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PIN map memory: 0.5 GB
Raw point cloud memory: 183

Signed Distance Function and 3D Dense SLAM

Yulun Tian
yut034@ucsd.edu)

Image credit: Pan et al., “PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency,” IEEE T-RO, 2024.
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Sparse vs. Dense World Representations

» Sparse: e.g., pose graphs, landmarks

LI
565 P56 R
@6'\\""4 ....................... ,,1;‘ ....... ( ..... 45,
T (Q\,ro'\‘ ....... :
» Pose graph /e (R52}1552)

.v (Ra3, P23)

Mapping Error
m
0cm

Millane et al. 2024 Depth + Mask

Good for state estimation (e.qg., Higher fidelity reconstruction
localization) € Real-time?



Today's Lecture

* Dense signed distance function (SDF) representation and properties
» Basics of 3D dense SLAM using SDF
» Recent advancements to improve SDF-based SLAM

/e Decision
[ ®
/ __ boundary

/e of implicit
& surface

° j P .
_+ SDF>0
o

@ SDF<0

Newcombe et al. 2011

()
Park et al. 2019

Stairs Undergr(')udm |

Pan et al. 2024



The Land of 3D Representations

Picture credit; Shubham Tulsiani



The Land of 3D Representations

* Surface representations  \VVolumetric representations

~ Point cloud - i.i s

3D voxels

Distance functions

An image that represents how D[p] c R+

fareach pixel pis

4
Meshes Depth images Today's lecture



Signed Distance Function (SDF)

Definition 1. The signed distance function (SDF) of a set O C R"™ is a function f :
R™ — IR that measures the signed distance from a point p € R" to the set boundary

00O, defined as:

min oo |IP — U s P Oa
fspr(p; O) £ e 2> PE (1)
—mingecpo ([P — Ylly, pEO.

o e Decision
____ boundary

- e of implicit
surface

o o
e SDF >0
o o ® e

(a) SDF <0

Park et al. 2019



The Eikonal Property of SDF
» Suppose the SDF is differentiable at a point p. Then its gradient satisfies

|Vp fsae(p; O) |2 = 1.

» “Distance changes at one meter per meter.”

0

f(pFv)= f(p)+v V(p)

:/fmﬂl 2200 P =1 -



From SDF to Voxels

* Surface representations  \VVolumetric representations

i S N S I
DRED N dMpIiing
T lp ol R R g
o g ~—+ thresholding
ELEEIRIA D e L L
A "‘"';E‘ e ':-a,... i L"J"f"“' 1
______ L 3
Point cloud .- .+

3D voxels

Distance functions

An image that represents how D[p] c R+

fareach pixel pis

Today’s lecture

Meshes Depth images
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From SDF to Meshes

* Surface representations  \VVolumetric representations

SR Surface reconstruction P
Point cloud .- .5+

3D voxels

Distance functions

An image that represents how D[p] c R+

fareach pixel pis

4
Meshes Depth images Today's lecture



Surface Reconstruction in 2D: Single Grid Cell

Where should the surface
boundary be?

V=142 V=43
Location of boundary
Green — inside, red — outside determined by vertex values

(differentiable!)

Imaaqe credit: Shubham Tulsiani
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Surface Reconstruction in 2D: Marching Square

For each cell:
- Use lookup table to draw contours

HENPeS

Case 0O Case 1 Case 2 Case 3

N 2] 7]

Case 4 Case 5 Case 6 Case 7

ARIIgNER

Case 8 Case9 C(Case 10 Case 11

Image credits: David Ramalho



Surface Reconstruction in 2D: Marching Square

Image credits: David Ramalho

For each cell:
- Use lookup table to draw contours

LA H

Case 0O Case 1 Case 2 Case 3

Rpegiiyd

Case 4 Case 5 (Case 6 Case 7

ARIIgNER

Case 8 Case9 Case 10 Case 11

H AN

Case 12 Case 13 Case 14 Case 15

13



14
Surface Reconstruction in 3D: Marching Cube

PyMCubes

PyMCubes is an implementation of the marching cubes algorithm to extract iso-surfaces from volumetric data. The

|mp|ementati0n volumetric data can be given as a three-dimensional NumPy array or as a Python function f(x, y, z) .

