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Mobile Robot Autonomy

e Mobile robot autonomy is a research area relying on tools from:

Computer Vision & Signal Processing: to deal with real-world signals in real time, e.g.,
filtering sound, convolving images, recognizing objects

Probability Theory & Estimation Theory: to deal with uncertainty caused by sensor and
actuator noise, computation and communication delays, and environment changes and
estimate robot and world states

Optimization Theory: to plan the best robot behavior according to a suitable performance
criterion

Control Theory: to execute the planned robot behavior

Machine Learning: to improve the models and performance based on data (supervised,
self-supervised, unsupervised, and reinforcement learning)
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ECE 276A: Sensing & Estimation in Robotics

* The course will cover:
* Sensing: image formation, projective geometry, rotations, features, optical flow

» Estimation: unconstrained optimization, probabilistic models, maximum likelihood estimation (MLE),
Bayesian filtering, simultaneous localization and mapping (SLAM)

e Course website: https://natanaso.github.io/ece276a
* Schedule, reading materials, and assignments
* Grades: GradeScope (SIGN UP!)
* Discussion: Piazza (SIGN UP!)
* Office hours/TA sessions

* Piazza:
* Great place for discussion, | encourage you to use it!
* |n addition to asking questions, responding is a great way to strengthen your understanding!

* References (optional):
* State Estimation for Robotics: Barfoot
* Probabilistic Robotics: Thrun, Burgard & Fox
* An Invitation to 3-D Vision: Ma, Kosecka, Soatto & Sastry
* Bayesian Filtering and Smoothing: Sarkka


https://natanaso.github.io/ece276a
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e Teaching Assistant:
*  Yulun Tian
e Postdoc, ECE Department
* Email: yutO34@ucsd.edu

* |nstructor
* Nikolay Atanasov
* Associate Professor, ECE Department
e Email: natanasov@ucsd.edu

* Teaching Assistant:
* Yinzhuang i
e PhD Student, ECE Department
* Email: yiyi@ucsd.edu

* Teaching Assistant:
* Jay Paek
e MS Student, ECE Department
 Email: jpaek@ucsd.edu




Warning About Prerequisites

* Thisis a challenging graduate course

| want everyone to learn about robotics, so the prerequisites are not strictly enforced

As graduate students, | expect you to be mature and carefully evaluate whether you are
prepared to take the course

Prerequisites:
* Probability Theory: if you have not had a good course on probability theory, it is too early to take ECE276A

* Linear Algebra: if you have not had a good course on linear algebra, it is too early to take ECE276A

*  Programming experience: if you have not done a programming project of reasonable complexity before, it
is too early to take ECE276A

You will enjoy this course and learn a lot more if you have the right background

Every year some students ignore this, overestimate their prior preparation or available time,
and have an unpleasant experience



Grading

* Assignments:

e 1 academic integrity quiz (required) — due Jan 17*" on Canvas
* 3 theoretical homework assignments (16% of the grade total)

* 3 programming assignments in python with project reports (18% of the grade each)
* Final exam (30% of the grade): calculator + double-sided cheat sheet

* There is sufficient time to complete every assignment if you start early

* Late submissions and deadline extensions will not be possible because our schedule is tight
(1 week background review, 3 weeks per project & homework, final exam)

* Letter grades will be assigned based on the class performance, i.e., you do not need to and will
not be able to get everything right in order to get a good grade
* Tentative rubric: 85+: A; 80-85: A-; 75-80: B+; 65-75: B; 60-65: B-; 55-60: C+; ...
* The rubric may be adjusted at the instructor’s discretion



Collaboration and Academic Integrity

* Every assignment in this course is individual

You are encouraged to discuss the assignments with other students in general terms
but the work you do and turn in should be completely your own

An important element of academic integrity is fully and correctly acknowledging any
materials taken from the work of others — provide references for papers and

acknowledge in writing people you discuss the assignments with

* Cheating will not be tolerated

Instances of academic dishonesty will be penalized via grade reduction and may be referred to
the Office of Student Conduct for adjudication



Project Report: Suggested Structure

1. Introduction: brief discussion of what the problem is and why it is important
It is important to monitor the humidity of plants and choose optimal watering times. In this paper, we
present an approach to select the best watering time in the week from given historical humidity data.

