ECE171A: Linear Control System Theory Lecture 6: Block Diagram and Signal Flow Graph

Nikolay Atanasov natanasov@ucsd.edu

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Outline

Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Block Diagram

- ► The **Laplace transform** converts an LTI ODE in the time domain into a linear algebraic equation in the complex domain
- ► **Transfer function**: a description of the input-output relationship of a SISO LTI ODE system as a ratio of the output-to-input Laplace transforms with zero initial conditions:

$$G(s) = \frac{Y(s)}{U(s)}$$

► The transfer functions of system elements can be represented as blocks in a block diagram to obtain a powerful algebraic method to analyze complex LTI ODE systems

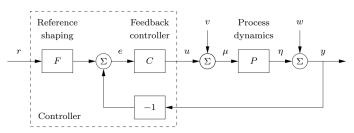


Figure: A block diagram for a feedback control system

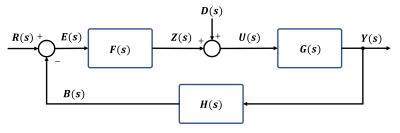
Block Diagram

▶ **Block**: represents input-output relationship of a system component either in the time domain (**LTI ODE**) or in the complex domain (**transfer function**)

$$\begin{array}{c|c}
u(t) & \xrightarrow{\dot{x} = Ax + Bu} & y(t) \\
y = Cx + Du
\end{array}$$

$$\begin{array}{c|c}
U(s) & \\
\hline
G(s) & \\
\end{array}$$

▶ Block diagram: interconnects blocks to represent a multi-element system



Summing point: adds or subtracts two or more signals

Block Diagram Transformations

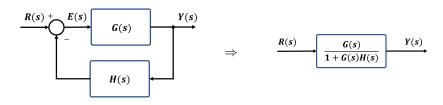
- A block diagram can be simplified using equivalent transformations
- ▶ Parallel connection: if two or more elements are connected in parallel, the total transfer function is the sum of the individual transfer functions:

▶ **Series connection**: if two or more elements are connected in series, the total transfer function is the product of the individual transfer functions:

$$X(s)$$
 $F(s)$ $G(s)$ $Y(s)$ \Rightarrow $X(s)$ $F(s)G(s)$ $Y(s)$

Block Diagram Transformations

▶ Feedback connection: if two or more elements are connected in a feedback loop, the total transfer function is the ratio of the forward transfer function to 1 plus the product of the forward and backward transfer function.



- Forward path: Y(s) = G(s)E(s)
- Feedback path: E(s) = R(s) H(s)Y(s)
- ► Equivalent transfer function:

$$Y(s) = G(s) [R(s) - H(s)Y(s)] \qquad \Rightarrow \qquad [1 + G(s)H(s)] Y(s) = G(s)R(s)$$

$$\Rightarrow Y(s) = \left[\frac{G(s)}{1 + G(s)H(s)}\right]R(s)$$

MATLAB Block Diagram Functions

➤ SYS = tf(NUM,DEN): creates a continuous-time transfer function SYS with numerator NUM and denominator DEN:

```
dcmotor = tf(200,[1 1]);
```

► SYS = series(SYS1,SYS2): series connection of SYS1 and SYS2:

```
fwdsys = series(tf(200,[1 1]), tf(1,[1 8]));
```

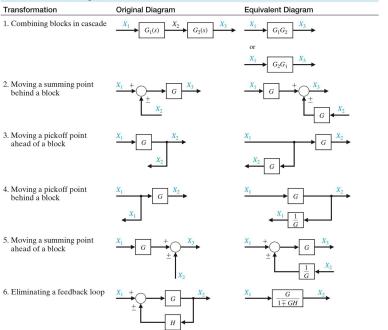
► SYS = parallel(SYS1,SYS2): parallel connection of SYS1 and SYS2

```
fwdsys = parallel(tf(200,[1 1]), tf(1,[1 8]));
```

► SYS = feedback(SYS1, SYS2, sign): feedback connection of SYS1 and SYS2:

