jJJ;: (0)G(s — o)do
scaling, a >0 f(at) 1F (%)
s-domain derivative t"f(t) (—1)"F(")(s)
time-domain derivative £ (t) S"F(s) — Y i, s"kF1(0)
s-domain integarion 1£(t) [ F(o)do
time-domain integarion | [o f(7)dT = (H * f)(t) 1F(s)
s-domain shift e f(t) F(s—a)
time-domain shift, a > 0 f(t—a)H(t — a) e *F(s)

> Heaviside step function H(t) = {

> Convolution: (f x g)(t) = |,

1, t>0,
0, t<0

0

f(T)g(t —T)dT

25



Laplace Transform Properties

S(1)=2"{F(s)

F(s)=2{ ()

ri=2 ()

23.

25,

27.
29.

31

33,

35,

1

", n=123,...
Jr

sin(ar)

tsin(ar)

. sin(at)-atcos(ar)

. cos(at)-atsin(at)

. sin(ar+b)

. sinh(ar)

e sin (br)

. e sinh (br)

e, n=123,...

u, (t)=u(t-c)

Heaviside Function

w07 (-0)
1)

)
[Lr=e)e(e)as
()

(s* +n:)1
s(s? —ui)
(s’ +a3)'

ssin(b)+acos(b)

F(s-¢)

[ F(u)du

20.

22

24,

26.

28.
30.

32

34,

36.

&
top>-
£ n=123.

cos(at)

. teos(ar)
. sin(ar)+atcos(ar)
. cos(at)+atsin(at)

. cos(at+b)

cosh (at)
e cos(br)
e cosh (bt)

flet)

3(t-c)
Dirac Delta Function

u (0)g(r)

rf(e), n=123,...

[0 r(ydv
f(t+T)=1(1)
(1)

(s* +a:]2

s(sl +3a°)

(s +a1):
scos(h)-asin(b)

e Lig(r+c)}
(1) F(s)
Fls)

5
Lre"'j (t)dt

SF(s)=sf(0)=7'(0)

26



Laplace Transform Properties
f(t)

Fis)

/;m) dt

Impulse function §(¢)

e sin wt

e " cos wt

i[(a —a)? + *) e sin(wt + ¢),

w
¢ = tan™!
P

\/1“"’7(!%' sinw,V1 - 22,7 < 1

1 1
+ ——————e¢ “sin(wt — ¢),
@+ Vit o ¢ )

b = tanl-2
—a
1
1- e“entsin(w,V1 - £t + ¢),
d=coslf,z<1
a +1|:(a7a)2+w2
@&+ o ® @+ o

1/2
:| e sin(wt + ¢).

= w ] W
¢ = tan —tan —
a —a —a

Fs) 1 (°
T+;/,xf(l)d’
1

S S
(s + a)? +
s+a
(s +a)’ + o
8 o
(s + a)? + o?

o

s+ 2{wps + wﬁ
L
s[(s + a)? + o]

2
wy

5(52 + 2Lwy,s + @2)

S ekep
s[(s + a)? + o]

27



Initial and Final Value Theorems

Initial Value Theorem

Suppose that 7(t) has a Laplace transform F(s). Then:

im,7(0) = im ()

Final Value Theorem

Suppose that f(t) has a Laplace transform F(s). Suppose that every pole of F(s)
is either in the open left-half plane or at the origin of C. Then:

t—o0

lim f(t) = SI% sF(s)

28



Example: Spring-Mass-Damper

» Consider a spring-mass-damper system:

d?y(t) |, dy(t)
M —_— k =
e + b pm + ky(t)=0

» This is an example of a second-order system with natural frequency

wn = +/k/M and damping ratio ¢ = b/(2VkM):
J(t) + 2Cway(t) + wiy(t) =0
> Laplace transform:
(s>Y(s) — sy(0) — y(0)) + 2¢wn(sY (s) — y(0)) + w; Y(s) = 0
> Natural response:

(s +2C¢wn)y(0) + y(0)
s2 + 2¢wps + w?

