ECE276A: Sensing \& Estimation in Robotics Lecture 7: Probabilistic SLAM and Bayesian Filtering

Nikolay Atanasov
natanasov@ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Outline

Probability Theory Review

Probabilistic Formulation of SLAM

Bayesian Filtering

Measurable Space

- Experiment: repeatable procedure with a well-defined set of outcomes
- Sample space: set Ω of possible experiment outcomes
- Example: $\Omega=\{H H, H T, T H, T T\}$ or $\Omega=\{\odot, \odot, \odot, \because,(\because, \overbrace{}^{\circ}\}$
- Event: subset A of the sample space Ω
- Example: $A=\{H H\}, B=\{H T, T H\}, A, B \subseteq \Omega$
- σ-algebra: set \mathcal{F} of subsets of Ω closed under complementation and countable union
- Bore σ-algebra: the smallest σ-algebra \mathcal{B} containing all open sets from a topological space Ω (needed because there is no translation invariant way to assign a finite measure to all subsets of $[0,1)$)
- Measurable space: tuple (Ω, \mathcal{F}), where Ω is a sample space and \mathcal{F} is a σ-algebra

Probability Space

- Measure on (Ω, \mathcal{F}) : function $\mu: \mathcal{F} \rightarrow \mathbb{R}$ satisfying:
- non-negativity: $\mu(A) \geq 0$ for all $A \in \mathcal{F}$ and $\mu(\emptyset)=0$
- countable additivity: $\mu\left(\cup_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right)$ for countable number of sets $A_{i} \in \mathcal{F}$ that are pairwise disjoint, i.e., $A_{i} \cap A_{j}=\emptyset$
- Properties of measure μ on (Ω, \mathcal{F}) :
- subadditivity: $\mu\left(\cup_{i} A_{i}\right) \leq \sum_{i} \mu\left(A_{i}\right)$ for countable number of sets $A_{i} \in \mathcal{F}$
- $\max \{\mu(A), \mu(B)\} \leq \mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B) \leq \mu(A)+\mu(B)$
- Probability measure: measure $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ that satisfies $\mathbb{P}(\Omega)=1$
- Probability space: tuple $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is a sample space, \mathcal{F} is a σ-algebra, and \mathbb{P} is a probability measure

Conditional and Totial Probability

- Conditional probability: $\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)$
- Bayes rule: assume $\mathbb{P}(B)>0$

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

- Total probability law: if $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, i.e., $\Omega=\bigcup_{i} A_{i}$ and $A_{i} \cap A_{j}=\emptyset, \forall i \neq j$, then:

$$
\mathbb{P}(B)=\sum_{i=1}^{n} \mathbb{P}\left(B \cap A_{i}\right)
$$

- Corollary: if $\left\{A_{1}, \ldots, A_{n}\right\}$ is a partition of Ω, then:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

- Independent events: $\mathbb{P}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \mathbb{P}\left(A_{i}\right)$
- observing one event does not give any information about another
- disjoint events are not independent: observing one tells us that the other will not occur

Random Variable

- Random variable: function $X: \Omega \rightarrow \mathbb{R}^{n}$ from (Ω, \mathcal{F}) to $\left(\mathbb{R}^{n}, \mathcal{B}\right)$ such that, for every $B \in \mathcal{B}$, the set $A=\{\omega \in \Omega \mid X(\omega) \in B\}$ is contained in \mathcal{F}
- Cumulative distribution function (CDF) of random variable X : function $F(\mathbf{x}):=\mathbb{P}(X \leq \mathbf{x})$ with the following properties:
- non-decreasing: $\mathrm{x} \leq \mathbf{y}$ (elementwise) $\Rightarrow F(\mathrm{x}) \leq F(\mathbf{y})$
- right-continuous: $\lim _{x+y} F(x)=F(\mathbf{y})$ for all $\mathbf{y} \in \mathbb{R}^{n}$
$-\lim _{x_{1}, \ldots, x_{n} \rightarrow \infty} F(\mathbf{x})=1$ and $\lim _{x_{i} \rightarrow-\infty} F(\mathbf{x})=0$ for all i

(a) Discrete CDF

(b) Continuous CDF

(c) Mixed CDF

Random Variable

$$
\begin{gathered}
X: \Omega \mapsto \mathbb{R}^{n} \\
\omega \in \Omega, \mathcal{F}) \\
\mathbb{P}: \mathcal{F} \mapsto \mathbb{R} \\
F_{X}(b)=\mathbb{P}(X \leq b)=\mathbb{P}\left(\left\{\omega \in \Omega \mid X(\omega) \in\left(-\infty, b_{1}\right] \times \cdots \times\left(-\infty, b_{n}\right]\right\}\right) \\
\\
=\int_{-\infty}^{b_{n}} \cdots \int_{-\infty}^{b_{1}} p_{X}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
\end{gathered}
$$

CDF Examples

- $X \sim \mathcal{U}([a, b])$

$$
F(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
F(x)= \begin{cases}0 & x<a \\ 1 / 2 & a \leq x<b \\ 1 & x \geq b\end{cases}
$$

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
F(x)= \begin{cases}0 & x<0 \\ 1-e^{-\lambda x} & x \geq 0\end{cases}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
F(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right) d y
$$

Probability Density Function

- Probability density function (pdf) of a continuous random variable $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}\right)$: function $p: \mathbb{R}^{n} \mapsto[0,1]$ such that:
- $p(\mathbf{x}) \geq 0$
- $\int p(\mathrm{x}) \mathrm{d} \mathbf{x}=1$
- Intuition: the pdf $p(\mathbf{x})$ of X behaves like a derivative of the CDF $F(\mathbf{x})$:
- $F(\mathbf{x})=\mathbb{P}(X \leq \mathbf{x})=\int_{-\infty}^{\mathrm{x}} p(\mathrm{y}) d \mathbf{y}$
- $\mathbb{P}(\mathbf{a}<X \leq \mathbf{b})=F(\mathbf{b})-F(\mathbf{a})=\int_{\mathbf{a}}^{\mathbf{b}} p(\mathbf{y}) d \mathbf{y}$
- $\mathbb{P}(X=\mathbf{x})=\lim _{\epsilon \rightarrow 0} \int_{\mathbf{x}}^{\mathbf{x}+\epsilon \delta \mathbf{x}} p(\mathbf{y}) d \mathbf{y}=0$