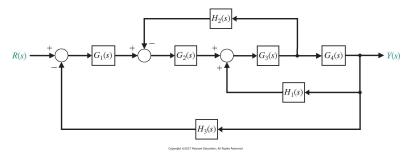
```
fbksys = feedback(series(tf(200,[1 1]), tf(1,[1 8])),tf(1,[0.25 1]))
```

Table 2.5 Block Diagram Transformations



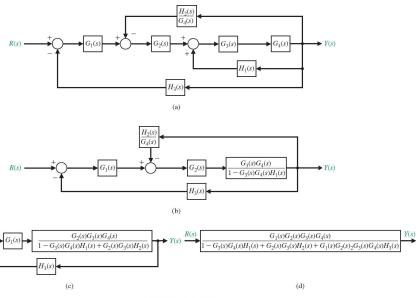
Example: Block Diagram Reduction

Consider a multi-loop feedback control system:



▶ Apply equivalent transformations to eliminate the feedback loops and obtain the total transfer function of the system $\frac{Y(s)}{R(s)}$

Example: Block Diagram Reduction



Copyright ©2017 Pearson Education, All Rights Reserved

Outline

Block Diagram

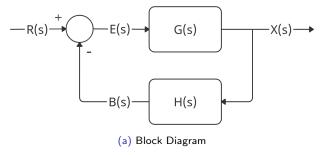
Signal Flow Graph and Mason's Gain Formula

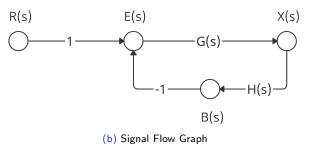
Parameter Sensitivity

Signal Flow Graph

- ➤ **Signal Flow Graph**: a graphical representation of a control system consisting of nodes connected by branches
- ▶ **Node**: a junction point representing a signal variable as the sum of all signals entering it
- ▶ Branch: a directed connection between two nodes with an associated transfer function
- ▶ Path: continuous succession of branches traversed in the same direction
- Forward Path: starts at an input node, ends at an output node, and no node is traversed more than once
- ▶ Path Gain: the product of all branch gains along the path
- ► Loop: a closed path that starts and ends at the same node and no node is traversed more than once
- ▶ Non-Touching Loops: loops that do not contain common nodes

Block Diagram vs Signal Flow Graph





Mason's Gain Formula

- A systematic method for reducing a signal flow graph to a single transfer function
- ▶ The transfer function $T^{ij}(s)$ from **input** $X_i(s)$ to **any** variable $X_j(s)$ is:

$$T^{ij}(s) = \frac{X_j(s)}{X_i(s)} = \frac{\sum_k P_k^{ij}(s) \Delta_k^{ij}(s)}{\Delta(s)}$$

where:

- $ightharpoonup P_k^{ij}(s)$: gain of the k-th forward path between $X_i(s)$ and $X_j(s)$
- $ightharpoonup \Delta(s)$: graph determinant
- $ightharpoonup \Delta_k^{ij}(s)$: graph determinant with the loops touching the k-th forward path between $X_i(s)$ and $X_j(s)$ removed
- ▶ The transfer function $T^{nj}(s)$ from **non-input** $X_n(s)$ to variable $X_j(s)$ is:

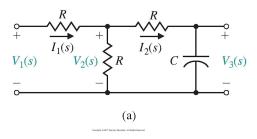
$$T^{nj}(s) = \frac{X_j(s)}{X_n(s)} = \frac{X_j(s)/X_i(s)}{X_n(s)/X_i(s)} = \frac{T^{ij}(s)}{T^{in}(s)} = \frac{\sum_k P_k^{ij}(s)\Delta_k^{ij}(s)}{\sum_k P_k^{in}(s)\Delta_k^{in}(s)}$$

Mason's Gain Formula

- ▶ $P_k^{ij}(s)$: gain of the k-th forward path between $X_i(s)$ and $X_j(s)$ = product of gains along the path
- $ightharpoonup L_n(s)$: gain of the *n*-th loop = product of gains along the loop
- \triangleright $\Delta(s)$: graph determinant

$$\Delta(s) = 1 - \sum (\text{individual loop gains}) \\ + \sum \prod (\text{gains of all 2 non-touching loop combinations}) \\ - \sum \prod (\text{gains of all 3 non-touching loop combinations}) \\ + \cdots \\ = 1 - \sum_n L_n(s) + \sum_{\substack{n,m \\ \text{nontouching}}} L_n(s)L_m(s) - \sum_{\substack{n,m,p \\ \text{nontouching}}} L_n(s)L_m(s)L_p(s) + \cdots$$