Y(s) =

29



Example: Spring-Mass-Damper

» Consider the natural response with w2 = k/M = 2 and 2¢w, = b/M = 3:

(s +3)y(0) +y(0) _ (s+3)y(0) +y(0)

YO =% 572 T 610612
_ 2y(0) +y(0) _ ¥(0) +(0)
s+1 s+ 2

» Poles: p1 = —1 and p, = -2

» Zeros: z; = —% _
> Residues:
- _ (s+3)y(0) +y(0) ,, — (s+3)y(0) +y(0)
- (s+2) s=-1 2 (s+1) s=—2
=2y(0) + y(0) = —y(0) — y(0)

30



Example: Spring-Mass-Damper

» Spring-Mass-Damper Pole-Zero Map

> Let the initial conditions be y(0) =1 and y(0) =0

Jjo
» The poles and zeros are:
-3 ) -1 0
pr=-1, pp=-2, z1=-3
X =pole
O = zero
» The residues are: o
3
rn = (5 + ) s;+3
(s+2)|,_, _
3 -3 -2 s=—1 0
ry = (S + ) -1 ‘l
(5 + 1) o (s, +2)

31



Example: Spring-Mass-Damper

» The time-domain natural response of the spring-mass-damper system can
be obtained using an inverse Laplace transform:

= (2y(0) + y(0)) e* — (¥(0) + y(0)) e
» The steady-state response can be obtained via the Final Value Theorem:
lim y(t) = sll_% sY(s)

t—o0
(24 39(0) + 5(0)
T 550 5243542

=0

32



Example: Spring-Mass-Damper

» The poles of the system are the roots of the characteristic equation:

a(s) = s> + 2Cwps + w2 =0

» The natural response is determined by the poles:
> Overdamped (¢ > 1): the poles are real:

pr=—Cwn —wa/(? =1 p2 = —Cwn +wn/(? =1
» Critically damped (¢ = 1): the poles are repeated and real:
P1 = p2 = —Wn

> Underdamped (¢ < 1): the poles are complex:

Pl:*Cwn*j“‘)n\/]-*(_:2 P2:*CU-)"+J.W"\/1*C2

33



Example: Spring-Mass-Damper Locus of Roots

. =0 Jo
Jo ¢ 0\ .
Jo,
S jo T =2 (<1 '
PN © 14 increasing/
AN On
0 =cos'¢ | N
! ﬁ N {>1 {>1 "
! T / 0
2o, ~{w, 0 (=1
[
[
[
I
ole et —joN1-¢

> s-domain plot of the poles (x) and ~ » For constant wy, as ( varies, the

zeros (o) of Y(s) with y(0) =0 complex conjugate roots follow a
circular locus

» The poles and zeros can be expressed either in Cartesian coordinates or Polar
coordinates (e.g., magnitude w, and angle # = cos™*(¢))

34



Example: Spring-Mass-Damper Response

» The time-domain natural response can be obtained by determining the
residues and applying an inverse Laplace transform:
> Overdamped (¢ > 1):
y(t) = ne”t + ne’*
where p1 = —Cwp — wn/C2 — 1, pp = —Cwn + wn/C2 — 1, n = 2O

P2—P1
p1y(0)+y(0
and rn = 1y(0) )1’( )

» Critically damped (¢ = 1):
y(t) = y(0)e ™" + (y(0) + way(0))te™ "
»> Underdamped (¢ < 1):
y(t) = et (cl cos(wny/1 — ¢%t) + c2sin(wny/1 — CZt))

— — 7(0)+Cwny(0)
where ¢; = y(0) and & = /e

35



Example: Spring-Mass-Damper Natural Response with y(0) =0

y(@®

A

Overdamped case

- Underdamped case

-
+e={ou envelope

» Time

36
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Laplace Transform of LTI ODE

» Consider an LTI ODE with zero initial conditions:
d”y d"ly d™u d™ 1y

n e +n1dtn1+...+aoy:b vy +bm1dtm1+...+bou

> Let Y(s) = L{y(t)} and U(s) = L{u(t)}

» Recall thatﬁ{jtnny(t)} =s"Y(s) — Zk 15" kd:k lly( t)

t=0
» Laplace transform of the LTI ODE:

(a,,s" +a,_1s" 4.+ ao) Y(s) = (bms’" + bpo1s™ T 4+ bo) U(s)
> Transfer function: ratio of Laplace transform of output to Laplace

transform of input with zero initial conditions:

G(s) Y(s) _ bms™ + bp_15™ L4+ ... + by
U(s) aps"+ap_1s" 1+ ...+ ag

38



Transfer Function

Transfer Function

The transfer function G(s) of a single-input single-output LTI ODE is the ratio of
the Laplace transform Y/(s) of the output y(t) to the Laplace transform U(s) of

the input u(t) with zero initial conditions:
_Y()
~ U(s)

G(s)

4

Relative Degree

The relative degree of a single-input single-output LTI ODE with transfer function
G(s) is the difference r = n — m between the number of poles n and number of
zeros m of G(s).

» If r > 0, the transfer function is called strictly proper.
» If r > 0, the transfer function is called proper.

> If r <0, the transfer function is called improper (there is no state space
realization).




Example

> A vehicle with position p(t) and acceleration input u(t) satisfies:

mp(t) = u(t)
» The transfer function of this system is:

» The transfer function is strictly proper with relative degree r = 2

40



Example: Second-order LTI ODE

» Consider a second-order system with natural frequency w,, damping ratio ¢,
and input u(t):
y(t) + 2Gway(t) + wiy(t) = u(t)

» Laplace transform:
(s*Y(s) = sy(0) = ¥(0)) + 2Cwn(sY (s) = y(0)) +w;Y(s) = U(s)
» Transfer function (set y(0) = y(0) = 0):

Y(s) 1
U(s) 524 2Cw,s + w?

G(s) =

» Total response:

(s + 2¢wn)y(0) + y(0)
§2 + 2Cwps + w?

Y(s) = + G(s)U(s)
—_—

forced response

natural response

41



Transfer Function of State-Space Model
» Consider an LTI ODE system in state-space:

x = Ax + Bu
y = Cx+ Du

» Laplace transform:

sX(s) — x(0) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

» The response Y(s) of LTI ODE system consists of natural response due to
the initial conditions x(0) and forced response due to the input U(s):

¥(s) = C(s1 — A) " x(0) + (C (s~ A) B+ D) U(s)

G(s)

The transfer function of an LTI ODE system in state-space form is:

G(s)=C(sl-A)"'B+D

42



Example

» Consider a SISO LTI ODE with state-space model:

A:Li_;y B:By C=[1 0], D=0

» Transfer function:

G(s)=C(sl—A)"'B+D=[1 qﬁ —g}lm

s+ 1
1 s+2 1|10
=1 0| V——
[ ]52+2s+1[—1 S} {1]
_ 1
T 24025417
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Controllable Canonical Form

> Consider a general n-th order transfer function (some of b; may be 0):

Y(s)  bps"+ bp15" 1+ ...+ by

G =
() U(s) S"+ap_1s" 14 ...+ a

> To convert this transfer function to state-space form multiply by Z(s)/Z(s):

_ Y(5)/Z(s)  bns"+ by_15"1+ ...+ by
U(s)/Z(s)  s"+an1s"l4 ...+ ag

G(s)

» Time-domain LTI ODEs:
y=bpz™ 4+ b,_12" Y 4 4 bz + byz
u= zM4a, 120V 4 4 a7+ a2z
» This suggests the following choice of state variables:

X1=z Xo =z x, = z("~1

44



Controllable Canonical Form

> Consider a general n-th order transfer function (some of b; may be 0):

Y(s)  bps"+ bp_15" 4+ ...+ bo
U(s)  s"+ap_15"1+...+ap

G(s) =

» The controllable canonical form is a state-space model with the same
transfer function:

o o
o =
= O
o O
o o

4 ©
o

|

v ©
oy

|

v ©
N

|
=
|

-

= O

y = [(bo—aobn) (b1 —aibn) -+ (bn—1— an—1by)] x+ bpu
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Example

» Consider a SISO LTI ODE with state-space model:

A:Li_;y B:By C=[1 0], D=0

» Transfer function:

G(s)=C(sl—A)"'B+D=[1 qﬁ —g}lm

s+ 1
1 s+2 1|10
=1 0| V——
[ ]52+2s+1[—1 S} {1]
_ 1
T 24025417
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Response to Periodic Signals