PyMCubes also provides functions to export the results of the marching cubes in a number of mesh file formats.

Installation
Use pip:

$ pip install --upgrade PyMCubes i

¢ Example

The following example creates a NumPy volume with spherical iso-surfaces and extracts one of them (i.e., a
sphere) with mcubes.marching_cubes . The result is exported to sphere.dae :

>>> import numpy as np
>>> import mcubes

# Create a data volume (30 x 30 x 30)

>>> X, Y, Z = np.mgrid[:30, :30, :30]

>>> U = (X=-15)%%2 + (Y-15)%*x2 + (Z-15)%%2 — 8x%x2
credit: www.youtube.com/@algorithmsvisualized9025

# Extract the 0-isosurface
>>> vertices, triangles = mcubes.marching_cubes(u, @)

# Export the result to sphere.dae
>>> mcubes.export_mesh(vertices, triangles, "sphere.dae", "MySphere")


http://www.youtube.com/@algorithmsvisualized9025

15

From SDF to Depth Images

* Surface representations  \VVolumetric representations

e F LR
,

o .Poi-nt.clo-ud. B Renderi ng

3D voxels

Distance functions

An image that represents how D[p] c R+

fareach pixel pis

Today’s lecture

Meshes Depth images



Rendering: Ray Marching

‘\ ray miss

& Can we use the property of SDF to speed up ray marching?

16



Rendering: Sphere Tracing

» Key Idea: SDF at any point gives minimum step size!
» Further from surface => larger step size = faster rendering

- e o -

17



Rendering: Sphere Tracing

» Key Idea: SDF at any point gives minimum step size!
* Further from surface - \arger step size -> faster rendermg

Image credit: Zhirui Dai Depth from Sphere traCing

18
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Today's Lecture

* Dense signed distance function (SDF) representation and properties
» Basics of 3D dense SLAM using SDF
» Recent advancements to improve SDF-based SLAM

/e Decision
/e
/ __ boundary

/e ofimplicit

surface
o

a ;?' o o
. » SDF>0
o

9
@ - -

@ SDF<0

| B : r; ‘ ;.'-,. ' ifﬁ.
Newcombe et al. 2011

(c)

Undergrbun "
Pan et al. 2024

Stairs



SLAM with Dense Representation

2011

N

ORB-SLAM[10]

Code-SLAM[!1]

@

.

KinectFusion [”]

® ®
Hand-crafted ii @ Deep Learning N N
Nt Ny :!
Surveys Surveys

Grisetti et al., 2010 [19] Taketomi et al., 2017 [22]

Yousif et al., 2015 [20] Duan et al., 2019 [23]

Cadena et al., 2016 [21] ® Mokssit et al., 2023 [24]

CNN-SLAM[3] Structure-SLAM [4]

NeRF-style
RGB-D SLAM

Radiance Fields

MeSLAM [6]

iLabel[”]
o

ermantic
SLAM N
Lil» I\

SLAM \\
Y

¢
GS-SLAM[1?2]

[
NICE-SLAM[5]

NE:RF-}OAM [

NICER-SLAM[15]
DIM-g LAM[16]

|

UncLe;S LAMI[17]

l uments ™
|
l EN-SLAM[14]
DN-SLAM[13]

DDN-SLAM][Y]
Hi-Map [5]

Fig. 1: Timeline SLAM Evolution. This timeline begins by illustrating the transition from hand-crafted to deep learning

techniques, featuring key surveys from both eras. In 2021, a pivotal shi:

t focuses on radiance-field-based SLAM systems, marked

by iMap [1]. The circles on the right side of the figure represent key papers for each year, with size indicating publication volume.
The outer circle for 2024 signals a projected surge, highlighting the growing interest in NeRF and 3DGS-inspired SLAM.

