ECE276A: Sensing & Estimation in Robotics Lecture 5: Factor Graph SLAM

Nikolay Atanasov

natanasov@ucsd.edu

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Outline

Introduction to SLAM

Factor Graph SLAM

Simultaneous Localization and Mapping (SLAM)

- SLAM is a fundamental problem for mobile robot autonomy
- Basic information necessary to perform any robot task:
 - Where am I? \Rightarrow Localization
 - What is around me? \Rightarrow Mapping
- ► SLAM problem: given sensor measurements z_{0:T} (e.g., images) and control inputs u_{0:T-1} (e.g., velocity), estimate the robot state trajectory x_{0:T} (e.g., pose) and build a map m of the environment

Mathematical Formulation of SLAM Problems

► Mapping: given robot state trajectory x_{0:T} and sensor measurements z_{0:T} with observation model h, build a map m of the environment

$$\min_{\mathbf{m}} \sum_{t=0}^{T} \|\mathbf{z}_t - h(\mathbf{x}_t, \mathbf{m})\|_2^2$$

Localization: given a map m of the environment, sensor measurements z_{0:T} with observation model h, and control inputs u_{0:T-1} with motion model f, estimate the robot state trajectory x_{0:T}

$$\min_{\mathbf{x}_{0:T}} \sum_{t=0}^{T} \|\mathbf{z}_{t} - h(\mathbf{x}_{t}, \mathbf{m})\|_{2}^{2} + \sum_{t=0}^{T-1} \|\mathbf{x}_{t+1} - f(\mathbf{x}_{t}, \mathbf{u}_{t})\|_{2}^{2}$$

► SLAM: given initial robot state x₀, sensor measurements z_{1:T} with observation model h, and control inputs u_{0:T-1} with motion model f, estimate the robot state trajectory x_{1:T} and build a map m

$$\min_{\mathbf{x}_{1:T},\mathbf{m}} \sum_{t=1}^{T} \|\mathbf{z}_t - h(\mathbf{x}_t, \mathbf{m})\|_2^2 + \sum_{t=0}^{T-1} \|\mathbf{x}_{t+1} - f(\mathbf{x}_t, \mathbf{u}_t)\|_2^2$$

Example: Localization with Linear Models

- ▶ State: $\mathbf{x}_t \in \mathbb{R}^n$
- Motion model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t) = F\mathbf{x}_t + G\mathbf{u}_t$
- Observation model: $\mathbf{z}_t = h(\mathbf{x}_t) = H\mathbf{x}_t$
- Localization: given x₀ = 0, sensor measurements z_{1:T}, and control inputs u_{0:T-1}, estimate the state trajectory x_{1:T}

$$\min_{\mathbf{x}_{1:T}} c(\mathbf{x}_{1:T}) := \sum_{t=1}^{T} \|\mathbf{z}_t - H\mathbf{x}_t\|_2^2 + \sum_{t=0}^{T-1} \|\mathbf{x}_{t+1} - F\mathbf{x}_t - G\mathbf{u}_t\|_2^2$$

• Gradient descent: initialize $\mathbf{x}_{1:T}^{(0)}$ and iterate:

$$\mathbf{x}_{1:T}^{(k+1)} = \mathbf{x}_{1:T}^{(k)} - \alpha^{(k)} \nabla c(\mathbf{x}_{1:T}^{(k)})$$

Example: Localization with Linear Models

$$\blacktriangleright \left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\|_2^2 = \|x_1 - y_1\|_2^2 + \|x_2 - y_2\|_2^2 \text{ for } x_1, y_1 \in \mathbb{R}^{d_1}, x_2, y_2 \in \mathbb{R}^{d_2}$$

