
PIN map memory: 0.5 GB 

Raw point cloud memory: 183 GB 
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Image credit: Pan et al., “PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency,” IEEE T-RO, 2024.
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Sparse vs. Dense World Representations

• Sparse: e.g., pose graphs, landmarks

Good for state estimation (e.g., 

localization) 

Collision avoidance? Planning?

50 m

50 cm0 cm

Mapping Error

• Dense maps

Higher fidelity reconstruction 

Real-time? 

Pan et al. 2024

Millane et al. 2024
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Today’s Lecture

• Dense signed distance function (SDF) representation and properties 

• Basics of 3D dense SLAM using SDF

• Recent advancements to improve SDF-based SLAM

Park et al. 2019

Pan et al. 2024

Newcombe et al. 2011
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The Land of 3D Representations

Picture credit: Shubham Tulsiani
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The Land of 3D Representations

• Surface representations

Point cloud

Meshes

• Volumetric representations

3D voxels

Distance functions

Today’s lecture 
Depth images
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Signed Distance Function (SDF)

Park et al. 2019
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The Eikonal Property of SDF

• Suppose the SDF is differentiable at a point 𝑝. Then its gradient satisfies

• “Distance changes at one meter per meter.”

0

1
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From SDF to Voxels

• Surface representations

Point cloud

Meshes

• Volumetric representations

3D voxels

Distance functions

Today’s lecture 

Sampling 
+ thresholding

Depth images
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From SDF to Meshes

• Surface representations

Point cloud

Meshes

• Volumetric representations

3D voxels

Distance functions

Today’s lecture 
Depth images

Surface reconstruction
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Surface Reconstruction in 2D: Single Grid Cell

Image credit: Shubham Tulsiani
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Surface Reconstruction in 2D: Marching Square

Picture credit: Shubham Tulsiani
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Surface Reconstruction in 2D: Marching Square

Picture credit: Shubham Tulsiani
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Surface Reconstruction in 3D: Marching Cube

credit: www.youtube.com/@algorithmsvisualized9025

http://www.youtube.com/@algorithmsvisualized9025
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From SDF to Depth Images

• Surface representations

Point cloud

Meshes

• Volumetric representations

3D voxels

Distance functions

Today’s lecture 
Depth images

Rendering
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Rendering: Ray Marching

Can we use the property of SDF to speed up ray marching? 
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Rendering: Sphere Tracing

• Key idea: SDF at any point gives minimum step size!

• Further from surface ➔ larger step size ➔ faster rendering
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Rendering: Sphere Tracing

• Key idea: SDF at any point gives minimum step size!

• Further from surface ➔ larger step size ➔ faster rendering

Input viewpoints (shown as RGB images)

Depth from sphere tracingImage credit: Zhirui Dai



19

Today’s Lecture

• Dense signed distance function (SDF) representation and properties 

• Basics of 3D dense SLAM using SDF

• Recent advancements to improve SDF-based SLAM

Park et al. 2019

Pan et al. 2024

Newcombe et al. 2011



SLAM with Dense Representation

Image credit: Tosi et al. “How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey”.
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Where it began: KinectFusion (2011)

Context: Kinect RGB-D camera released 

by Microsoft in 2010.
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KinectFusion (2011)
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Truncated Signed Distance Function (TSDF)

• KinectFusion uses truncated SDF (TSDF)

• Better noise handling and faster computation
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Truncated Signed Distance Function (TSDF)

• KinectFusion uses truncated SDF (TSDF) computed by projective distance

Measured depth at 

corresponding pixel

Depth from p to 

camera center t
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Truncated Signed Distance Function (TSDF)

• KinectFusion uses truncated SDF (TSDF) computed by projective distance

Image credit: Tim Cheng

From every raw depth image, we obtain a 

normalized and weighted TSDF: 

Weight is higher if closer and viewed from a 

perpendicular viewpoint.
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TSDF Integration

Image credit: Zhi-Hao Lin

Each depth image provides 

a partial (noisy) observation 

of TSDF.

Volume integration recursively 

update the map given new 

observation.



27

TSDF Integration

Image credit: Zhi-Hao Lin

Running weighted average implemented on GPU 
(65 gigavoxels/sec, OR, ≈ 2ms per full volume update for a 5123 voxel reconstruction)
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KinectFusion (2011)
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Frame-to-Model Tracking is better than Frame-to-Frame Tracking

Image credit: Richard Newcombe
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Frame-to-Model Camera Tracking

Image credit: Richard Newcombe

Find rigid pose 

transformation…

that best aligns the two.
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Point-to-Plane ICP

Image credit: Zhi-Hao Lin

observed surface predicted surface and normal

Input

Aligned with Point-to-Plane ICP
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Point-to-Plane ICP via Gauss-Newton

Using a first-order approximation for the rotation variable:

Plug into 𝑇𝑝𝑖 − 𝑞𝑖:
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Point-to-Plane ICP via Gauss-Newton

Plug into the overall cost function:

where 𝑥 = (𝜀, 𝑡) is the decision variable, and 𝑎𝑖 , 𝑏𝑖 are constant.