Image credit: Tosi et al. "How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey”.



Where It began: KinectFusion (2011)

Context: Kinect RGB-D camera released
by Microsoft in 2010.

KinectFusion: Real-Time Dense Surface Mapping and Tracking*

Richard A. Newcombe Shahram lzadi Otmar Hilliges David Molyneaux David Kim
Imperial College London Microsoft Research Microsoft Research Microsoft Research Microsoft Research
Lancaster University Newcastle University
Andrew J. Davison Pushmeet Kohli Jamie Shotton Steve Hodges Andrew Fitzgibbon
Imperial College London Microsoft Research Microsoft Research Microsoft Research Microsoft Research

21

Figure 1: Example output from our system, generated in real-time with a handheld Kinect depth camera and no other sensing infrastructure.
Normal maps (colour) and Phong-shaded renderings (greyscale) from our dense reconstruction system are shown. On the left for comparison

is an example of the live, incomplete, and noisy data from the Kinect sensor (used as input to our system).

Kinectfusion: Real-time dense surface mapping and tracking
RA Newcombe, S Izadi, O Hilliges... - 2011 10th IEEE ..., 2011 - ieeexplore.ieee.org

We present a system for accurate real-time mapping of complex and arbitrary indoor scenes
iti Ing only a moving low-cost depth camera and commodity ...

in variable lighting
Yv Save Y9 Cite



KinectFusion (2011)

Raw Depth
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s | n - 7
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ICP Outliers Raycasted Vertex &
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c) Volumetric ) Raycasing
Integration D Rendering)

a) Depth Map Conversion b) Camera
(Raw Vertex & Normal Map) Tracking (ICP)
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Image credit: Newcombe



Truncated Signed Distance Function (TSDF)

 KinectFusion uses truncated SDF (TSDF)
 Better noise handling and faster computation

Y

L

‘ -
-

—

X

Figure 4: A slice through the truncated signed distance volume

showing the truncated function F > u (white), the smooth distance
field around the surface interface F = 0 and voxels that have not yet

had a valid measurement(grey) as detailed in egn. 9.

23



Truncated Signed Distance Function (TSDF)

 KinectFusion uses truncated SDF (TSDF) computed by projective distance

n=D(x)—X""|p—t|,

*

Measured depth at Depth from p to
corresponding pixel camera center t

24



20

Truncated Signed Distance Function (TSDF)

 KinectFusion uses truncated SDF (TSDF) computed by projective distance

mmmmn From every raw depth image, we obtain a

“afododoloz 1111 normalized and weighted TSDF:
EAIETED |[EICCF N EY ,
i fodo oozl [1 1] f, (p) = n/tr, it n| <tr,
EE%%E sign(n), otherwise.
-1 fo.7o.4aplo.2Jo.7jo.8] 1| 1

Osfofodgolo2loslos| 1] 1| VVRk(P) X coS(0)/D(x)
EEE%EE Weight is higher if closer and viewed from a

perpendicular viewpoint.

Image credit: Tim Cheng
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TSDF Integration

Each depth image provides Volume Integration recursively
a partial (noisy) observation update the map given new
of TSDF. observation.

N

i
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<
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{ ]
]
g
S
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' .
1 \‘
F &
L ) ‘g
[ LY

lmage credit: Zhi-Hao Lin



TSDF Integration

Updated TSDF

|
Fr(p)

Wﬁ(p)

Welght

Old TSDF

New Observation

Running weighted average implemented on GPU
(65 gigavoxels/sec, OR, = 2ms per full volume update for a 5123 voxel reconstruction)

lmage credit: Zhi-Hao Lin
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KinectFusion (2011)

Raw Depth ICP Outliers Raycasted Vertex &
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(Raw Vertex & Normal ) Tracking (ICP) Integration (3D Rendering)
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Image credit: Newcombe



Frame-to-Model Tracking Is better than Frame-to-Frame Tracking

A
T A | T'w,k—m
w,k—1 | .
, 'ﬁ.
&

-

L
L
L 4

o .,
,) \ ‘TTw k=0
|

=

~'\
'

" .