Express the least-squares localization problem in matrix notation:

$$c(\mathbf{x}_{1:T}) = \sum_{t=1}^{T} \|\mathbf{z}_{t} - H\mathbf{x}_{t}\|_{2}^{2} + \sum_{t=0}^{T-1} \|\mathbf{x}_{t+1} - F\mathbf{x}_{t} - G\mathbf{u}_{t}\|_{2}^{2}$$

$$= \left\| \begin{bmatrix} \mathbf{z}_{1} - H\mathbf{x}_{1} \\ \vdots \\ \mathbf{z}_{T} - H\mathbf{x}_{T} \end{bmatrix} \right\|_{2}^{2} + \left\| \begin{bmatrix} \mathbf{x}_{1} - F\mathbf{x}_{0} - G\mathbf{u}_{0} \\ \vdots \\ \mathbf{x}_{T} - F\mathbf{x}_{T-1} - G\mathbf{u}_{T-1} \end{bmatrix} \right\|_{2}^{2}$$

$$= \left\| \begin{bmatrix} H \\ \ddots \\ H \end{bmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{T} \end{pmatrix} - \begin{bmatrix} \mathbf{z}_{1} \\ \vdots \\ \mathbf{z}_{T} \end{bmatrix} \right\|_{2}^{2} + \left\| \begin{bmatrix} -I \\ F \\ \ddots \\ F \\ -I \end{bmatrix} \begin{pmatrix} \mathbf{x}_{1} \\ \vdots \\ \mathbf{x}_{T} \end{pmatrix} + \begin{bmatrix} F\mathbf{x}_{0} + G\mathbf{u}_{0} \\ G\mathbf{u}_{1} \\ \vdots \\ G\mathbf{u}_{T-1} \end{bmatrix} \right\|_{2}^{2}$$

Example: Localization with Linear Models

Objective:

$$c(\mathbf{x}_{1:T}) = \left\| \begin{bmatrix} H & & \\ & \ddots & \\ & & \ddots & \\ & & H \\ -I & & \\ F & \ddots & \\ & F & -I \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_T \end{pmatrix} + \begin{bmatrix} -\mathbf{z}_1 \\ \vdots \\ -\mathbf{z}_T \\ F\mathbf{x}_0 + G\mathbf{u}_0 \\ G\mathbf{u}_1 \\ \vdots \\ G\mathbf{u}_{T-1} \end{bmatrix} \right\|_2^2$$

Gradient:

$$\nabla c(\mathbf{x}_{1:T}) = 2A^{\top}(A\mathbf{x}_{1:T} + \mathbf{b})$$

• Gradient descent: initialize $\mathbf{x}_{1:T}^{(0)}$ and iterate:

$$\mathbf{x}_{1:\mathcal{T}}^{(k+1)} = \mathbf{x}_{1:\mathcal{T}}^{(k)} - 2\alpha^{(k)}A^{\top}(A\mathbf{x}_{1:\mathcal{T}}^{(k)} + \mathbf{b})$$

Project 1: Orientation Tracking

- Consider a rigid body undergoing pure rotation
- **State**: orientation $\mathbf{q}_t \in \mathbb{H}_*$ of the body frame relative to the world frame
- ▶ **Control**: body-frame angular velocity $\mathbf{u}_t \in \mathbb{R}^3$ obtained from gyroscope measurements in rad/sec during time interval τ_t
- Motion model: $\mathbf{q}_{t+1} = f(\mathbf{q}_t, \tau_t \mathbf{u}_t) := \mathbf{q}_t \circ \exp([0, \tau_t \mathbf{u}_t/2])$
- ► Observation model: body-frame acceleration z_t ∈ R³ obtained from accelerometer measurements in m/sec² should approximately match the world-frame gravity acceleration -ge₃:

$$\mathbf{z}_t = h(\mathbf{q}_t) := \mathbf{q}_t^{-1} \circ [0, -g\mathbf{e}_3] \circ \mathbf{q}_t$$