Probability Mass Function

- Integer set: $\mathbb{Z}:=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
- Probability mass function (pmf) of a discrete random variable $X:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{Z}, 2^{\mathbb{Z}}\right):$ function $m: \mathbb{Z} \mapsto[0,1]$ such that:
- $m[i] \geq 0$
- $\sum_{i \in \mathbb{Z}} m[i]=1$
- Properties of the pmf m of X :
- $F(i)=\mathbb{P}(X \leq i)=\sum_{j \leq i} m[j]$
- $\mathbb{P}(a<X \leq b)=F(b)-F(a)=\sum_{a<j \leq b} m[j]$
- $\mathbb{P}(X=i)=m[i] \in[0,1]$
- Dirac delta function:

$$
\delta(x):=\left\{\begin{array}{ll}
\infty & x=0 \\
0 & x \neq 0
\end{array} \quad \int_{-\infty}^{\infty} f(x) \delta(x) d x=f(0) \quad \int_{-\infty}^{\infty} \delta(x) d x=1\right.
$$

- A pdf can be defined for a discrete random variable $X \in \mathbb{Z}$ with pmf m using the Dirac delta function:

$$
p(x)=\sum_{i \in \mathbb{Z}} m[i] \delta(x-i)
$$

pdf and pmf Examples

- $X \sim \mathcal{U}([a, b])$

$$
p(x)= \begin{cases}0 & x<a \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & x>b\end{cases}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
m[i]= \begin{cases}\frac{1}{2} & i \in\{a, b\} \\ 0 & \text { else }\end{cases}
$$

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
p(x)= \begin{cases}0 & x<0 \\ \lambda e^{-\lambda x} & x \geq 0\end{cases}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right)
$$

Expectation and Variance

- Consider a random variable X with pdf p and a (measurable) function g
- The expectation of $g(X)$ is:

$$
\mathbb{E}[g(X)]=\int g(x) p(x) d x
$$

- The variance of $g(X)$ is:

$$
\begin{aligned}
\operatorname{Var}[g(X)] & =\mathbb{E}\left[(g(X)-\mathbb{E}[g(X)])(g(X)-\mathbb{E}[g(X)])^{\top}\right] \\
& =\mathbb{E}\left[g(X) g(X)^{\top}\right]-\mathbb{E}[g(X)] \mathbb{E}[g(X)]^{\top}
\end{aligned}
$$

- The variance of a sum of random variables is:

$$
\begin{aligned}
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right] & =\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i=1}^{n} \sum_{j \neq i} \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
\operatorname{Cov}\left[X_{i}, X_{j}\right] & =\mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)^{\top}\right]=\mathbb{E}\left[X_{i} X_{j}^{\top}\right]-\mathbb{E}\left[X_{i}\right] \mathbb{E}\left[X_{j}\right]^{\top}
\end{aligned}
$$

Expectation and Variance Examples

- $X \sim \mathcal{U}([a, b])$

$$
\begin{aligned}
\mathbb{E}[X] & =\int y p(y) d y=\frac{1}{b-a} \int_{a}^{b} y d y=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{1}{2}(a+b) \\
\operatorname{Var}[X] & =\int y^{2} p(y) d y-\mathbb{E}[X]^{2}=\frac{b^{3}-a^{3}}{3(b-a)}-\frac{1}{4}(a+b)^{2}=\frac{1}{12}(b-a)^{2}
\end{aligned}
$$

- $X \sim \mathcal{U}(\{a, b\})$

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{i \in\{a, b\}} i m[i]=\frac{1}{2}(a+b) \\
\operatorname{Var}[X] & =\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\frac{1}{2}\left(a^{2}+b^{2}\right)-\frac{1}{4}(a+b)^{2}=\frac{1}{4}(b-a)^{2}
\end{aligned}
$$

Expectation and Variance Examples

- $X \sim \operatorname{Exp}(\lambda)$ with $\lambda>0$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} y \lambda e^{-\lambda y} d y \xlongequal{z=\lambda y, d z=\lambda d y} \frac{1}{\lambda} \int_{0}^{\infty} z e^{-z} d z \\
& \xlongequal[d u=d z, v=-e^{-z}]{u=z, d v=e^{-z} d z} \frac{1}{\lambda}\left(\left.\left(-z e^{-z}\right)\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-z} d z\right)=\frac{1}{\lambda}(0+1)=\frac{1}{\lambda} \\
\operatorname{Var}[X] & =\int_{0}^{\infty} y^{2} \lambda e^{-\lambda y} d y-\frac{1}{\lambda^{2}} \xlongequal{z=\lambda y, d z=\lambda d y} \frac{1}{\lambda^{2}}\left(\int_{0}^{\infty} z^{2} e^{-z} d z-1\right) \\
& \xlongequal[d u=2 z d z, v=-e^{-z}]{u=z^{2}, d v=e^{-z} d z} \frac{1}{\lambda^{2}}\left(\left.\left(-z^{2} e^{-z}\right)\right|_{0} ^{\infty}+2 \int_{0}^{\infty} e^{-z} d z-1\right)=\frac{1}{\lambda^{2}}
\end{aligned}
$$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
\mathbb{E}[X-\mu] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{(y-\mu)}{\sigma} \exp \left(-\frac{1}{2} \frac{(y-\mu)^{2}}{\sigma^{2}}\right) d y \\
& \xlongequal[d z=\frac{(y-\mu)}{\sigma} d y]{z=\frac{(y-\mu)^{2}}{2 \sigma}} \frac{1}{\sqrt{2 \pi}}\left(\int_{\infty}^{\mu^{2} / 2 \sigma} e^{-z / \sigma} d z+\int_{\mu^{2} / 2 \sigma}^{\infty} e^{-z / \sigma} d z\right)=0
\end{aligned}
$$