Image credit: Richard Newcombe
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Frame-to-Model Camera Tracking

Find rigid pose
transformation...

New Observation | Known 3D Model

Image credit: Richard Newcombe

that best aligns the two.

30
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Point-to-Plane ICP

Point-to-Point
o

N
' To: — a.ll?
m,Il,n; | Tp: — qill3

Point-to-Plane

mlnz ((Tp; — q;) - ng,)* e

T 1

observed surface predicted surface and normal

Aligned with Point-to-Plane ICP

lmage credit: Zhi-Hao Lin



Point-to-Plane ICP via Gauss-Newton
2

min I, — qg; Tni
TESE(3) £ (Tpi = a:) 2

Using a first-order approximation for the rotation variable:
T = (R,t) = (Rexp(eM),t) ~ (R(I + "), t)
Plug into Tp; — q;:
I'pi —qi = Rp;i +1 — q;
— Rp; + Re"\p; +1 — q;

32
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Point-to-Plane ICP via Gauss-Newton

Plug into the overall cost function:
— 2
E N(Tp; — qi) ny 5

()
~) (Rp; — ¢; — Rpi"e +1) ' n,

_ T :
—E a; + 04|,
i

where x = (&, t) Is the decision variable, and a;, b; are constant.
- This is a least squares optimization = implemented on GPU and run In
frame rate (30 Hz)




Frame-to-Model Tracking Is better than Frame-to-Frame Tracking

(a) Frame to frame tracking (b) Partial loop (c) Full loop (d) M times duplicated loop

34



Full System

S T |"

39



360
KinectFusion: Summary

* First real-time dense RGB-D SLAM on GPU
* Mapping: fast TSDF integration

» Localization: frame-to-model tracking via point- = &

to-plane ICP

» () How to resolve the scaling issue due to

regular grid (for storing TSDF)?
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Today's Lecture

* Dense signed distance function (SDF) representation and properties
» Basics of 3D dense SLAM using SDF
* Recent advancements to improve SDF-based SLAM

/e Decision
,,‘j“ .
/ __ boundary

/e ofimplicit
’ & surface

a ;?' o o
. » SDF>0
R

NG
® o] - -

@ SDF<0

| B : r; ‘ ;.'-,. ' ifﬁ.
Newcombe et al. 2011

(c)

Undergrbun "
Pan et al. 2024

Stairs
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Beyond Regular Grid: Hierarchical Sparse Grids

» Octree: <
< Tz
- Recursively divide voxel into 8 child voxels <</ ?"4'
* Increase spatial resolution as needed B
11 >

 Retrieval has 0(logn) complexity

Fig. 2 Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model 1s shown on the left and the corre-

° Caﬂ be Used fo store OCCUpaﬂCy [1 ], TSDF sponding tree representation on the right.
values [2], and distribution over semantic

categories [ 3]

[1] Hornung et al. "OctoMap: An efficient probabilistic 3D mapping framework based on
octrees." Autonomous robots 2013.

[2] Vespa et al. "Efficient Octree-Based Volumetric SLAM Supporting Signed-Distance and
Occupancy Mapping." IEEE RA-L 2018. Fig. 3 By limiting the depth of a query, multiple resolutions of the

same map can be obtained at any time. Occupied voxels are displayed

[3] Asgharivaskasi and Atanasov. "Semantic octree mapping and Shannon mutual information  in resolutions 0.08 m, 0.64 , and 1.28 m.
computation for robot exploration." [IEEE T-RO, 2023.
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Beyond Regular Grid: Voxel Hashing

* Map (integer) 3D coordinates to hash values
» Retrieve voxel block from hash table

* Pro: constant time operation

» Con: need to handle hash collisions

world

.‘ | » JA_
YV RY I 2.
& l ‘1/ ﬁl —/ bucket

F A A

voxel
blocks

Nieldner et al. “Real-time 3D Reconstruction at Scale using Voxel Hashing.” ACM Transactions on Graphics 2013.



