ECE276A: Sensing \& Estimation in Robotics Lecture 5: Factor Graph SLAM

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

Electrical and Computer Engineering

Outline

Introduction to SLAM

Factor Graph SLAM

Simultaneous Localization and Mapping (SLAM)

- SLAM is a fundamental problem for mobile robot autonomy
- Basic information necessary to perform any robot task:
- Where am I? $\quad \Rightarrow \quad$ Localization
- What is around me? \Rightarrow Mapping
- SLAM problem: given sensor measurements $\mathbf{z}_{0: T}$ (e.g., images) and control inputs $\mathbf{u}_{0: T-1}$ (e.g., velocity), estimate the robot state trajectory $\mathbf{x}_{0: T}$ (e.g., pose) and build a map \mathbf{m} of the environment

Mathematical Formulation of SLAM Problems

- Mapping: given robot state trajectory $\mathbf{x}_{0: T}$ and sensor measurements $\mathbf{z}_{0: T}$ with observation model h, build a map \mathbf{m} of the environment

$$
\min _{\mathbf{m}} \sum_{t=0}^{T}\left\|\mathbf{z}_{t}-h\left(\mathbf{x}_{t}, \mathbf{m}\right)\right\|_{2}^{2}
$$

- Localization: given a map \mathbf{m} of the environment, sensor measurements $\mathbf{z}_{0: T}$ with observation model h, and control inputs $\mathbf{u}_{0: T-1}$ with motion model f, estimate the robot state trajectory $\mathbf{x}_{0: T}$

$$
\min _{\mathbf{x}_{0}: T} \sum_{t=0}^{T}\left\|\mathbf{z}_{t}-h\left(\mathbf{x}_{t}, \mathbf{m}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|\mathbf{x}_{t+1}-f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right\|_{2}^{2}
$$

- SLAM: given initial robot state \mathbf{x}_{0}, sensor measurements $\mathbf{z}_{1: T}$ with observation model h, and control inputs $\mathbf{u}_{0: T-1}$ with motion model f, estimate the robot state trajectory $\mathbf{x}_{1: T}$ and build a map \mathbf{m}

$$
\min _{\mathbf{x}_{1: T}, \mathbf{m}} \sum_{t=1}^{T}\left\|\mathbf{z}_{t}-h\left(\mathbf{x}_{t}, \mathbf{m}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|\mathbf{x}_{t+1}-f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)\right\|_{2}^{2}
$$

Example: Localization with Linear Models

- State: $\mathbf{x}_{t} \in \mathbb{R}^{n}$
- Motion model: $\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)=F \mathbf{x}_{t}+G \mathbf{u}_{t}$
- Observation model: $\mathbf{z}_{t}=h\left(\mathbf{x}_{t}\right)=H \mathbf{x}_{t}$
- Localization: given $\mathbf{x}_{0}=\mathbf{0}$, sensor measurements $\mathbf{z}_{1: T}$, and control inputs $\mathbf{u}_{0: T-1}$, estimate the state trajectory $\mathbf{x}_{1: T}$

$$
\min _{\mathbf{x}_{1: T}} c\left(\mathbf{x}_{1: T}\right):=\sum_{t=1}^{T}\left\|\mathbf{z}_{t}-H \mathbf{x}_{t}\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|\mathbf{x}_{t+1}-F \mathbf{x}_{t}-G \mathbf{u}_{t}\right\|_{2}^{2}
$$

- Gradient descent: initialize $\mathbf{x}_{1: T}^{(0)}$ and iterate:

$$
\mathbf{x}_{1: T}^{(k+1)}=\mathbf{x}_{1: T}^{(k)}-\alpha^{(k)} \nabla c\left(\mathbf{x}_{1: T}^{(k)}\right)
$$

Example: Localization with Linear Models

- $\left\|\binom{x_{1}}{x_{2}}-\binom{y_{1}}{y_{2}}\right\|_{2}^{2}=\left\|x_{1}-y_{1}\right\|_{2}^{2}+\left\|x_{2}-y_{2}\right\|_{2}^{2}$ for $x_{1}, y_{1} \in \mathbb{R}^{d_{1}}, x_{2}, y_{2} \in \mathbb{R}^{d_{2}}$
- Express the least-squares localization problem in matrix notation:

$$
\begin{aligned}
c\left(\mathbf{x}_{1: T}\right) & =\sum_{t=1}^{T}\left\|\mathbf{z}_{t}-H \mathbf{x}_{t}\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|\mathbf{x}_{t+1}-F \mathbf{x}_{t}-G \mathbf{u}_{t}\right\|_{2}^{2} \\
& =\left\|\left[\begin{array}{c}
\mathbf{z}_{1}-H \mathbf{x}_{1} \\
\vdots \\
\mathbf{z}_{T}-H \mathbf{x}_{T}
\end{array}\right]\right\|_{2}^{2}\left\|\left[\begin{array}{c}
\mathbf{x}_{1}-F \mathbf{x}_{0}-G \mathbf{u}_{0} \\
\vdots \\
\mathbf{x}_{T}-F \mathbf{x}_{T-1}-G \mathbf{u}_{T-1}
\end{array}\right]\right\|_{2}^{2} \\
& =\left\|\left[\begin{array}{cc}
H & \\
& \ddots \\
& \\
& H
\end{array}\right]\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{T}
\end{array}\right)-\left[\begin{array}{c}
\mathbf{z}_{1} \\
\vdots \\
\mathbf{z}_{T}
\end{array}\right]\right\|_{2}^{2}+\left\|\left[\begin{array}{ccc}
-I & \\
F & \ddots & \\
& \ddots & \ddots \\
& & F \\
\hline
\end{array}\right]\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{T}
\end{array}\right]+\left[\begin{array}{c}
F \mathbf{x}_{0}+G \mathbf{u}_{0} \\
G \mathbf{u}_{1} \\
\vdots \\
G \mathbf{u}_{T-1}
\end{array}\right]\right\|_{2}^{2}
\end{aligned}
$$

Example: Localization with Linear Models

- Objective:

$$
\begin{aligned}
c\left(\mathbf{x}_{1: T}\right) & =\left\|\left[\begin{array}{cccc}
H & & & \\
& \ddots & & \\
& & \ddots & \\
-I & & & H \\
F & \ddots & & \\
& \ddots & \ddots & \\
& & F & -I
\end{array}\right]\left(\begin{array}{c}
\mathbf{x}_{1} \\
\vdots \\
\mathbf{x}_{T}
\end{array}\right)+\left[\begin{array}{c}
-\mathbf{z}_{1} \\
\vdots \\
-\mathbf{z}_{T} \\
F \mathbf{x}_{0}+G \mathbf{u}_{0} \\
G \mathbf{u}_{1} \\
\vdots \\
G \mathbf{u}_{T-1}
\end{array}\right]\right\|_{2}^{2} \\
& =\left\|A \mathbf{x}_{1: T}+\mathbf{b}\right\|_{2}^{2}
\end{aligned}
$$

- Gradient:

$$
\nabla c\left(\mathbf{x}_{1: T}\right)=2 A^{\top}\left(A \mathbf{x}_{1: T}+\mathbf{b}\right)
$$

- Gradient descent: initialize $\mathbf{x}_{1: T}^{(0)}$ and iterate:

$$
\mathbf{x}_{1: T}^{(k+1)}=\mathbf{x}_{1: T}^{(k)}-2 \alpha^{(k)} A^{\top}\left(A \mathbf{x}_{1: T}^{(k)}+\mathbf{b}\right)
$$

Project 1: Orientation Tracking

- Consider a rigid body undergoing pure rotation
- State: orientation $\mathbf{q}_{t} \in \mathbb{H}_{*}$ of the body frame relative to the world frame
- Control: body-frame angular velocity $\mathbf{u}_{t} \in \mathbb{R}^{3}$ obtained from gyroscope measurements in rad/sec during time interval τ_{t}
- Motion model: $\mathbf{q}_{t+1}=f\left(\mathbf{q}_{t}, \tau_{t} \mathbf{u}_{t}\right):=\mathbf{q}_{t} \circ \exp \left(\left[0, \tau_{t} \mathbf{u}_{t} / 2\right]\right)$
- Observation model: body-frame acceleration $\mathbf{z}_{t} \in \mathbf{R}^{3}$ obtained from accelerometer measurements in $\mathrm{m} / \mathrm{sec}^{2}$ should approximately match the world-frame gravity acceleration $-\mathrm{ge}_{3}$:

$$
\mathbf{z}_{t}=h\left(\mathbf{q}_{t}\right):=\mathbf{q}_{t}^{-1} \circ\left[0,-g \mathbf{e}_{3}\right] \circ \mathbf{q}_{t}
$$