2. Problem Formulation: brief rigorous mathematical statement of the problem, not the solution!

Let f:R — IR be the average historical weakly humidity.
Problem: Find a watering time t™ € R such that t* = argmin f (t)
t

3. Technical Approach: description of the ideas, equations, algorithms used to solve the problem
The minimum of a function appears at one of its critical points
{seR| f'(s) = 0}. We find all the roots of f' and select the smallest one as the optimal watering time.

4. Results: figures showing qualitative and quantitative ~
performance supported by discussion of what was
successful and what fails
The method performs well as shown in Fig. 1. The
performance could be improved if real-time humidity
measurements are used to update f.
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Project Report: Examples
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L INTRODUCTION

robot sy stems ingly require operation in
unstructured, partially known, and dynamically changing en-
wironments One core challenge for safie and robust navigation
is that the frue cost function of a navigation task, requiring
safe, dynamically feasible, and efficient behavior, is generally
not known while expert demonstrations can be wtilized to
uncover the underlying cost function [1], [2]. In addition,
humans and animals can navigale successfully with partial
knowledge of the environment and adapt when facing new
whatacle configuration based on prior experience. Motivaed
by this observation, we focus on leaming a cost function from
der iom that is not uni ly accuraste over the state
and control space but rather captures. task-relevant information

and leads to desirable behavior
Our main contribution is an end-to-end differentiable model
that combines a cost function representation and an efficient
planning algorthm (se Fig. 1). The novelty of our ch
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Fig. I: Archilecture for leaming cost function repre sentations
from demonstrations via differentiable planning. During train-
ing. the goal is to leam a cost function parameterization &
based on demonstrations, consisting of states z., controls
u}., and partial observations zi., so that a control policy
generated based on the leamed cost incurs minimum loss
L(#). Both the cost function rprsntation & and the control
policy =¥ need to be diffemntiable with respect to # for error
backpropagation. During testing in a new environment, online
obsrvations z;., and the trained parameters 8 provide the
cost function necessary to generate a control policy.

» A cost function representation that incorporaies a log-
oddds ion of the emvi
datable using a parameterized observation model

= An efficient planning algorithm, which performs local
convolutional operations encoding Bellman backups only
on & subset of promising staies. We guarantee that the
output policy is differentishle with espect to the imput
cost function.

« An end-to-end differentisble model that leans task-
specific cost functions from expert demomstrations by

is that the proposad model is fully differentiable, which allows
using gradient-based optimization to improve the parameter-
ired cost function. Our experiments show that the end-to-end
differentiable mode] leams task-specific cost functions and im-
proves apon Value leration Metworks (VIN) [3] and the Dyna-
0 algorithm [4] by handling partial and noisy ohservations. In
summary, we offer the following contribations:

W gratefully acknowedge suppont from NSF CRIL RI 11S-1753568.

policy loss through the
planning algorithm and the cost repesentation.

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment
with the task of reaching a goal stale T, € X. Let 7, € &
be the discrete time robot state. For 3 given comtrol imput
u, £ I, the robot state evolves according to known deter-
ministic dynamics: ., = fiz, u,). Let m*® be a function
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We also draw atiention to some biclogical ingpiration for
this problem. Motion camouflage [9] is a stmiegy utilized
by dragonflies, which ensbles them to capture their prey by
minimizing the optical flow of their motion. Mischiati and
Krishnaprasad [8] consider the problem of mutwal motion
where two agents each pursue each other, but

L INTRODUCTION

In this paper, we consider the problem of two mobots
imteracting in an adversarial game whem each robot attempts
to estimate the state of its adversary, while keeping ils own
staie hidden. This problem can hawe applications in search-
and-rescue applications, where the agent o be found is mobile,
and actively evades the semsing robot. In these problems, it is
imporiant o both accuraiely localize the target agent, while
keeping one’s own state hidden so that the target’s ability to
actively evade is reduced.