Project 1: Orientation Tracking

- ▶ Starting with $\mathbf{q}_0 = [1, \mathbf{0}] \in \mathbb{H}_*$, formulate an optimization problem to estimate $\mathbf{q}_{1:T}$ using the gyroscope inputs $\mathbf{u}_{0:T-1}$ and accelerometer measurements $\mathbf{z}_{1:T}$
- Distance on ℍ_{*}: the distance between two quaternions q₁, q₂ ∈ ℍ_{*} can be measured by the rotation angle ||θ₁₂||₂ of the axis-angle representation θ₁₂ of the relative rotation q₁₂ = q₁⁻¹q₂:

$$d(\mathbf{q}_1, \mathbf{q}_2) = \| \boldsymbol{\theta}_{12} \|_2 = \| 2 \log(\mathbf{q}_1^{-1} \mathbf{q}_2) \|_2$$

We formulate a constrained optimization problem because we require that q_t is a valid orientation, i.e., q_t ∈ H_{*}:

$$\min_{\mathbf{q}_{1:T}} c(\mathbf{q}_{1:T}) := \sum_{t=1}^{T} \|\mathbf{z}_t - h(\mathbf{q}_t)\|_2^2 + \sum_{t=0}^{T-1} \|2\log(\mathbf{q}_{t+1}^{-1} \circ f(\mathbf{q}, \tau_t \mathbf{u}_t))\|_2^2$$
s.t. $\|\mathbf{q}_t\|_2 = 1, \ \forall t$

Possible approach: projected gradient descent

$$\mathbf{q}_{1:\mathcal{T}}^{(k+1)} = \Pi_{\mathbb{H}_*} \left(\mathbf{q}_{1:\mathcal{T}}^{(k)} - \alpha^{(k)} \nabla c(\mathbf{q}_{1:\mathcal{T}}^{(k)}) \right)$$

Project 1: Panorama

- ▶ Input: image / and camera-to-world orientation R
- Suppose the image lies on a sphere and compute the world coordinates of each pixel:
 - 1. Find longitude (λ) and latitude (ϕ) of each pixel using the number of rows and columns and the horizontal (60°) and vertical (45°) fields of view
 - 2. Convert spherical $(\lambda, \phi, 1)$ to Cartesian coordinates assuming depth 1
 - 3. Rotate the Cartesian coordinates to the world frame using R
- Project world pixel coordinates to a cylinder and unwrap:
 - 1. Convert Cartesian to spherical coordinates
 - 2. Inscribe the sphere in a cylinder so that a point $(\lambda, \phi, 1)$ on the sphere has height ϕ on the cylinder and longitude λ along the cylinder circumference
 - 3. Unwrap the cylinder surface to a rectangular image with width 2π radians and height π radians
 - Different options for sphere to plane projection: equidistant, equal area, Miller, etc. (see https://en.wikipedia.org/wiki/List_of_map_projections)

Project 1: Panorama

Outline

Introduction to SLAM

Factor Graph SLAM

Factor Graph

 Factor graph: bipartite graph describing data (observations z_t, inputs u_t) and variables (states x_t, landmarks m_j) in a SLAM problem

Nodes: variables to be estimated: robot states x_t and landmark states m_i

- Factors: relate two variables by input u_t or observation z_t data and associated motion or observation model:
 - Motion factor: error between state \mathbf{x}_{t+1} and its motion prediction $f(\mathbf{x}_t, \mathbf{u}_t)$:

$$\mathbf{e}_f(\mathbf{x}_{t+1},\mathbf{x}_t) = \mathbf{x}_{t+1} \ominus f(\mathbf{x}_t,\mathbf{u}_t)$$

• Observation factor: error between observation $\mathbf{z}_{t,j}$ and its prediction $h(\mathbf{x}_t, \mathbf{m}_j)$

$$\mathbf{e}_h(\mathbf{x}_t,\mathbf{m}_j)=\mathbf{z}_{t,j}\ominus h(\mathbf{x}_t,\mathbf{m}_j)$$

We use the symbol ⊖ to indicate that the difference between two variable should respect the geometry of their space, e.g., y ⊖ x = y − x for x, y ∈ ℝ^d but y ⊖ x = 2 log(x⁻¹y) for x, y ∈ ℍ_{*}

Factor Graph SLAM

- Front-end: construction of factor graph using odometry, laser-scan matching, feature matching, etc.
- **Back-end**: graph optimization to estimate the variables $(\mathbf{x}_{0:T}, \{\mathbf{m}_i\})$