» The idea of a transfer function comes from looking at the response of an LTI
ODE system to periodic input signals with fundamental frequency wy:

o0
t) = Z (ak sin(kwst) + by cos(kwrt))
k=0
> Euler’s formula: ¢ = cosw + jsinw

P> The exponential function et with s = jw can represent periodic signals:

sin(wt) = Im(e/*f) = %

cos(wt) = Re(e") = 7 (e + e+7)

(ejwt _ efjwt)

» Thanks to linearity (superposition), it suffices to compute the response to
u(t) = e and then reconstruct the response to a cosine or sine by combining
the responses corresponding to s = jw and s = —jw
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Exponential Input e

> The exponential input e’ generalizes periodic signals to a broader class:

et = e7telt = e7t(cos(wt) + jsin(wt))

» Examples of exponential signals:
> Top row: exponential signals with a real exponent s = o

> Bottom row: exponential signals with a complex exponent s = jw
3
s ! g ! 5
Kl k] T2
£05 205 g
& iy ol
wn w0 wn
0 0 0
0 0.5 1 0 2 4 0 05 1
Time t Time t Time t
s=0 s=—1 s=1
20

Signal wu(t)
= -
/
/
/
/
I
]

|
Signal wu(t)
(=]
N\
\
\<
\
\
|
1
Signal u(t)
=
T
l
/
/
A

-1 -20 -
0 5 10 15 0 5 10 15 5 10 15
Time t Time t Time t
s=1 s=-02+1 s=02+1
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Frequency Domain Analysis
» Analyze LTI ODE response to sinusoidal and exponential signals

> State-space model:
x = Ax + Bu, x(0) = xo

y = Cx + Du

» Convolution equation:

t
y(t) = Celfxq +/ Cert=")Bu(7)d7 + Du(t)
0

> SISO system with input u(t) = e such that s is not an eigenvalue of A:

y(t) = Celtxy  +Celt(sl — A)~! (e@'*")f — |) B + Det
~——

natural response

forced response

Ce™ (x(0) — (sl — A)"'B) + (C(sl — A) 'B + D) e

transient response steady-state response
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Frequency Domain Analysis

> SISO LTI ODE response to u(t) = e

y(t) = Cer* (x(0) — (sl — A)"'B) + (C(sl — A)'B + D) e

transient response steady-state response

The transfer function from u(t) to y(t) of a SISO LTI ODE is the coefficient of
the steady-state response to an exponential input:

_Y(s)
—U(s)

G(s) =C(sl-A)'B+D

» The transfer function represents the system dynamics in terms of the
generalized frequency s instead of time t

» Analyzing the system in the complex domain uncovers interesting properties
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Example

» Consider a SISO LTI ODE with state-space model:

_ —di —daj _ 1 _ _
A_[l oy B_by cC=[ 1], D=0

» Transfer function:

-1

1 S —dap 1
=0 1] ———M—
[ }s2+als+az {1 S+a1] [0}
1
s24+a1s+ap

G(s)=C(sl—A)'B+D = [0 ﬂF*“

=p)
s

| T

0

|
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Example

» Consider a Heaviside step input:

0, t<0

> Note that u(t) = e with s =0 for t > 0:

, 20,

y(t) = Cer (x(0) + A7'B) + G(0)u(t)

> Suppose a1 = 1 and a = 2: G(s) = =75

» The steady-state response as t — oo is G(0) = 1

2

Step response

=
=

Amplitude y(t)
o

=}

o L
'

6 8 10

12
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Zero Frequency Gain

» The features of the transfer function reveal important system properties
> Zero frequency gain: the magnitude |G(0)| of the transfer function at s =0

» Interpretation: the ratio of the steady-state output to a step input

> LTI ODE:
bms™ + by_15™ 1+ ... + b b
G(s)=Pm T om1s T T G(o) =2
s+ a,_1s" 14+ 4+ a ao
» State-space model:

G(s)=C(sl—A)"'B+D = G(0)=-CA'B+D

v

Integrator: y = u

v

Differentiator y =
G(s)=s = G(0)=0 zero
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Transfer Function Poles
» Consider the LTI ODE:
d"y d" 1y d’"u d™lu
anw + an_lidtnfl +...4+ay =bn— -|- bp1——— g1