Gaussian Distribution

- Gaussian random vector $X \sim \mathcal{N}(\mu, \Sigma)$
- parameters: mean $\boldsymbol{\mu} \in \mathbb{R}^{n}$, covariance $\Sigma \in \mathbb{S}_{\succ 0}^{n}$ (symmetric positive definite $n \times n$ matrix)
\Rightarrow pdf: $\phi(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}):=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$
- expectation: $\mathbb{E}[X]=\int \mathbf{x} \phi(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d \mathbf{x}=\boldsymbol{\mu}$
variance: $\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{\top}\right]=\Sigma$
- Gaussian mixture $X \sim \mathcal{N} \mathcal{M}\left(\left\{\alpha_{k}\right\},\left\{\boldsymbol{\mu}_{k}\right\},\left\{\Sigma_{k}\right\}\right)$
- parameters: weights $\alpha_{k} \geq 0, \sum_{k} \alpha_{k}=1$, means $\mu_{k} \in \mathbb{R}^{n}$, covariances $\Sigma_{k} \in \mathbb{S}_{\succeq 0}^{n}$
$-\mathrm{pdf}: p(\mathbf{x}):=\sum_{k} \alpha_{k} \phi\left(\mathbf{x} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)$
- expectation: $\mathbb{E}[X]=\int \mathbf{x p}(\mathbf{x}) d \mathbf{x}=\sum_{k} \alpha_{k} \boldsymbol{\mu}_{k}=: \overline{\boldsymbol{\mu}}$
variance: $\operatorname{Var}[X]=\mathbb{E}\left[X X^{\top}\right]-\mathbb{E}[X] \mathbb{E}[X]^{\top}=\sum_{k} \alpha_{k}\left(\Sigma_{k}+\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}\right)-\overline{\boldsymbol{\mu}} \overline{\boldsymbol{\mu}}^{\top}$

pdf of a Mixture of Two 2-D Gaussians

Independent Random Variables

- The random variables $\left\{X_{i}\right\}_{i=1}^{n}$ with joint CDF $F\left(x_{1}, \ldots, x_{n}\right)$ and marginal CDFs $\left\{F_{i}\left(x_{i}\right)\right\}_{i=1}^{n}$ are jointly independent iff:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} F_{i}\left(x_{i}\right), \quad \text { for all } x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

- The random variables $\left\{X_{i}\right\}_{i=1}^{n}$ with joint pdf/pmf $p\left(x_{1}, \ldots, x_{n}\right)$ and marginal pdfs/pmfs $\left\{p_{i}\left(x_{i}\right)\right\}_{i=1}^{n}$ are jointly independent iff:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} p_{i}\left(x_{i}\right), \quad \text { for all } x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

- Let X and Y be random variables and suppose $\mathbb{E}[X], \mathbb{E}[Y]$, and $\mathbb{E}[X Y]$ exist. Then, X and Y are uncorrelated iff $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ or equivalently $\operatorname{Cov}[X, Y]=0$.
- Independence implies uncorrelatedness

Conditional and Total Probability

- Total probability: If two random variables X, Y have a joint pdf $p(x, y)$, the marginal pdf $p(x)$ of X is:

$$
p(x)=\int p(x, y) d y
$$

- Conditional probability: If two random variables X, Y have a joint pdf $p(x, y)$, the pdf $p(x \mid y)$ of X conditioned on $Y=y$ and the $\operatorname{pdf} p(y \mid x)$ of Y conditioned on $X=x$ satisfy

$$
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)
$$

- Bayes rule: The pdf $p(x \mid y)$ of X conditioned on $Y=y$ can be expressed in terms of the pdf $p(y \mid x)$ of Y conditioned on $X=x$ and the marginal pdf $p(x)$ of X :

$$
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)}=\frac{p(y \mid x) p(x)}{\int p\left(y \mid x^{\prime}\right) p\left(x^{\prime}\right) d x^{\prime}}
$$

Joint and Marginal Distribution Example

- Suppose $V=(X, Y)$ is a continuous random vector with density $p_{V}(x, y)=8 x y$ for $0<y<x$ and $0<x<1$
- Let $g(x, y)=2 x+y$
- Determine $\mathbb{E}[g(V)]$
- Evaluate $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ by finding the marginal densities of X and Y and then evaluating the appropriate univariate integrals
- Determine $\operatorname{Var}[g(V)]$

Joint and Marginal Distribution Example

$$
\begin{aligned}
\mathbb{E}[2 X+Y] & =\int_{0}^{1} \int_{0}^{x}(2 x+y) 8 x y d y d x=\frac{32}{15} \\
p_{X}(x) & =\int_{0}^{x} 8 x y d y=4 x^{3} \text { for } 0 \leq x \leq 1 \\
\mathbb{E}[X] & =\int_{0}^{1} x p_{X}(x) d x=\int_{0}^{1} 4 x^{4} d x=\frac{4}{5} \\
p_{Y}(y) & =\int_{y}^{1} 8 x y d x=4 y-4 y^{3} \text { for } 0 \leq y \leq 1 \\
\mathbb{E}[Y] & =\int_{0}^{1} y p_{Y}(y) d y=\int_{0}^{1} 4 y^{2}-4 y^{4} d y=\frac{8}{15} \\
\operatorname{Var}[g(V)] & =\mathbb{E}\left[(g(V)-\mathbb{E}[g(V)])^{2}\right]=\mathbb{E}\left[\left(2 X+Y-\frac{32}{15}\right)^{2}\right] \\
& =\int_{0}^{1} \int_{0}^{x}\left(2 x+y-\frac{32}{15}\right)^{2} 8 x y d y d x=\frac{17}{75}
\end{aligned}
$$