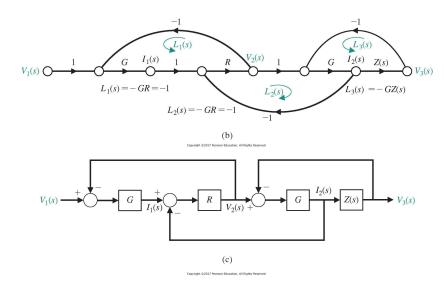
 $ightharpoonup \Delta_k^{ij}(s)$: graph determinant with the loops touching the k-th forward path between $X_i(s)$ and $X_j(s)$ removed



- Consider a ladder circuit with one energy storage element
- ▶ Determine the transfer function from $V_1(s)$ to $V_3(s)$
- ▶ The current and voltage equations are:

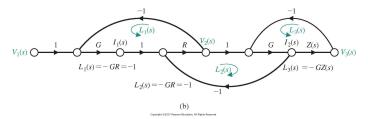
$$I_1(s) = \frac{1}{R}(V_1(s) - V_2(s)) \qquad I_2(s) = \frac{1}{R}(V_2(s) - V_3(s))$$

$$V_2(s) = R(I_1(s) - I_2(s)) \qquad V_3(s) = \frac{1}{Cs}I_2(s)$$



Admittance: $G = \frac{1}{R}$

▶ Impedence: $Z(s) = \frac{1}{Cs}$

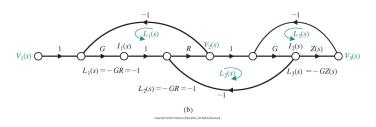


- ▶ Forward path: $P_1(s) = GRGZ(s) = GZ(s) = \frac{1}{RCs}$
- ► Loops: $L_1(s) = -GR = -1$, $L_2(s) = -GR = -1$, $L_3(s) = -GZ(s)$
- ▶ Cofactor: all loops touch the forward path: $\Delta_1(s) = 1$
- ▶ Determinant: loops $L_1(s)$ and $L_3(s)$ are non-touching:

$$\Delta(s) = 1 - (L_1(s) + L_2(s) + L_3(s)) + L_1(s)L_3(s) = 3 + 2GZ(s)$$

► Transfer function:

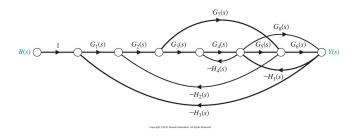
$$T(s) = \frac{V_3(s)}{V_1(s)} = \frac{P_1(s)}{\Delta(s)} = \frac{GZ(s)}{3 + 2GZ(s)} = \frac{1/(3RC)}{s + 2/(3RC)}$$



- ▶ Determine the transfer function from $I_1(s)$ to $I_2(s)$
- Instead of re-drawing the signal flow graph, we can use:

$$\frac{I_2(s)}{I_1(s)} = \frac{I_2(s)/V_1(s)}{I_1(s)/V_1(s)} = \frac{G}{G(2+GZ(s))} = \frac{1}{2+GZ(s)} = \frac{s}{2s+1/(RC)}$$

- lacktriangle One forward path from $V_1(s)$ to $I_2(s)$ with gain GRG=G and cofactor 1
- One forward path from $V_1(s)$ to $I_1(s)$ with gain G and cofactor $1 (L_2(s) + L_3(s)) = 2 + GZ(s)$