Beyond Regular Grid: Voxel Hashing Implementation

Hluyd ol fuy

Oleynikova et al. “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board MAV Planning.” IROS 2017.
Millane et al. “nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping.” ICRA 2024.

41




DeepSDF: SDF via Neural Networks

» Use a multi-layer perceptron (MLP) to represent a single shape
 [nput: 3D coordinate

» Qutput: SDF value

» Differentiable by design!

\
(X,y,2) SDF

/ Figure 5: Compared to car shapes memorized using OGN [49]
(right), our models (left) preserve details and render visually pleas-

ing results as DeepSDF provides oriented surace normals.

Park et al. “Deepsdf: Learning continuous signed distance functions for shape representation.” CVPR 2019.
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DeepSDF: SDF via Neural Networks

» Use a multi-layer perceptron (MLP) to represent multiple shapes
 Input: 3D coordinate + learnable latent code
» Qutput: SDF value Shape 2

Shape 1

» Support shape interpolation tvr + (1 — t)vo

T

Code

(lerz) /

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.
Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

Park et al. “Deepsdf: Learning continuous signed distance functions for shape representation.” CVPR 2019.



ISDF: neural SDF for real-time mapping

» Assume external localization (e.g., provided by external odometry module)

* Mapping using neural SDF representation

Input

ISDF —

Ortiz et al. "ISDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.

Output

Reconstructed
SDF

Posed depth
measurements

Is keyframe?

lyes

Point
batch

I

Keyframe set

Active
sampling

LR N
LITTITliun
A m

Fea=aaas

Downstream
module

A
Collision

Gradients checks

N

Loss

___________________
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ISDF: neural SDF for real-time mapping

* Improved loss function for training the SDF network

surface Z(Q) : )\grad Egrad an )\eik Efeik -

NsurtLoear surt if | D, v] — d| < ¢t
Lsdf(f(x;e?),b):{ tlvew st 1 | Dl v] —d

Distance along Ltreo_space otherwise.

the ray (KinectFusion)

Near surface: use measurement as direct supervision
X Locar_surf(f(X;0),b) = | f(xi50) —b] .
distance!

Normal-based Far away from surface: use measurement as upper bound

distance Liree_space(f(%x;60),b) = max (0, e~ BT (xi30) —1, f(x; 9)—b) .
‘ Batch surface samples

Batch|

Ortiz et al. "ISDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.



ISDF: neural SDF for real-time mapping

* Improved loss function for training the SDF network

I
surface Z(Q) — ﬁsdf —|— )\grad —|— )\eik ‘E’eik :

Maximize cosine similarity between observed and predicted normals

Vi f(x;0) - g
Lorad(V « ;9 ; =1- '
erad (Vx f (% 0), 8) |V f (x;0)|[[|g]

Distance along
the ray (KinectFusion)

Batch|

X
distance!
Normal-hased

distance
‘ Batch surface samples

Ortiz et al. "ISDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.
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ISDF: neural SDF for real-time mapping

* Improved loss function for training the SDF network

r
surface Z(Q) = Lgar + )\grad Egrad an )\eik-

Enforce Eikonal property of the learned SDF

Distance along
the ray (KinectFusion)

IV f(x;0)|| = 1] if [D]u,v] —d| > a

0 otherwise.

Lei(f(x;0)) = {

Batch|

X
distance!
Normal-hased

distance
‘ Batch surface samples

Ortiz et al. "ISDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.
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ISDF: neural SDF for real-time mapping

Ground truth SDF slice

Signed
distance
[m]

2.0

1.5
1.0
0.5
0.0
r —0.5
-1.0
-1.5
-2.0

Signed
distance
[m]

2.0
i 1.5
1.0
0.5
0.0
i -0.5
-1.0
-1.5
-2.0

Predicted SDF£ slice

ReplicaCAD dataset ScanNet dataset

* MLP has limited memory capacity
» Struggle to fit geometry with fine details
* The “catastrophic forgetting” problem

Ortiz et al. "ISDF: Real-Time Neural Signed Distance Fields for Robot Perception.” RSS 2022.