Conditional Probability Example

- Suppose that $V=(X, Y)$ is a discrete random vector with probability mass function:

$$
p_{V}(x, y)= \begin{cases}0.10 & \text { if }(x, y)=(0,0) \\ 0.20 & \text { if }(x, y)=(0,1) \\ 0.30 & \text { if }(x, y)=(1,0) \\ 0.15 & \text { if }(x, y)=(1,1) \\ 0.25 & \text { if }(x, y)=(2,2) \\ 0 & \text { elsewhere }\end{cases}
$$

- What is the conditional probability that V is $(0,0)$ given that V is $(0,0)$ or $(1,1)$?
- What is the conditional probability that X is 1 or 2 given that Y is 0 or 1 ?
- What is the probability that X is 1 or 2 ?
- What is the probability mass function of $X \mid Y=0$?
- What is the expected value of $X \mid Y=0$?

Conditional Probability Example

$$
\begin{aligned}
& \mathbb{P}(V \in\{(0,0)\} \mid V \in\{(0,0),(1,1)\})=\frac{\mathbb{P}(V \in\{(0,0)\} \cap\{(0,0),(1,1)\})}{\mathbb{P}(V \in\{(0,0),(1,1)\})} \\
& \quad=\frac{0.10}{0.25}=0.4
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(X \in\{1,2\} \mid Y \in\{0,1\})=\mathbb{P}(V \in\{1,2\} \times \mathbb{R} \mid V \in \mathbb{R} \times\{0,1\}) \\
& \quad=\frac{\mathbb{P}(V \in\{(1,0),(1,1)\})}{\mathbb{P}(V \in\{(0,0),(0,1),(1,0),(1,1)\})}=\frac{0.45}{0.75}=0.6
\end{aligned}
$$

$$
\mathbb{P}(X \in\{1,2\})=\mathbb{P}(V \in\{1,2\} \times \mathbb{R})=0.7
$$

$$
p_{X \mid Y=0}(x)=\frac{p_{V}(x, 0)}{\sum_{x^{\prime} \in\{0,1\}} p_{V}\left(x^{\prime}, 0\right)}=\frac{1}{0.4} p_{V}(x, 0)= \begin{cases}0.25 & \text { if } x=0 \\ 0.75 & \text { if } x=1\end{cases}
$$

$$
\mathbb{E}[X \mid Y=0]=\sum_{x \in\{0,1\}} x p_{X \mid Y=0}(x)=p_{X \mid Y=0}(1)=0.75
$$

Change of Density

- Convolution: Let X and Y be independent random variables with pdfs p and q, respectively. Then, the pdf of $Z=X+Y$ is given by the convolution of p and q :

$$
[p * q](z)=\int p(z-y) q(y) d y=\int p(x) q(z-x) d x
$$

- Change of Density: Let $Y=f(X)$ be random variables related by an invertible function f such that $d y=\left|\operatorname{det}\left(\frac{d f}{d x}(x)\right)\right| d x$. The pdf of $p_{y}(y)$ of Y and the pdf $p_{x}(x)$ of X are related by change of variables:

$$
\begin{aligned}
\mathbb{P}(Y \in A) & =\mathbb{P}\left(X \in f^{-1}(A)\right)=\int_{f^{-1}(A)} p_{x}(x) d x \\
& =\int_{A} \underbrace{\frac{1}{\left|\operatorname{det}\left(\frac{d f}{d x}\left(f^{-1}(y)\right)\right)\right|} p_{x}\left(f^{-1}(y)\right)}_{p_{y}(y)} d y
\end{aligned}
$$

Change of Density Example

- Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $Y=f(X)=\exp (X)$
- Note that $f(x)$ is invertible $f^{-1}(y)=\log (y)$
- The infinitesimal integration volumes for y and x are related by:

$$
d y=\left|\operatorname{det}\left(\frac{d f}{d x}(x)\right)\right| d x=\exp (x) d x
$$

- Using change of density with $A=[0, \infty)$ and $f^{-1}(A)=(-\infty, \infty)$:

$$
\begin{aligned}
\mathbb{P}(Y \in[0, \infty)) & =\int_{-\infty}^{\infty} \phi\left(x ; 0, \sigma^{2}\right) d x=\int_{0}^{\infty} \frac{1}{\exp (\log (y))} \phi\left(\log (y) ; 0, \sigma^{2}\right) d y \\
& =\int_{0}^{\infty} \underbrace{\frac{1}{y} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2} \frac{\log ^{2}(y)}{\sigma^{2}}\right)}_{p(y)} d y
\end{aligned}
$$

Change of Density Example

- Let $V:=(X, Y)$ be a random vector with pdf:

$$
p_{V}(x, y):= \begin{cases}2 y-x & x<y<2 x \text { and } 1<x<2 \\ 0 & \text { else }\end{cases}
$$

- Let $T:=(M, N)=g(V):=\left(\frac{2 X-Y}{3}, \frac{X+Y}{3}\right)$ be a function of V
- Note that $X=M+N$ and $Y=2 N-M$ and, hence, the pdf of V is non-zero for $0<m<n / 2$ and $1<m+n<2$. Also:

$$
\operatorname{det}\left(\frac{d g}{d v}\right)=\operatorname{det}\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]=\frac{1}{3}
$$