Project 1: Orientation Tracking

- Starting with $\mathbf{q}_{0}=[1, \mathbf{0}] \in \mathbb{H}_{*}$, formulate an optimization problem to estimate $\mathbf{q}_{1: T}$ using the gyroscope inputs $\mathbf{u}_{0: T-1}$ and accelerometer measurements $\mathbf{z}_{1: T}$
- Distance on \mathbb{H}_{*} : the distance between two quaternions $\mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{H}_{*}$ can be measured by the rotation angle $\left\|\boldsymbol{\theta}_{12}\right\|_{2}$ of the axis-angle representation $\boldsymbol{\theta}_{12}$ of the relative rotation $\mathbf{q}_{12}=\mathbf{q}_{1}^{-1} \mathbf{q}_{2}$:

$$
d\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)=\left\|\boldsymbol{\theta}_{12}\right\|_{2}=\left\|2 \log \left(\mathbf{q}_{1}^{-1} \mathbf{q}_{2}\right)\right\|_{2}
$$

- We formulate a constrained optimization problem because we require that \mathbf{q}_{t} is a valid orientation, ie., $\mathbf{q}_{t} \in \mathbb{H}_{*}$:

$$
\begin{array}{rl}
\min _{\mathbf{q}_{1: T}} & c\left(\mathbf{q}_{1: T}\right):=\sum_{t=1}^{T}\left\|\mathbf{z}_{t}-h\left(\mathbf{q}_{t}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|2 \log \left(\mathbf{q}_{t+1}^{-1} \circ f\left(\mathbf{q}, \tau_{t} \mathbf{u}_{t}\right)\right)\right\|_{2}^{2} \\
\text { s.t. } & \left\|\mathbf{q}_{t}\right\|_{2}=1, \quad \forall t
\end{array}
$$

- Possible approach: projected gradient descent

$$
\mathbf{q}_{1: T}^{(k+1)}=\Pi_{\mathbb{H}_{*}}\left(\mathbf{q}_{1: T}^{(k)}-\alpha^{(k)} \nabla c\left(\mathbf{(}_{1: T}^{(k)}\right)\right)
$$

Project 1: Panorama

- Input: image I and camera-to-world orientation R
- Suppose the image lies on a sphere and compute the world coordinates of each pixel:

1. Find longitude (λ) and latitude (ϕ) of each pixel using the number of rows and columns and the horizontal $\left(60^{\circ}\right)$ and vertical $\left(45^{\circ}\right)$ fields of view
2. Convert spherical $(\lambda, \phi, 1)$ to Cartesian coordinates assuming depth 1
3. Rotate the Cartesian coordinates to the world frame using R

- Project world pixel coordinates to a cylinder and unwrap:

1. Convert Cartesian to spherical coordinates
2. Inscribe the sphere in a cylinder so that a point $(\lambda, \phi, 1)$ on the sphere has height ϕ on the cylinder and longitude λ along the cylinder circumference
3. Unwrap the cylinder surface to a rectangular image with width 2π radians and height π radians
4. Different options for sphere to plane projection: equidistant, equal area, Miller, etc. (see https://en.wikipedia.org/wiki/List_of_map_projections)

Project 1: Panorama

Outline

Introduction to SLAM

Factor Graph SLAM

Factor Graph

- Factor graph: bipartite graph describing data (observations \mathbf{z}_{t}, inputs \mathbf{u}_{t}) and variables (states \mathbf{x}_{t}, landmarks \mathbf{m}_{j}) in a SLAM problem

- Nodes: variables to be estimated: robot states \mathbf{x}_{t} and landmark states \mathbf{m}_{j}
- Factors: relate two variables by input \mathbf{u}_{t} or observation \mathbf{z}_{t} data and associated motion or observation model:
- Motion factor: error between state \mathbf{x}_{t+1} and its motion prediction $f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)$:

$$
\mathbf{e}_{f}\left(\mathbf{x}_{t+1}, \mathbf{x}_{t}\right)=\mathbf{x}_{t+1} \ominus f\left(\mathbf{x}_{t}, \mathbf{u}_{t}\right)
$$

- Observation factor: error between observation $\mathbf{z}_{t, j}$ and its prediction $h\left(\mathbf{x}_{t}, \mathbf{m}_{j}\right)$

$$
\mathbf{e}_{h}\left(\mathbf{x}_{t}, \mathbf{m}_{j}\right)=\mathbf{z}_{t, j} \ominus h\left(\mathbf{x}_{t}, \mathbf{m}_{j}\right)
$$

- We use the symbol \ominus to indicate that the difference between two variable should respect the geometry of their space, e.g., $\mathbf{y} \ominus \mathbf{x}=\mathbf{y}-\mathbf{x}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ but $\mathbf{y} \ominus \mathbf{x}=2 \log \left(\mathbf{x}^{-1} \mathbf{y}\right)$ for $\mathbf{x}, \mathbf{y} \in \mathbb{H}_{*}$