Hybrid Representations

e Extend neural SDF with additional data structures!

Octrees Voxel Hashing

world

hash
table

voxel
blocks

49

Neural Point Cloud

Feature Interpolation

Camera Pose

Ray Sampling

Sandstrom et al ICCV 23.



PIN-SLAM: Neural SDF with Voxel Hashing

* The environment is covered by neural points, each with

a learnable feature vector (a) o
f

» Glven observed point p, find nearby neural points via

voxel hashing ® ps

» Each neural point x; predicts a SDF value by passing its

latent feature f; to a MLP decoder network

 Final SDF prediction obtained by weighted averaging

Pan et al., “PIN-SLAM: LIDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency,” IEEE T-RO, 2024.
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Summary
Dense SLAM with TSDF

SDF: definition and applications (KinectFusion) Recent advancements:
data structures and neural networks

/ \

Output

. Reconstructed
iISDF — SDF




Questions?

03



	Main
	Slide 1: Signed Distance Function and 3D Dense SLAM
	Slide 2: Sparse vs. Dense World Representations
	Slide 3: Today’s Lecture
	Slide 4: The Land of 3D Representations
	Slide 6: The Land of 3D Representations
	Slide 7: Signed Distance Function (SDF)
	Slide 8: The Eikonal Property of SDF
	Slide 9: From SDF to Voxels
	Slide 10: From SDF to Meshes
	Slide 11: Surface Reconstruction in 2D: Single Grid Cell
	Slide 12: Surface Reconstruction in 2D: Marching Square
	Slide 13: Surface Reconstruction in 2D: Marching Square
	Slide 14: Surface Reconstruction in 3D: Marching Cube
	Slide 15: From SDF to Depth Images
	Slide 16: Rendering: Ray Marching
	Slide 17: Rendering: Sphere Tracing
	Slide 18: Rendering: Sphere Tracing
	Slide 19: Today’s Lecture
	Slide 20: SLAM with Dense Representation
	Slide 21: Where it began: KinectFusion (2011)
	Slide 22: KinectFusion (2011)
	Slide 23: Truncated Signed Distance Function (TSDF)
	Slide 24: Truncated Signed Distance Function (TSDF)
	Slide 25: Truncated Signed Distance Function (TSDF)
	Slide 26: TSDF Integration
	Slide 27: TSDF Integration
	Slide 28: KinectFusion (2011)
	Slide 29: Frame-to-Model Tracking is better than Frame-to-Frame Tracking
	Slide 30: Frame-to-Model Camera Tracking
	Slide 31: Point-to-Plane ICP
	Slide 32: Point-to-Plane ICP via Gauss-Newton
	Slide 33: Point-to-Plane ICP via Gauss-Newton
	Slide 34
	Slide 35: Full System
	Slide 36: KinectFusion: Summary
	Slide 37: Today’s Lecture
	Slide 38: Beyond Regular Grid: Hierarchical Sparse Grids
	Slide 40: Beyond Regular Grid: Voxel Hashing
	Slide 41: Beyond Regular Grid: Voxel Hashing Implementation
	Slide 42: DeepSDF: SDF via Neural Networks
	Slide 43: DeepSDF: SDF via Neural Networks
	Slide 44: iSDF: neural SDF for real-time mapping
	Slide 45: iSDF: neural SDF for real-time mapping
	Slide 46: iSDF: neural SDF for real-time mapping
	Slide 47: iSDF: neural SDF for real-time mapping
	Slide 48: iSDF: neural SDF for real-time mapping
	Slide 49: Hybrid Representations
	Slide 50: PIN-SLAM: Neural SDF with Voxel Hashing
	Slide 51: PIN-SLAM: Large-Scale TSDF Mapping using Lidar
	Slide 52: Summary
	Slide 53: Questions?