- The pdf T is:

$$
p_{T}(m, n)= \begin{cases}\frac{1}{\left|\operatorname{det}\left(\frac{d g}{d v}(m+n, 2 n-m)\right)\right|} p_{V}(m+n, 2 n-m), & 0<m<n / 2 \text { and } \\ 0, & 1<m+n<2 \\ \text { else } .\end{cases}
$$

Outline

Probability Theory Review

Probabilistic Formulation of SLAM

Bayesian Filtering

Structure of Robotics Problems

- Time: t (discrete or continuous)
- Robot state: \mathbf{x}_{t} (e.g., position, orientation, velocity)
- Control input: \mathbf{u}_{t} (e.g., force, torque)
- Observation: \mathbf{z}_{t} (e.g., image, laser scan, inertial measurements)
- Map state: \mathbf{m}_{t} (e.g., occupancy map)

Markov Assumptions

- The control inputs $\mathbf{u}_{0: t}$ and observations $\mathbf{z}_{0: t}$ are known (observable)
- The robot states $\mathbf{x}_{0: t}$ and map $\mathbf{m}_{0: t}$ are unknown (partially observable)
- Overloaded notation: we consider the joint robot and map state ($\mathbf{x}_{t}, \mathbf{m}_{t}$) as a single random variable \mathbf{x}_{t}
- Markov assumptions
- The state \mathbf{x}_{t+1} only depends on the previous input \mathbf{u}_{t} and state \mathbf{x}_{t}, i.e., \mathbf{x}_{t+1} given $\mathbf{u}_{t}, \mathbf{x}_{t}$ is independent of the history $\mathbf{x}_{0: t-1}, \mathbf{z}_{0: t-1}, \mathbf{u}_{0: t-1}$
- The observation \mathbf{z}_{t} only depends on the state \mathbf{x}_{t}
- Motion model: function f or equivalently probability density function p_{f} that describes the state \mathbf{x}_{t+1} resulting from applying input \mathbf{u}_{t} at state \mathbf{x}_{t} :

$$
\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \quad \mathbf{w}_{t}=\text { motion noise }
$$

- Observation model: function h or equivalently probability density function p_{h} that describes the observation \mathbf{z}_{t} depending on \mathbf{x}_{t}

$$
\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right) \sim p_{h}\left(\cdot \mid \mathbf{x}_{t}\right) \quad \mathbf{v}_{t}=\text { observation noise }
$$

Joint Distribution Factorization

- The Markov assumptions induce a factorization of the joint probability density function of the states $\mathbf{x}_{0: T}$, observations $\mathbf{z}_{0: T}$, and inputs $\mathbf{u}_{0: T-1}$:

$$
=\cdots
$$

$$
=\underbrace{p\left(\mathbf{x}_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)}_{\text {observation model }} \prod_{t=0}^{T-1} \underbrace{p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)}_{\text {motion model }} \prod_{t=0}^{T-1} \underbrace{p\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)}_{\text {control policy }}
$$

$$
\begin{aligned}
& p\left(\mathbf{x}_{0: T}, \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) \\
& \xlongequal[\text { probability }]{\text { Conditional }} p\left(\mathbf{z}_{T} \mid \mathbf{x}_{0: T}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{0: T}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) \\
& \underset{\text { assumption }}{\text { Markov }} \underbrace{p_{h}\left(\mathbf{z}_{T} \mid \mathbf{x}_{T}\right)}_{\text {observation model }} p\left(\mathbf{x}_{0: T}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) \\
& \xlongequal[\text { probability }]{\text { Conditional }} p_{h}\left(\mathbf{z}_{T} \mid \mathbf{x}_{T}\right) p\left(\mathbf{x}_{T} \mid \mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-1}\right) \\
& \overline{\text { assumption }} \text { Markov } p_{h}\left(\mathbf{z}_{T} \mid \mathbf{x}_{T}\right) \underbrace{p_{f}\left(\mathbf{x}_{T} \mid \mathbf{x}_{T-1}, \mathbf{u}_{T-1}\right)}_{\text {motion model }} \underbrace{p\left(\mathbf{u}_{T-1} \mid \mathbf{x}_{T-1}\right)}_{\text {control policy }} p\left(\mathbf{x}_{0: T-1}, \mathbf{z}_{0: T-1}, \mathbf{u}_{0: T-2}\right)
\end{aligned}
$$

Probabilistic Parameter Estimation

- Consider data D generated by probabilistic model $p(D \mid \boldsymbol{\theta})$ with parameters $\boldsymbol{\theta}$
- Maximum Likelihood Estimation (MLE): maximize the likelihood of the data D given the parameters $\boldsymbol{\theta}$:

$$
\boldsymbol{\theta}_{*} \in \underset{\boldsymbol{\theta}}{\arg \max } p(D \mid \boldsymbol{\theta})
$$

- Maximum A Posteriori (MAP): maximize the likelihood of the parameters $\boldsymbol{\theta}$ given the data D :

$$
\boldsymbol{\theta}_{*} \in \underset{\boldsymbol{\theta}}{\arg \max } p(\boldsymbol{\theta} \mid D)=\underset{\boldsymbol{\theta}}{\arg \max } p(D \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\arg \max } p(D, \boldsymbol{\theta})
$$

MAP Formulation of SLAM

- SLAM as a MAP problem:
- data: $D=\left\{\mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right\}$
- parameters: $\boldsymbol{\theta}=\mathbf{x}_{0: T}$
- joint pdf: $p(D, \boldsymbol{\theta})=p\left(\mathbf{x}_{0}\right) \prod_{t=0}^{T} p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) \prod_{t=0}^{T-1} p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \prod_{t=0}^{T-1} p\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)$
- Factor graph optimization (usually $p\left(\mathbf{u}_{t} \mid \mathbf{x}_{t}\right)$ is not considered):

$$
\min _{\mathbf{x}_{0}: T}-\log p\left(\mathbf{x}_{0}\right)-\sum_{t=0}^{T} \log p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right)-\sum_{t=0}^{T-1} \log p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)
$$