Factor Graph SLAM

- Front-end: construction of factor graph using odometry, laser-scan matching, feature matching, etc.
- Back-end: graph optimization to estimate the variables $\left(\mathbf{x}_{0: T},\left\{\mathbf{m}_{j}\right\}\right)$

- Back-end optimization problem with variables \mathbf{x}_{i} associated with the graph vertices $i \in \mathcal{V}$ and factors $\mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ associated with the graph edges $(i, j) \in \mathcal{E}$:

$$
\min _{\left\{\mathbf{x}_{i}\right\}} \sum_{(i, j) \in \mathcal{E}} \phi_{i j}\left(\mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)
$$

where $\phi_{i j}: \mathbb{R}^{d} \mapsto \mathbb{R}$ is a distance function, e.g., $\phi_{i j}(\mathbf{e})=\mathbf{e}^{\top} \Omega_{i j} \mathbf{e}$ with positive-definite $\Omega_{i j}$

Pose Graph

- Variables: robot poses T_{i}
- Measurements: relative poses from odometry and loop closures: $\bar{T}_{i j}$
- Factors: relative pose vectors $\mathbf{e}\left(T_{i}, T_{j}\right)=\log \left(\bar{T}_{i j}^{-1} T_{i}^{-1} T_{j}\right)^{\vee}$

Pose Graph Optimization

- Pose graph

- Loop closure: observing previously seen areas generates factors between non-successive robot poses
- Pose graph optimization: with $\phi_{i j}(\mathbf{e})=\mathbf{e}^{\top} W_{i j}^{\top} W_{i j} \mathbf{e}=\left\|W_{i j} \mathbf{e}\right\|_{2}^{2}$:

$$
\min _{\left\{T_{i}\right\}} \sum_{(i, j) \in \mathcal{E}}\left\|W_{i j} \log \left(\bar{T}_{i j}^{-1} T_{i}^{-1} T_{j}\right)^{\vee}\right\|_{2}^{2}
$$

Factor Graph Optimization

- Factor graph optimization with variables $\mathbf{x}=\left[\begin{array}{lll}\mathbf{x}_{1}^{\top} & \cdots & \mathbf{x}_{n}^{\top}\end{array}\right]^{\top}$:

$$
\min _{\mathbf{x}} \sum_{(i, j) \in \mathcal{E}} \phi_{i j}\left(\mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)
$$

- Initial guess $\mathbf{x}^{(0)}$ is obtained from odometry (e.g., encoders, point cloud registration) and landmark initialization (e.g., triangulation of image features)
- A descent method is used for optimization:

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\alpha^{(k)} \delta \mathbf{x}^{(k)}
$$

- E.g., the Levenberg-Marquardt algorithm is used for $\phi_{i j}(\mathbf{e})=\mathbf{e}^{\top} W_{i j}^{\top} W_{i j} \mathbf{e}$:

$$
\left(\sum_{i j} J_{i j}^{\top} W_{i j}^{\top} W_{i j} J_{i j}+\lambda D\right) \delta \mathbf{x}^{(k)}=-\sum_{i j} J_{i j}^{\top} W_{i j}^{\top} \mathbf{e}\left(\mathbf{x}_{i}^{(k)}, \mathbf{x}_{j}^{(k)}\right)
$$

where $J_{i j}=\left.\frac{\partial \mathbf{e}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{x}^{(k)}}$ is the Jacobian of $e\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ with respect to all variables \mathbf{x} evaluated at $\mathbf{x}=\mathbf{x}^{(k)}$

Factor Graph Optimization Libraries

- Georgia Tech Smoothing and Mapping (GTSAM) Library: https://github.com/borglab/gtsam
- General Graph Optimization (g2o) Library: https://github.com/RainerKuemmerle/g2o
- Ceres Solver: https://github.com/ceres-solver/ceres-solver
- SymForce: https://github.com/symforce-org/symforce
- miniSAM: https://github.com/dongjing3309/minisam

Factor Graph Optimization: Sparsity

Jacobian J

Hessian JTJ

Factor Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-Based SLAM

$$
\min _{\left\{T_{t}\right\},\left\{\mathbf{m}_{j}\right\}} \sum_{t}\left\|W_{i j} \log \left(\bar{T}_{t, t+1}^{-1} T_{t}^{-1} T_{t+1}\right)^{\vee}\right\|_{2}^{2}+\sum_{t, j}\left\|V_{i j}\left(\mathbf{z}_{t, j}-h\left(T_{t}, \mathbf{m}_{j}\right)\right)\right\|_{2}^{2}
$$