Ther is moch prior work in the liemture conceming the
dynamics of pursuit-evasion in mobile robotic settings[3].
Am'uu.dns to the pursuit-evasion problem ame split betwaen

1 evader (3 ), and using prob-
abilistic ﬁsurewurls which consider the expected case. A
commean theme in the pursuit-evasion literature is the objective
of reducing the distance to the evader to zero, or forcing the
evader into a sensing footprint In comtrast, our problem is
formulated using a probabilistic spproach which optimizes
an information theoretic quantity, namely entropy, shout the
distribution of the target to be tracked. Rather than closing
distance to the target, our approach aims to produce the best
estimaie of the target's state, subject to the sensors available.
Owr previous work considers the information acquisition prob-
lem for target tracking [1], however this work assomes that
the target being tracked mowves independently of the semsing
robot, and crucially is not trying to actively evade the sensing
robot. In this work, the problem formulation is symmetric in
the sense that the adversary is trying to maximize information
gained about us, and also minimize the information we can
gain about it

attempt to maintzin A constant bearing to avoid detection
by the other agent. Our problem is related, but rather than
considering pursuit-evasion, we consider the dynamics of an
adversarial informarion garhering game.

In the most general case, the information acquisition game
proposed is a stochastic game and is difficolt to solve. McE-
meaney [7] discusses a class of stochastic games with finite-
dimensional solutions and dynamic programming algorithms
o solve them With some assumptions on the motion and
ob=rvation models of the agents in our game, the problem
can be simplified to a deterministic game. McEneanzy [6]
introduces a cumse-of-dimensionality free max-plos method
for deterministic game problems, which is likely to be very
applicable to Lhe linzar Graussian VEISIDII of the information-
theometic game duced here. Addi and
Dawid [4] present a game-theoretic argument that max imizing
entropy and minimizing worst-case expected loss am duals
of each other A comprehensive treatment on adversarial
measoming, is provided in the book by Kott and McEneaney
[5]. The approach taken in this work is a variant of Monie
Carlo Tee Search [11], for simultaneous action games. We
present the details of this approach in Sec. 1L

Il PROBLEM FORMULATION
Consider a two-player pantial information game with simul-
taneous moves. Each player i € {1,2} has a state x; , that
evolves according to the following motion modal:

1y

where u;, € 1f; is a finite space of admissible moves (control
inputs) and w; , is a random varishle specifying the motion
noise. Player i can observe its own state Tip and chooses its
mawes with the objective of tracking the evolution of the staie
of the other player. Each player is equipped with a sensor used
to collect information about the other player according to the
following obeervation model:

Zip = Bg(Ti g, T, 15,) 2)

Absgraci—This paper comsiders object recopnition uilj n
camerd, whese viewpoint can be contrelled in order to
the recognifion results. The goal is to choose a --lnw
camera trajectory in order to minimize the probability of having
misclassified objects and incorrect orentafion estimates. Instead
of nsing ajfiine dynamic programming. the resulting stochastic
optimal contrel problem is addressed via an orfive Monte Carlo
tree search algorithm, which can handle various constraints and
provides exceptional performance in large state spaces. A key
insight is to use an active hypothess testing policy te select
camera viewpoints during the rollout stage of the tree search.