- Start with initial guess $\hat{\mathrm{x}}_{0: T}$, e.g., from odometry and feature triangulation
- Linearize motion model $f(\mathbf{x}, \mathbf{u}, \mathbf{w})$ and observation model $h(\mathbf{x}, \mathbf{v})$
- Solve the linearized problem to obtain a descent direction $\tilde{\mathrm{x}}_{0: T}$
- Update the guess $\hat{\mathbf{x}}_{0: T}^{\prime}=\hat{\mathbf{x}}_{0: T}+\alpha \tilde{\mathbf{x}}_{0: T}$
- Perform descent by re-linearizing around $\hat{\mathbf{x}}_{0: T}^{\prime}$ and obtaining a new descent direction $\tilde{\mathbf{x}}_{0: T}^{\prime}$

Motion Model Linearization

- Motion model linearization around state $\hat{\mathbf{x}}_{t}$ and noise 0 :

$$
\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \approx f\left(\hat{\mathbf{x}}_{t}, \mathbf{u}_{t}, 0\right)+F_{t}\left(\mathbf{x}_{t}-\hat{\mathbf{x}}_{t}\right)+Q_{t} \mathbf{w}_{t}
$$

- Motion model Jacobians:

$$
F_{t}=\frac{d f}{d \mathbf{x}}\left(\hat{\mathbf{x}}_{t}, \mathbf{u}_{t}, 0\right) \quad Q_{t}=\frac{d f}{d \mathbf{w}}\left(\hat{\mathbf{x}}_{t}, \mathbf{u}_{t}, 0\right)
$$

- Let $\tilde{\mathbf{x}}_{t}:=\mathbf{x}_{t}-\hat{\mathbf{x}}_{t}$ and $\boldsymbol{\eta}_{t+1}:=\hat{\mathbf{x}}_{t+1}-f\left(\hat{\mathbf{x}}_{t}, \mathbf{u}_{t}, 0\right)$:

$$
\begin{aligned}
\tilde{\mathbf{x}}_{t+1}+\hat{\mathbf{x}}_{t+1} & \approx f\left(\hat{\mathbf{x}}_{t}, \mathbf{u}_{t}, 0\right)+F_{t} \tilde{\mathbf{x}}_{t}+Q_{t} \mathbf{w}_{t} \\
\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1} & \approx F_{t} \tilde{\mathbf{x}}_{t}+Q_{t} \mathbf{w}_{t}
\end{aligned}
$$

- Motion model pdf with $\mathbf{w}_{t} \sim \mathcal{N}(0, W)$ and $W_{t}:=Q_{t} W Q_{t}^{\top}$:

$$
p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \approx
$$

$$
\frac{1}{\sqrt{(2 \pi)^{d_{x}} \operatorname{det}\left(W_{t}\right)}} \exp \left(-\frac{1}{2}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)^{\top} W_{t}^{-1}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)\right)
$$

$$
\log p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) \approx
$$

$$
-\frac{1}{2} \log \left((2 \pi)^{d_{x}} \operatorname{det}\left(W_{t}\right)\right)-\frac{1}{2}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)^{\top} W_{t}^{-1}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)
$$

Observation Model Linearization

- Observation model linearization around state $\hat{\mathbf{x}}_{t}$ and noise 0 :

$$
\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right) \approx h\left(\hat{\mathbf{x}}_{t}, 0\right)+H_{t}\left(\mathbf{x}_{t}-\hat{\mathbf{x}}_{t}\right)+R_{t} \mathbf{v}_{t}
$$

- Observation model Jacobians:

$$
H_{t}=\frac{d h}{d \mathbf{x}}\left(\hat{\mathbf{x}}_{t}, 0\right) \quad R_{t}=\frac{d h}{d \mathbf{v}}\left(\hat{\mathbf{x}}_{t}, 0\right)
$$

- Let $\tilde{\mathbf{x}}_{t}:=\mathbf{x}_{t}-\hat{\mathbf{x}}_{t}$ and $\tilde{\mathbf{z}}_{t}:=\mathbf{z}_{t}-h\left(\hat{\mathbf{x}}_{t}, 0\right)$:

$$
\tilde{\mathbf{z}}_{t}=H_{t} \tilde{\mathbf{x}}_{t}+R_{t} \mathbf{v}_{t}
$$

- Observation model pdf with $\mathbf{v}_{t} \sim \mathcal{N}(0, V)$ and $V_{t}:=R_{t} V R_{t}^{\top}$:

$$
\begin{array}{r}
p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) \approx \frac{1}{\sqrt{(2 \pi)^{d_{z}} \operatorname{det}\left(V_{t}\right)}} \exp \left(-\frac{1}{2}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)^{\top} V_{t}^{-1}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)\right) \\
\log p_{h}\left(\mathbf{z}_{t} \mid \mathbf{x}_{t}\right) \approx-\frac{1}{2} \log \left((2 \pi)^{d_{z}} \operatorname{det}\left(V_{t}\right)\right)-\frac{1}{2}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)^{\top} V_{t}^{-1}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)
\end{array}
$$

Descent Direction from Linearized MAP Problem

- Linearized MAP problem is a least-squares problem:

$$
\min _{\tilde{\mathbf{x}}_{0: T}}\left\{\left\|\Sigma_{0}^{-1 / 2} \tilde{\mathbf{x}}_{0}\right\|_{2}^{2}+\sum_{t=0}^{T}\left\|V_{t}^{-1 / 2}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|W_{t}^{-1 / 2}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2}\right\}
$$