➔ This is a least squares optimization ➔ implemented on GPU and run in 

frame rate (30 Hz) 
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Frame-to-Model Tracking is better than Frame-to-Frame Tracking
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Full System
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KinectFusion: Summary

• First real-time dense RGB-D SLAM on GPU

• Mapping: fast TSDF integration 

• Localization: frame-to-model tracking via point-

to-plane ICP

• How to resolve the scaling issue due to 

regular grid (for storing TSDF)? 



37

Today’s Lecture

• Dense signed distance function (SDF) representation and properties 

• Basics of 3D dense SLAM using SDF

• Recent advancements to improve SDF-based SLAM

Park et al. 2019

Pan et al. 2024

Newcombe et al. 2011
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Beyond Regular Grid: Hierarchical Sparse Grids

• Octree:

• Recursively divide voxel into 8 child voxels

• Increase spatial resolution as needed

• Retrieval has 𝑂 log 𝑛 complexity

• Can be used to store occupancy [1], TSDF 

values [2], and distribution over semantic 

categories [3]

[1] Hornung et al. "OctoMap: An efficient probabilistic 3D mapping framework based on 

octrees." Autonomous robots 2013.

[2] Vespa et al. "Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance and 

Occupancy Mapping." IEEE RA-L 2018.

[3] Asgharivaskasi and Atanasov. "Semantic octree mapping and Shannon mutual information 

computation for robot exploration." IEEE T-RO, 2023.
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Beyond Regular Grid: Voxel Hashing

• Map (integer) 3D coordinates to hash values

• Retrieve voxel block from hash table

• Pro: constant time operation

• Con: need to handle hash collisions

Nießner et al. “Real-time 3D Reconstruction at Scale using Voxel Hashing.” ACM Transactions on Graphics 2013.



41

Beyond Regular Grid: Voxel Hashing Implementation

Oleynikova et al. “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning.” IROS 2017.

Millane et al. “nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping.” ICRA 2024.
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DeepSDF: SDF via Neural Networks

• Use a multi-layer perceptron (MLP) to represent a single shape 

• Input: 3D coordinate

• Output: SDF value

• Differentiable by design! 

Park et al. “Deepsdf: Learning continuous signed distance functions for shape representation.” CVPR 2019.
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DeepSDF: SDF via Neural Networks

• Use a multi-layer perceptron (MLP) to represent multiple shapes

• Input: 3D coordinate + learnable latent code

• Output: SDF value

• Support shape interpolation

Park et al. “Deepsdf: Learning continuous signed distance functions for shape representation.” CVPR 2019.

Shape 1
Shape 2

……
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iSDF: neural SDF for real-time mapping

• Assume external localization (e.g., provided by external odometry module)

• Mapping using neural SDF representation

Ortiz et al. “iSDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.
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iSDF: neural SDF for real-time mapping

• Improved loss function for training the SDF network

Ortiz et al. “iSDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.

Distance along 
the ray (KinectFusion)

True SDF
Batch 
distance

Normal-based
distance

Near surface: use measurement as direct supervision 

Far away from surface: use measurement as upper bound
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iSDF: neural SDF for real-time mapping

• Improved loss function for training the SDF network

Ortiz et al. “iSDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.

Distance along 
the ray (KinectFusion)

True SDF
Batch 
distance

Normal-based
distance

Maximize cosine similarity between observed and predicted normals



47

iSDF: neural SDF for real-time mapping

• Improved loss function for training the SDF network

Ortiz et al. “iSDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.

Distance along 
the ray (KinectFusion)

True SDF
Batch 
distance

Normal-based
distance

Enforce Eikonal property of the learned SDF
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iSDF: neural SDF for real-time mapping

• MLP has limited memory capacity
• Struggle to fit geometry with fine details

• The “catastrophic forgetting” problem

Ortiz et al. “iSDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.

ScanNet datasetReplicaCAD dataset
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Hybrid Representations

• Extend neural SDF with additional data structures! 

Octrees Voxel Hashing

Sandstrom et al ICCV 23.
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PIN-SLAM: Neural SDF with Voxel Hashing

• The environment is covered by neural points, each with 

a learnable feature vector

Pan et al., “PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency,” IEEE T-RO, 2024.

• Given observed point 𝑝, find nearby neural points via 

voxel hashing

• Each neural point 𝑥𝑖 predicts a SDF value by passing its 

latent feature 𝑓𝑖 to a MLP decoder network 

• Final SDF prediction obtained by weighted averaging 
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PIN-SLAM: Large-Scale TSDF Mapping using Lidar
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Summary

SDF: definition and applications
Dense SLAM with TSDF
(KinectFusion) Recent advancements: 

data structures and neural networks 



53

Questions?
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