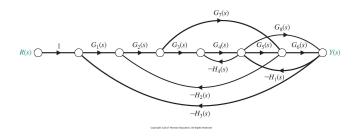


- ▶ Determine the transfer function $\frac{Y(s)}{R(s)}$ using Mason's gain formula
- Forward paths from R(s) to Y(s):

$$P_1(s) = G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)$$

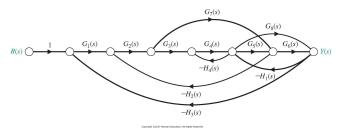
$$P_2(s) = G_1(s)G_2(s)G_7(s)G_6(s)$$

$$P_3(s) = G_1(s)G_2(s)G_3(s)G_4(s)G_8(s)$$



Loop gains:

$$\begin{split} L_1(s) &= -G_2(s)G_3(s)G_4(s)G_5(s)H_2(s), & L_2(s) &= -G_5(s)G_6(s)H_1(s), \\ L_3(s) &= -G_8(s)H_1(s), & L_4(s) &= -G_7(s)H_2(s)G_2(s) \\ L_5(s) &= -G_4(s)H_4(s), & L_6(s) &= -G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)H_3(s) \\ L_7(s) &= -G_1(s)G_2(s)G_7(s)G_6(s)H_3(s), & L_8(s) &= -G_1(s)G_2(s)G_3(s)G_4(s)G_8(s)H_3(s) \end{split}$$

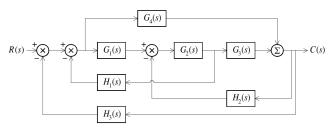


- Cofactors: $\Delta_1(s) = \Delta_3(s) = 1$ and $\Delta_2(s) = 1 L_5(s)$
- ▶ Determinant: L_5 does not touch L_4 or L_7 and L_3 does not touch L_4 :

$$\Delta(s) = 1 - (L_1(s) + L_2(s) + L_3(s) + L_4(s) + L_5(s) + L_6(s) + L_7(s) + L_8(s)) + (L_5(s)L_4(s) + L_5(s)L_7(s) + L_3(s)L_4(s))$$

Transfer function:

$$T(s) = \frac{P_1(s) + P_2(s)\Delta_2(s) + P_3(s)}{\Delta(s)}$$

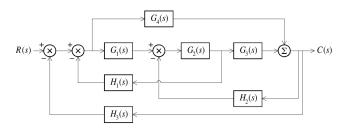


- ▶ Determine the transfer function from R(s) to C(s)
- Forward paths:

$$P_1(s) = G_1(s)G_2(s)G_3(s)$$
 $P_2(s) = G_4(s)$

Loops:

$$\begin{split} L_1(s) &= -G_1(s)G_2(s)H_1(s) & L_2(s) = -G_2(s)G_3(s)H_2(s) \\ L_3(s) &= -G_1(s)G_2(s)G_3(s)H_3(s) & L_4(s) = -G_4(s)H_3(s) \\ L_5(s) &= G_2(s)H_1(s)G_4(s)H_2(s) & \end{split}$$



- lacktriangle Cofactors: both forward paths touch all loops: $\Delta_1(s) = \Delta_2(s) = 1$
- Determinant: all loop pairs are touching:

$$\Delta(s) = 1 - (L_1(s) + L_2(s) + L_3(s) + L_4(s) + L_5(s))$$

Transfer function:

$$T(s) = \frac{C(s)}{R(s)} = \frac{P_1(s) + P_2(s)}{\Delta(s)} = \frac{G_1(s)G_2(s)G_3(s) + G_4(s)}{\Delta(s)}$$

Outline

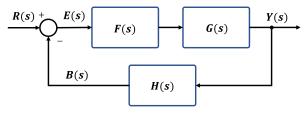
Block Diagram

Signal Flow Graph and Mason's Gain Formula

Parameter Sensitivity

Parameter Sensitivity

Feedback control is useful for reducing sensitivity to parameter variations in the plant transfer function G(s)



Closed-loop transfer function:

$$T(s) = \frac{Y(s)}{R(s)} = \frac{G(s)F(s)}{1 + G(s)F(s)H(s)}$$

- ▶ Suppose that G(s) undergoes a change $\Delta G(s)$ so that the true plant model is $G(s) + \Delta G(s)$
- ▶ What is the change $\Delta T(s)$ in the closed-loop transfer function T(s)?