- Using that $\left\|\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}-\binom{\mathbf{y}_{1}}{\mathbf{y}_{2}}\right\|_{2}^{2}=\left\|\mathbf{x}_{1}-\mathbf{y}_{1}\right\|_{2}^{2}+\left\|\mathbf{x}_{2}-\mathbf{y}_{2}\right\|_{2}^{2}$ for $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}$, $\mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}$, rewrite the least-squares cost in matrix notation:

$$
\begin{aligned}
& \left\|\Sigma_{0}^{-1 / 2} \tilde{\mathbf{x}}_{0}\right\|_{2}^{2}+\sum_{t=0}^{T}\left\|V_{t}^{-1 / 2}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|W_{t}^{-1 / 2}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2} \\
& \quad=\left\|\Sigma_{0}^{-1 / 2} \tilde{\mathbf{x}}_{0}\right\|^{2}+\left\|\left[\begin{array}{c}
V_{0}^{-1 / 2}\left(\tilde{\mathbf{z}}_{0}-H_{0} \tilde{\mathbf{x}}_{0}\right) \\
\vdots \\
V_{T}^{-1 / 2}\left(\tilde{\mathbf{z}}_{T}-H_{T} \tilde{\mathbf{x}}_{T}\right)
\end{array}\right]\right\|_{2}^{2}\left\|\left[\begin{array}{c}
W_{0}^{-1 / 2}\left(\boldsymbol{\eta}_{1}+\tilde{\mathbf{x}}_{1}-F_{0} \tilde{\mathbf{x}}_{0}\right) \\
\vdots \\
W_{T-1}^{-1 / 2}\left(\boldsymbol{\eta}_{T}+\tilde{\mathbf{x}}_{T}-F_{T-1} \tilde{\mathbf{x}}_{T-1}\right)
\end{array}\right]\right\|_{2}^{2}
\end{aligned}
$$

Descent Direction from Linearized MAP Problem

- Using that $\left\|\binom{\mathbf{x}_{1}}{\mathbf{x}_{2}}-\binom{\mathbf{y}_{1}}{\mathbf{y}_{2}}\right\|_{2}^{2}=\left\|\mathbf{x}_{1}-\mathbf{y}_{1}\right\|_{2}^{2}+\left\|\mathbf{x}_{2}-\mathbf{y}_{2}\right\|_{2}^{2}$ for $\mathbf{x}_{1}, \mathbf{y}_{1} \in \mathbb{R}^{d_{1}}$, $\mathbf{x}_{2}, \mathbf{y}_{2} \in \mathbb{R}^{d_{2}}$, rewrite the least-squares cost in matrix notation:

$$
\begin{aligned}
& \left\|\Sigma_{0}^{-1 / 2} \tilde{\mathbf{x}}_{0}\right\|_{2}^{2}+\sum_{t=0}^{T}\left\|V_{t}^{-1 / 2}\left(\tilde{\mathbf{z}}_{t}-H_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2}+\sum_{t=0}^{T-1}\left\|W_{t}^{-1 / 2}\left(\tilde{\mathbf{x}}_{t+1}+\boldsymbol{\eta}_{t+1}-F_{t} \tilde{\mathbf{x}}_{t}\right)\right\|_{2}^{2} \\
& \quad=\left\|\Sigma_{0}^{-1 / 2} \tilde{\mathbf{x}}_{0}\right\|^{2}+\left\|\left[\begin{array}{llll}
V_{0}^{-1 / 2} H_{0} & & \\
& \ddots & \\
& & \\
& V_{T}^{-1 / 2} H_{T}
\end{array}\right]\left(\begin{array}{c}
\tilde{\mathbf{x}}_{0} \\
\vdots \\
\tilde{\mathbf{x}}_{T}
\end{array}\right)-\left[\begin{array}{c}
V_{0}^{-1 / 2} \tilde{\mathbf{z}}_{0} \\
\vdots \\
V_{T}^{-1 / 2} \tilde{\mathbf{z}}_{T}
\end{array}\right]\right\|_{2}^{2} \\
& \quad\left\|\left[\begin{array}{cccc}
W_{0}^{-1 / 2} F_{0} & -W_{0}^{-1 / 2} & & \\
& W_{1}^{-1 / 2} F_{1} & \ddots & \\
& & \ddots & -W_{T-1}^{-1 / 2} \\
& & & W_{T-1}^{-1 / 2} F_{T-1}
\end{array}\right]\left(\begin{array}{c}
\tilde{\mathbf{x}}_{0} \\
\vdots \\
\tilde{\mathbf{x}}_{T}
\end{array}\right)-\left[\begin{array}{c}
W_{0}^{-1 / 2} \eta_{1} \\
\vdots \\
W_{T-1}^{-1 / 2} \eta_{T}
\end{array}\right]\right\|_{2}^{2}
\end{aligned}
$$

Descent Direction from Linearized MAP Problem

Descent Direction from Linearized MAP Problem

- Obtain a descent direction $\tilde{\mathbf{x}}_{0: T}$ from the linearized MAP problem:

$$
\min _{\tilde{\mathbf{x}}_{0: T}}\left\|J \tilde{\mathbf{x}}_{0: T}-\mathbf{b}\right\|_{2}^{2}
$$

- Setting the gradient to zero leads to the normal equations:

$$
J^{\top} J \tilde{\mathbf{x}}_{0: T}=J^{\top} \mathbf{b}
$$

- The Jacobian matrix J is sparse
$-J^{\top} J$ is the info matrix of the Gaussian distribution of $\tilde{\mathbf{x}}_{0: T} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}$
- The normal equations can be solved via:
- Cholesky factorization of $J^{\top} J$
- QR factorization of J
- QR factorization is a more efficient and robust way to solve the normal equations because it avoids computing $J^{\top} J$, which is slow and squares the condition number of J