1. INTRODUCTION

The goal of this paper is to choosz a saquence of views for
an RGE-D camera in order to identify the class and orientation
of an object of interest (see Fig. 1). Unlike many existing

5, which consider a nexi-best-view problem [1],
[2]. [3]. we plan a multi-view camera trajectory o minimize
the probability of having misclassified objects and incorrect
orientation estimates. In previous work [4], we addessd o
similar stochastic optimal control problem by casting it as a
partially-obeervable Markov decision process. A point-based
approximaie solver [5] was used to obtain a non-greedy policy
offline. Since mpeated observations of the object from the
same viewpoint provide redundant information, it is desirable
to disallow viewpoint IE'WS!LI.‘IIg T'he drswba.ck of eompur.m,g
a policy offline is that revi
hard to incorporate and if the environment were to change. tbe
computed policy would no longer be useful. The idea of this
paper is to apply Monke Carlo tee search (MCTS. [6]. [T1)
to the active object rcognition problem. MCTS is a best-first

Fig. L Sstup for the active cbject meognition problem. The camera
position is restricied to a st of viewpodnis (green) on a sphere cen-
emd at the object’s location. The task is to choose a camera comtrol
policy, which minimizes the movement cost and the probabdlity of
‘misclassification.
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Fig. 2 An uampb =t othy;lmhms about !be class ami onemation
of an unknown chject
where ®fc) C SO(3) is a small finite set of discrete’
orientations for each class ¢ £ C. For notational comvenience,
leti=1,....M be an enumeration of the set {{e,r) | ¢ €
C,r € Rie)} and denote the hypotheses by H; (see Fig 2).
Offline, a 3-D model database is used to train a viewpoint-
pose tree [4] by extracting point clouds from views on a sphere
around each model. A set of Fast Point Feature Histograms
[13] is extracted from each point cloud and the clouds are
arranged in a tree stuclure according to their feature similarity
(see [4] for detmils). Given a query point cloud, the best-
matching cloud from the tee camies information about the
class and orientation of the observed object and about the
qualn_v of the feature match. Thus, the tre pmovides an

onlire planning approach which can handle various ints
and has exceptional performance in large challenging domains
such as game solving [8]. [9] and belief-space planning in
robotics [10], [11], [12].

IL. PROELEM FORMULATION

Leat the camera pose af time £ be = € &' C SE(3), wheme X
isa finile setof viewpoinis on a sphem cenered at the object”s
location (sse Fig. 1. At time £, the camera can move to amy
of the viewpoints in X and pays a cost g(#e—1,%.) which
captures the energy expenditure. Let the tee (unknown) class
of the obszrved object be ¢ £ C. We formulate hypotheses
about the class and orientation of the object

Higr) : the object class is ¢ € C with orienation r € R(c),
MLmuﬁRRJm]lmnmﬂrIbpmmmannmnms
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nREZ isting of the class, orientation, and
confidence scom of the top match. The mode] database is usad
0 leamn the probability density function (pdf) gi- | =, H)
of = conditioned on any camers viewpoint z € &' and any
hypothesis H, i = 1,...,M.
Problem. Giver a camera pose T £ X, a prior pg € [0, 1%
on the rue kypothesis Hi, and a planning horizon T < oo,
choase @ sequence of fimctions (e @ (Z x XY = X for
= 0,...,T — 1, which minimizes the average movement
cost and the prahmrh‘y of ar incorrect hypothesis:

Zgrz. 13) + APe(T)

nnr 2 T

xr.::._,,l—m[zm.:nm], t=0,..,T -1
o1 @ {2g,e 2, E=0,
2y e gl | Ty Hi)y  E=0,...,T,
pe=blpey, zam), t=1,...T,

UAfter o hypothesis is chosen, the disoete crenistion estimaie con be
mfined by aligning the obssrved ohject surface to the cormsponding medel
in the mraining dambase, e.g., by using the feraive chssst peim algecithm.
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Tentative Schedule