Back-end optimization problem with variables x_i associated with the graph vertices i ∈ V and factors e(x_i, x_j) associated with the graph edges (i, j) ∈ E:

$$\min_{\{\mathbf{x}_i\}} \sum_{(i,j)\in\mathcal{E}} \phi_{ij}(\mathbf{e}(\mathbf{x}_i,\mathbf{x}_j))$$

where $\phi_{ij} : \mathbb{R}^d \mapsto \mathbb{R}$ is a distance function, e.g., $\phi_{ij}(\mathbf{e}) = \mathbf{e}^\top \Omega_{ij} \mathbf{e}$ with positive-definite Ω_{ij}

Pose Graph

- ► Variables: robot poses *T_i*
- Measurements: relative poses from odometry and loop closures: \overline{T}_{ij}

• Factors: relative pose vectors $\mathbf{e}(T_i, T_j) = \log(\overline{T}_{ij}^{-1}T_i^{-1}T_j)^{\vee}$

Pose Graph Optimization

- Loop closure: observing previously seen areas generates factors between non-successive robot poses
- ▶ Pose graph optimization: with $\phi_{ij}(\mathbf{e}) = \mathbf{e}^\top W_{ij}^\top W_{ij} \mathbf{e} = \|W_{ij}\mathbf{e}\|_2^2$:

$$\min_{\{T_i\}} \sum_{(i,j)\in\mathcal{E}} \|W_{ij}\log(\bar{T}_{ij}^{-1}T_i^{-1}T_j)^{\vee}\|_2^2$$

Factor Graph Optimization

Factor graph optimization with variables $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1^\top & \cdots & \mathbf{x}_n^\top \end{bmatrix}^\top$:

$$\min_{\mathbf{x}} \sum_{(i,j)\in\mathcal{E}} \phi_{ij}(\mathbf{e}(\mathbf{x}_i,\mathbf{x}_j))$$

- Initial guess x⁽⁰⁾ is obtained from odometry (e.g., encoders, point cloud registration) and landmark initialization (e.g., triangulation of image features)
- A **descent method** is used for optimization:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \delta \mathbf{x}^{(k)}$$

► E.g., the **Levenberg-Marquardt** algorithm is used for $\phi_{ij}(\mathbf{e}) = \mathbf{e}^\top W_{ij}^\top W_{ij} \mathbf{e}$:

$$\left(\sum_{ij} J_{ij}^{\top} W_{ij}^{\top} W_{ij} J_{ij} + \lambda D\right) \delta \mathbf{x}^{(k)} = -\sum_{ij} J_{ij}^{\top} W_{ij}^{\top} \mathbf{e}(\mathbf{x}_{i}^{(k)}, \mathbf{x}_{j}^{(k)})$$

where $J_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mathbf{x}^{(k)}}$ is the Jacobian of $e(\mathbf{x}_i, \mathbf{x}_j)$ with respect to all variables \mathbf{x} evaluated at $\mathbf{x} = \mathbf{x}^{(k)}$

Factor Graph Optimization Libraries

- Georgia Tech Smoothing and Mapping (GTSAM) Library: https://github.com/borglab/gtsam
- General Graph Optimization (g2o) Library: https://github.com/RainerKuemmerle/g2o
- Ceres Solver: https://github.com/ceres-solver/ceres-solver
- SymForce: https://github.com/symforce-org/symforce
- miniSAM: https://github.com/dongjing3309/minisam

Factor Graph Optimization: Sparsity

Factor Graph Optimization: Example

https://www.youtube.com/watch?v=KYvOqUB_odg

Landmark-Based SLAM

$$\min_{\{T_t\},\{\mathbf{m}_j\}} \sum_t \|W_{ij}\log(\bar{T}_{t,t+1}^{-1}T_t^{-1}T_{t+1})^{\vee}\|_2^2 + \sum_{t,j} \|V_{ij}(\mathbf{z}_{t,j} - h(T_t,\mathbf{m}_j))\|_2^2$$