Jacobian J

Hessian JTJ

Landmark-Based SLAM

Landmark-Based SLAM: Sparsity

Landmark-Based SLAM: Example

https://www. youtube.com/watch?v=0dJ042prg_M

Landmark-Based SLAM: Variable Marginalization

- What if we only need a subset of the variables?
- Normal equations: $J^{\top} J \delta \mathbf{x}=-J^{\top} \mathbf{e}$
- Hessian matrix blocks:

$$
J^{\top} J \delta \mathbf{x}=\left[\begin{array}{ll}
\Omega_{a a} & \Omega_{a b} \\
\Omega_{a b}^{\top} & \Omega_{b b}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{x}}_{a} \\
\tilde{\mathbf{x}}_{b}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{a} \\
\mathbf{c}_{b}
\end{array}\right]=-J^{\top} \mathbf{e}
$$

- Pre-multiply by $\left[\begin{array}{cc}I & -\Omega_{a b} \Omega_{b b}^{-1} \\ 0 & I\end{array}\right]$ and subtract second from first equation:

$$
\left[\begin{array}{cc}
\Omega_{a a}-\Omega_{a b} \Omega_{b b}^{-1} \Omega_{a b}^{\top} & 0 \\
\Omega_{a b}^{\top} & \Omega_{b b}
\end{array}\right]\left[\begin{array}{c}
\tilde{\mathbf{x}}_{a} \\
\tilde{\mathbf{x}}_{b}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{c}_{a}-\Omega_{a b} \Omega_{b b}^{-1} \mathbf{c}_{b} \\
\mathbf{c}_{b}
\end{array}\right]
$$

- We can obtain \tilde{x}_{a} by solving the smaller system determined by the Schur complement of $\Omega_{b b}$:

$$
\left(\Omega_{a a}-\Omega_{a b} \Omega_{b b}^{-1} \Omega_{a b}^{\top}\right) \tilde{\mathbf{x}}_{a}=\mathbf{c}_{a}-\Omega_{a b} \Omega_{b b}^{-1} \mathbf{c}_{b}
$$

Landmark-Based SLAM: Variable Marginalization

- Probabilistic perspective of Schur complement:

$$
\left[\begin{array}{l}
\tilde{\mathbf{x}}_{a} \\
\tilde{\mathbf{x}}_{b}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{ll}
\Omega_{a a} & \Omega_{a b} \\
\Omega_{a b}^{\top} & \Omega_{b b}
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{c}_{a} \\
\mathbf{c}_{b}
\end{array}\right],\left[\begin{array}{ll}
\Omega_{a a} & \Omega_{a b} \\
\Omega_{a b}^{\top} & \Omega_{b b}
\end{array}\right]^{-1}\right)
$$

- Marginal of $\tilde{\mathbf{x}}_{a}$:

$$
\begin{aligned}
p\left(\tilde{\mathbf{x}}_{a}\right) & =\int p\left(\tilde{\mathbf{x}}_{a}, \tilde{\mathbf{x}}_{b}\right) d \tilde{\mathbf{x}}_{b} \\
& =\phi\left(\tilde{\mathbf{x}}_{a} ;\left(\Omega_{a a}-\Omega_{a b} \Omega_{b b}^{-1} \Omega_{a b}^{\top}\right)^{-1}\left(\mathbf{c}_{a}-\Omega_{a b} \Omega_{b b}^{-1} \mathbf{c}_{b}\right),\left(\Omega_{a a}-\Omega_{a b} \Omega_{b b}^{-1} \Omega_{a b}^{\top}\right)^{-1}\right)
\end{aligned}
$$

- Marginalizing a variable creates non-zero off-diagonals (called fill-in) in the information matrix for all variables that had a non-zero off-diagonal element with the marginalized variable \Rightarrow loss of sparsity
- In graph terms, variable elimination creates a clique between the neighbors of the eliminated node

Landmark-Based SLAM: Variable Marginalization

Landmark-Based SLAM: Variable Marginalization

Marginalize ξ_{1}

Smoothing vs Filtering

- Smoothing: equivalent to MAP optimization
- many variables: estimates entire robot trajectory and map
- sparse Hessian matrix $J^{\top} J$
- Fixed-lag smoothing:
- fewer variables: estimate only variables in a time window
- denser Hessian matrix after Schur complement to marginalize old variables
- Filtering:
- fewest variables: estimate only current pose and landmarks
- densest Hessian matrix after Schur complement to marginalize all old variables 29