Parameter Sensitivity

- Since T(s) and G(s) might have different units, parameter sensitivity is defined as a percentage change in T(s) over percentage change in G(s)
- ▶ Parameter sensitivity: ratio of the incremental change in the overall system transfer function to the incremental change in the transfer function of one component:

$$S_G^T(s) = \frac{dT(s)}{dG(s)} \frac{G(s)}{T(s)} \approx \frac{\Delta T(s)/T(s)}{\Delta G(s)/G(s)}$$

- Parameter sensitivity should be small to allow robustness to changes in G(s)
- Conversely, the parameters of the transfer functions of elements with high sensitivity should be estimated well because minor mismatch may have a significant effect on the overall system transfer function. These are the system elements we should be careful about.

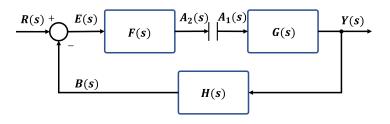
Return Difference

- Hendrik Bode was interested in measuring the effect of feedback on a specific element in a closed-loop control system
- ▶ Bode defined **return difference** as an impulse input U(s) = 1 at a system element minus the loop transfer function L(s) back to the element:

$$\rho(s) = 1 - L(s)$$

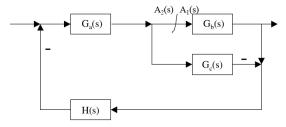
- ► Return difference computation:
 - open the feedback loop immediately prior to the element of interest
 - compute the transfer function $L(s) = \frac{A_2(s)}{A_1(s)}$ from the element input $A_1(s)$ back to the cut connection $A_2(s)$
 - the return difference is $\rho(s) = 1 L(s)$

Return Difference Example 1



- ▶ Return difference with respect to G(s)
- ightharpoonup Cut the loop immediately prior to G(s)
- ► Compute the loop gain: $L(s) = \frac{A_2(s)}{A_1(s)} = -G(s)H(s)F(s)$
- ▶ Return difference: $\rho_G(s) = 1 L(s) = 1 + G(s)H(s)F(s)$

Return Difference Example 2



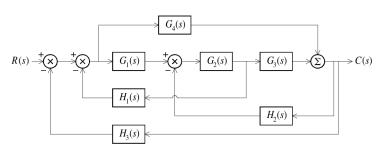
- ▶ Return difference with respect to $G_b(s)$
- ▶ Cut the loop immediately prior to $G_b(s)$
- ► Compute the loop gain via Mason's formula:

$$L(s) = \frac{G_1(s)\Delta_1(s)}{\Delta(s)} = \frac{-H(s)G_a(s)G_b(s)}{1 - H(s)G_a(s)G_c(s)}$$

Return difference:

$$\rho_{G_b}(s) = 1 - L(s) = 1 + \frac{H(s)G_a(s)G_b(s)}{1 - H(s)G_a(s)G_c(s)} = \frac{1 + H(s)G_a(s)(G_b(s) - G_c(s))}{1 - H(s)G_a(s)G_c(s)}$$

Return Difference Example 3



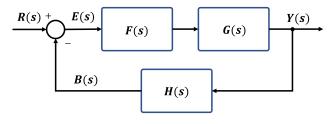
- ▶ Return difference with respect to $G_2(s)$
- ▶ Cut the loop immediately prior to $G_2(s)$
- Compute the loop gain via Mason's formula:

$$L(s) = \frac{-G_2(s)H_1(s)G_1(s) - G_2(s)G_3(s)H_2(s) - G_2(s)G_3(s)H_3(s)G_1(s) + G_2(s)H_1(s)G_4(s)H_2(s)}{1 + G_4(s)H_3(s)}$$

▶ Return difference: $\rho_{G_2}(s) = 1 - L(s)$

Parameter Sensitivity is Inverse Return Difference

► How is parameter sensitivity related to return difference?



In a system with a single feedback loop, parameter sensitivity $S_G(s)$ of the plant transfer function G(s) is equal to the inverse of the return difference $\rho_G(s)$.