Landmark-Based SLAM

Landmark-Based SLAM: Sparsity

Landmark-Based SLAM: Example

https://www.youtube.com/watch?v=OdJ042prg_M

- What if we only need a subset of the variables?
- Normal equations: $J^{\top} J \delta \mathbf{x} = -J^{\top} \mathbf{e}$
- Hessian matrix blocks:

$$J^{\top} J \delta \mathbf{x} = \begin{bmatrix} \Omega_{aa} & \Omega_{ab} \\ \Omega_{ab}^{\top} & \Omega_{bb} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{x}}_a \\ \tilde{\mathbf{x}}_b \end{bmatrix} = \begin{bmatrix} \mathbf{c}_a \\ \mathbf{c}_b \end{bmatrix} = -J^{\top} \mathbf{e}$$

• Pre-multiply by $\begin{bmatrix} I & -\Omega_{ab}\Omega_{bb}^{-1} \\ 0 & I \end{bmatrix}$ and subtract second from first equation: $\begin{bmatrix} \Omega_{aa} - \Omega_{ab}\Omega_{bb}^{-1}\Omega_{ab}^{\top} & 0 \\ \Omega_{ab}^{\top} & \Omega_{bb} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{x}}_{a} \\ \tilde{\mathbf{x}}_{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{a} - \Omega_{ab}\Omega_{bb}^{-1}\mathbf{c}_{b} \\ \mathbf{c}_{b} \end{bmatrix}$

We can obtain x̃_a by solving the smaller system determined by the Schur complement of Ω_{bb}:

$$(\Omega_{aa} - \Omega_{ab}\Omega_{bb}^{-1}\Omega_{ab}^{\top})\tilde{\mathbf{x}}_{a} = \mathbf{c}_{a} - \Omega_{ab}\Omega_{bb}^{-1}\mathbf{c}_{b}$$

Probabilistic perspective of Schur complement:

$$\begin{bmatrix} \tilde{\mathbf{x}}_{a} \\ \tilde{\mathbf{x}}_{b} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \Omega_{aa} & \Omega_{ab} \\ \Omega_{ab}^{\top} & \Omega_{bb} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{c}_{a} \\ \mathbf{c}_{b} \end{bmatrix}, \begin{bmatrix} \Omega_{aa} & \Omega_{ab} \\ \Omega_{ab}^{\top} & \Omega_{bb} \end{bmatrix}^{-1} \right)$$

• Marginal of $\tilde{\mathbf{x}}_a$:

$$\begin{split} p(\tilde{\mathbf{x}}_{a}) &= \int p(\tilde{\mathbf{x}}_{a}, \tilde{\mathbf{x}}_{b}) d\tilde{\mathbf{x}}_{b} \\ &= \phi \left(\tilde{\mathbf{x}}_{a}; (\Omega_{aa} - \Omega_{ab} \Omega_{bb}^{-1} \Omega_{ab}^{\top})^{-1} (\mathbf{c}_{a} - \Omega_{ab} \Omega_{bb}^{-1} \mathbf{c}_{b}), (\Omega_{aa} - \Omega_{ab} \Omega_{bb}^{-1} \Omega_{ab}^{\top})^{-1} \right) \end{split}$$

- Marginalizing a variable creates non-zero off-diagonals (called fill-in) in the information matrix for all variables that had a non-zero off-diagonal element with the marginalized variable ⇒ loss of sparsity
- In graph terms, variable elimination creates a clique between the neighbors of the eliminated node

Smoothing vs Filtering

Smoothing: equivalent to MAP optimization

- many variables: estimates entire robot trajectory and map
- **sparse** Hessian matrix $J^{\top}J$

Fixed-lag smoothing:

- fewer variables: estimate only variables in a time window
- denser Hessian matrix after Schur complement to marginalize old variables

Filtering:

- fewest variables: estimate only current pose and landmarks
- densest Hessian matrix after Schur complement to marginalize all old variables,