» The response Y(s) consists of natural response due to the initial conditions
x(0) and forced response due to the input U(s):

+...+bou

c(s) b(s)
Y(s)= 2 22y
(s) 25 a0 (s)
—~— ——
natural response  forced response
. b(s)
> The transfer function G(s) = ) and the natural response have the same

denominator:
a(s) = aps” + ap_1s" V4 ...+ a

> A pole p of the transfer function G(s) is a solution to the characteristic
equation a(s) = 0. If u(t) =0, then y(t) = eP* is a solution to the LTI ODE.

The poles p of a transfer function G(s) correspond to the natural solutions
y(t) = eP* of the LTI ODE called modes.
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Transfer Function Zeros

» SISO LTI ODE response to an exponential input u(t) = e*:

y(t) = Cer* (x(0) — (sl — A)'B) + (C(sl — A)"'B + D) e

transient response steady-state response

> A zero z of the transfer function G(s) = C(sl — A)"!B + D makes G(z) =0
and hence the steady-state response to u(t) = e** is zero

The zeros z of a transfer function G(s) block transmission of an
exponential input u(t) = .
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Example: Vibration Damper

EEpS %
niy

—

92

Figure: Vibrations of the mass m; can be damped by providing an auxiliary mass my,
attached to m; by a spring with stiffness k. The parameters m, and k» are chosen so

that the frequency +/k2/m> matches the frequency of vibration.
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Example: Vibration Damper

» Vibration damper dynamics:

mgr+ i+ kigr+ k(g —q)=f
m2Ga + k(g2 — q1) =0

» The Laplace transform with zero initial conditions is:

(mis? + c1s + k1) Qu(s) + ka(Qu(s) — Qa(s)) = F(s)
mas”Qa(s) + ka(Q2(s) — Qu(s)) =0

» The transfer function from F(s) to Q:(s) is obtained by eliminating Q»(s):

G(S) _ Ql(S) _ m252 + kz
F(S) mymys* + mocys3 + (m1k2 + mz(kl + kz))52 + kocis + kiko

> Blocking property: the transfer function has zeros at s = +j+\/ka/ms
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Example: Vibration Damper
» Blocking property with parameters

m1:1,c1:1,k1:1,m2:1,k2:1

> Case 1: external input: v = sin(wt), with w=1
ST
I /‘/\/\,,\/\,\M [
Ern" W\H\\ /H \\M \ ‘{\ £ o H\\/\/\*
| m ET LA

N

-1
0 100 0 20 40 60 80 100
[ t Time t

(a) Input u = sin(t) (b) Position of mass 1

AR IAA
I,

I (nn
\"”‘u\/\)\/ |

U

1

=}

Position p,
=

0 20 40 60 80 100
Time t

(c) Postion of mass 2
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Example: Vibration Damper
» Other frequency responses

> Case 2: external input: u = sin(wt), with w =1.1

1 06

l W\‘f\/ Il

H\” \ ‘ TZZ“ \ |
"“W ‘) ‘f w\/ /\]/”/L = : \v\/\\v/ﬂu\J\/W/\JW /\/NM/

Input u(t)
s

S

"o 2(\ 10 60 80 100 0 20 40 60 80 100

Time ¢

(a) Input u =sin(1.1t)

Time ¢

(b) Position of mass 1

> Case 3: external input: u = sin(wt), with w = 0.578

1 2
\\‘ T I 1 - A A
m IR ol i A A A
© “\Mm‘m“”\"H‘HHH‘\ s \/\HMH(\HHM
ESALRE ‘H\\‘\“w”\‘\\”\‘\w‘\j? \l"w““““‘*»“‘“\““‘“\“”‘““‘
LI Hm [l ELVV \
0.5 N 1 \/ | |
‘\Jw‘“\Ww‘U‘J‘J‘Mu\)M TRV \v»\ J
1 L 2
0 40 60 80 100 0 20 40 60 80 100
Time ¢ Time ¢

(a) Input u =sin(1.1t) (b) Position of mass 1
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