Date Lecture Material Assignment
Jan 06 | Introduction Matrix-calculus

Jan 08 | Unconstrained Optimization Barfoot-Ch.4.3.1

Jan 13 | Catchup

Jan 15 | Rotations Barfoot-Ch.6.1-6.2 HW1, PR1
Jan 20 | Catch up

Jan 22 | Robot Motion and Observation Models Barfoot-Ch.6.4

Jan 27 | Catch up

Jan 29 | Factor Graph SLAM Dellaert-Kaess Ch.1, Ch.2

Feb 03 | Localization and Odometry from Point Features

Feb o5 | Catch up HW2, PR2
Feb 10 | Bayes Filter Barfoot-Ch.4.2

Feb 12 | Particle Filter SLAM Thrun-Burgard-Fox Ch.7, Ch.8, Ch.g

Feb 17 | Catchup

Feb 19 | Kalman Filter Barfoot-Ch.3.3, Sarkka-Ch4

Feb 24 | Catch up

Feb 26 | EKF, UKF Barfoot-Ch.4.2, Sarkka-Chs HW3, PR3
Mar 03 | Matrix Lie Groups Barfoot-Ch.7.1-7.2, Boumal-Ch.3

Mar o5 | Visual-Inertial SLAM

Mar 10 | Catch up

Mar 12 | Visual Features Image-Features

Mar 17 | Final Exam




Structure of Robotics Problems

Time: t (discrete or continuous)

Robot state: x; (e.g., position, orientation,
velocity)

Environment state: m; (e.g., map of free space,
locations of objects)

Control input: u; (e.g., force and torque)

Observation: z; (e.g., image, laser scan, radio
signal, inertial measurement)

Motion Model: p(x;,1|x;, Uu;) --- describes the motion of the robot to a new state x;,1 after
applying control input u,; at state x;

Observation Model: p(z;|x;, m;) --- describes the observation z; of the robot depending on its
state x; and the map m,; of the environment



Motion Models

e A motion model describe the kinematics
or dynamics of the robot state x;

e Wheeled robots:

» Differential drive (roomba) 2w =z

» Ackermann drive (car, bicycle)

* Aerial robots: _
* Fixed-wing aerial vehicle A -
* Quadrotor aerial vehicle XW e,

e Legged and humanoid robots:
* Quadruped
* Manipulator




Observation Models

* Position Sensor: directly measures position (e.g., GPS, laser scanner, IR sensor, RGBD camera)

» Velocity/Acceleration/Force Sensor: measures linear acceleration or angular velocity or pressure
or force (accelerometer, gyroscope, inertial measurement unit (IMU), tactile sensor)

* Bearing Sensor: measures angles (e.g., magnetometer, camera, microphone)

* Range Sensor: measures distances (e.g., radio)

AR
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Ublox GPS
and Compass

Intel RealSense
RGBD Camera
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Velodyne
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=~ Force/Torque
Hokuyo Sensor
2D Lidar

HDL-64E

Garmin Single-beam Lidar HDL-32E



Project 1: Orientation Tracking

* Use gradient descent to track the 3D orientation of a rotating body using IMU
measurements and construct a panorama using RGB images

grav = [-0.00,-0.00,0.01] " grav = [-0.00,-0.01,1.01]
yaw = -0.24, pitch = -0.06, roll = 0.31 yaw = 3.35, pitch = 0.37, roll = 0.39

W O
-2 2
2 - 2 i
=, - 2 . il 2
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True gz_lw (blue) vs Estimated Yaw (red) in degré&asie P{tch (blue) vs Estimated Pitch (red) in degreesf=
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True flpll {blue) vs Estimated Roll {(red) in degrees
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Project 2: Particle Filter SLAM Montemerlo et al., FastSLAM, AAAI'02

e Simultaneous localization and mapping (SLAM) using a lidar scanner




Project 3: Visual Inertial SLAM Mur-Artal et al., OrbSLAM, IEEE T-RO’15

* Kalman filter tracking of the 3D pose of a moving robot based on IMU and camera measurements
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