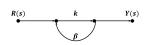
$$S_{G}(s) = \frac{dT(s)}{dG(s)} \frac{G(s)}{T(s)} = \frac{d}{dG(s)} \left(\frac{G(s)F(s)}{1 + G(s)F(s)H(s)} \right) \frac{G(s)}{T(s)}$$

$$= \frac{F(s)}{(1 + G(s)F(s)H(s))^{2}} \frac{G(s)}{T(s)} = \frac{1}{1 + G(s)F(s)H(s)}$$

$$= \frac{1}{1 - L(s)} = \frac{1}{\rho_{G}(s)}$$

Example: Feedback OpAmp Sensitivity

Feedback amplifier with input voltage R(s), feedforward gain k, feedback gain β , and output voltage Y(s)



- ► Transfer function: $T(s) = \frac{Y(s)}{R(s)} = \frac{k}{1-k\beta}$
- ▶ Return difference wrt to OpAmp gain k: $\rho_k = 1 k\beta$
- ► Sensitivity wrt to OpAmp gain k: $S_k^T = \frac{1}{1-k\beta} = \frac{1}{\rho_k}$
- ► Sensitivity wrt β : $S_{\beta}^{T} = \frac{\beta}{T} \frac{dT}{d\beta} = \frac{\beta(1-k\beta)}{k} \frac{k^2}{(1-\beta k)^2} = \frac{k\beta}{1-k\beta}$
- ▶ When $k \approx 10^3$ and $\beta \approx -0.1$, then $S_k^T \approx 0$ and $S_\beta^T \approx -1$.
- Nhen designing an OpAmp, the forward gain k can be arbitrary but we need to be careful with the design of β because it affects the response almost one-to-one

Canonical Feedback Control Architecture

Transfer function:

Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = T_4(s) + \frac{T_1(s)G(s)T_3(s)}{1 - G(s)T_2(s)}$$

 \triangleright Sensitivity of T(s) with respect to G(s):

$$\begin{split} \frac{dT}{dG} &= T_1 T_3 \left(\frac{1}{1 - GT_2} + \frac{GT_2}{(1 - GT_2)^2} \right) = \frac{T_1 T_3}{(1 - GT_2)^2} \\ S_G^T &= \frac{G}{T} \frac{dT}{dG} = \frac{G(1 - GT_2)}{T_4 (1 - GT_2) + T_1 T_3 G} \frac{T_1 T_3}{(1 - GT_2)^2} \\ &= \frac{GT_1 T_3}{T_4 (1 - GT_2)^2 + T_1 T_3 G (1 - GT_2)} \\ &= \left(\frac{1}{1 - GT_2} \right) \left(\frac{1}{1 + T_4 (1 - GT_2) / (GT_1 T_3)} \right) \end{split}$$

 $T_4(s)$

G(s)

 $T_2(s)$

 $T_3(s)$

Canonical Feedback Control Architecture

Transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = T_4(s) + \frac{T_1(s)G(s)T_3(s)}{1 - G(s)T_2(s)}$$
Resultant function:
$$T_{4(s)} = \frac{T_{4(s)}}{R(s)} = \frac{T_{4(s)}}{R(s)} + \frac{T_{1(s)}G(s)T_{2(s)}}{1 - G(s)T_{2(s)}}$$
Resultant function:
$$T_{4(s)} = \frac{T_{4(s)}}{R(s)} + \frac{T_{4(s)}G(s)T_{3(s)}}{1 - G(s)T_{2(s)}}$$
Resultant function:
$$T_{4(s)} = \frac{T_{4(s)}G(s)T_{3(s)}}{R(s)} + \frac{T_{4(s)}G(s)T_{3(s)}}{1 - G(s)T_{2(s)}}$$

Sensitivity of T(s) with respect to G(s):

$$S_G^T(s) = \left(\frac{1}{1 - G(s)T_2(s)}\right) \left(\frac{1}{1 + T_4(s)(1 - G(s)T_2(s))/(G(s)T_1(s)T_3(s))}\right)$$

Note that G(s) does not affect $T_4(s)$ in the transfer function. Consider only the portion that G(s) affects:

$$T'(s) = \frac{T_1(s)G(s)T_3(s)}{1 - G(s)T_2(s)}$$

Letting $T_4(s) = 0$ in $S_G^T(s)$ shows that $S_G^{T'}(s)$ is the inverse of the return difference:

$$S_G^{T'}(s) = \frac{1}{1 - G(s)T_2(s)} = \frac{1}{\rho_G^{T'}(s)}$$