Descent Direction from Linearized MAP Problem

- Number of variables: n
- Number of measurement constraints: m
- QR factorization: $J=Q\left[\begin{array}{c}R \\ 0\end{array}\right] \in \mathbb{R}^{m \times n}$
- $R \in \mathbb{R}^{n \times n}$ is the upper-triangular square root information matrix

$$
R^{\top} R=J^{\top} J
$$

- $Q \in \mathbb{R}^{m \times m}$ is an orthogonal matrix: $Q^{\top} Q=I$
- Descent direction via QR factorization:

$$
\begin{aligned}
\left\|J \tilde{\mathbf{x}}_{0: T}-\mathbf{b}\right\|_{2}^{2} & =\left\|Q\left[\begin{array}{l}
R \\
0
\end{array}\right] \tilde{\mathbf{x}}_{0: T}-\mathbf{b}\right\|_{2}^{2}=\left\|Q^{\top} Q\left[\begin{array}{c}
R \\
0
\end{array}\right] \tilde{\mathbf{x}}_{0: T}-Q^{\top} \mathbf{b}\right\|_{2}^{2} \\
& =\left\|\left[\begin{array}{c}
R \\
0
\end{array}\right] \tilde{\mathbf{x}}_{0: T}-\left[\begin{array}{c}
\mathbf{b}_{1}^{\prime} \\
\mathbf{b}_{2}^{\prime}
\end{array}\right]\right\|_{2}^{2}=\left\|R \tilde{\mathbf{x}}_{0: T}-\mathbf{b}_{1}^{\prime}\right\|_{2}^{2}+\underbrace{\left\|\mathbf{b}_{2}^{\prime}\right\|_{2}^{2}}_{\text {residual }}
\end{aligned}
$$

- Since R is upper-triangular, back-substitution can be used to compute $\tilde{\mathbf{x}}_{0: T}$

Outline

Probability Theory Review

Probabilistic Formulation of SLAM

Bayesian Filtering

Markov Assumptions

- Motion model: given $\mathbf{x}_{t}, \mathbf{u}_{t}$, the state \mathbf{x}_{t+1} is independent of the history $\mathbf{x}_{0: t-1}, \mathbf{z}_{0: t-1}, \mathbf{u}_{0: t-1}$:

$$
\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)
$$

- Observation model: given \mathbf{x}_{t}, the observation \mathbf{z}_{t} is independent of the history $\mathbf{x}_{0: t-1}, \mathbf{z}_{0: t-1}, \mathbf{u}_{0: t-1}$:

$$
\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right) \sim p_{h}\left(\cdot \mid \mathbf{x}_{t}\right)
$$

Bayes Filter

- Bayes filter: a probabilistic inference technique for estimating the state \mathbf{x}_{t} of a dynamical system by combining evidence from control inputs \mathbf{u}_{t} and observations \mathbf{z}_{t} using the Markov assumptions, conditional probability, total probability, and Bayes rule
- The Bayes filter keeps track of:
- Predicted pdf: $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right):=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$
- Updated pdf: $p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right):=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t+1}, \mathbf{u}_{0: t}\right)$
- Special cases of the Bayes filter:
- Particle filter
- Kalman filter
- Forward algorithm for Hidden Markov Models

Bayes Filter Prediction and Update Steps

- Starting with a prior pdf $p_{t \mid t}\left(\mathbf{x}_{t}\right)$, the Bayes filter uses a prediction step to obtain a predicted pdf $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)$ by incorporating information about the motion model p_{f} and input \mathbf{u}_{t} and an update step to obtain an updated pdf $p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)$ by incorporating information about the observation model p_{h} and observation \mathbf{z}_{t+1}
- Prediction step: given a prior pdf $p_{t \mid t}$ of \mathbf{x}_{t} and control input \mathbf{u}_{t}, use the motion model p_{f} to compute the predicted pdf $p_{t+1 \mid t}$ of \mathbf{x}_{t+1} :

$$
p_{t+1 \mid t}(\mathbf{x})=\int p_{f}\left(\mathbf{x} \mid \mathbf{s}, \mathbf{u}_{t}\right) p_{t \mid t}(\mathbf{s}) d \mathbf{s}
$$

- Update step: given a predicted pdf $p_{t+1 \mid t}$ of \mathbf{x}_{t+1} and measurement \mathbf{z}_{t+1}, use the observation model p_{h} to obtain the updated pdf $p_{t+1 \mid t+1}$ of \mathbf{x}_{t+1} :

$$
p_{t+1 \mid t+1}(\mathbf{x})=\frac{p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}\right) p_{t+1 \mid t}(\mathbf{x})}{\int p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{s}\right) p_{t+1 \mid t}(\mathbf{s}) d \mathbf{s}}
$$

Bayes Filter Illustration

$$
p_{| | 1}(x):=p\left(x_{1} \mid z_{0: 1}, u_{0}\right)
$$

Bayes Filter Derivation

$$
\begin{aligned}
& p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)= p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t+1}, \mathbf{u}_{0: t}\right) \\
& \quad \begin{array}{l}
\text { Bayes }
\end{array} \frac{1}{\eta_{t+1}} p\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) \\
& \xlongequal[\text { assumption }]{\text { Markov }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) \\
& \xlongequal[\text { probability }]{\text { Total }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p\left(\mathbf{x}_{t+1}, \mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) d \mathbf{x}_{t} \\
& \xlongequal[\text { probability }]{\text { Conditional }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}, \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) d \mathbf{x}_{t} \\
& \xlongequal[\text { assumption }]{\text { Markov }} \frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right) d \mathbf{x}_{t} \\
&=\frac{1}{\eta_{t+1}} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right) \int p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) p_{t \mid t}\left(\mathbf{x}_{t}\right) d \mathbf{x}_{t}
\end{aligned}
$$

- Normalization constant: $\eta_{t+1}=p\left(\mathbf{z}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$

Bayes Filter

- Motion model: $\mathbf{x}_{t+1}=f\left(\mathbf{x}_{t}, \mathbf{u}_{t}, \mathbf{w}_{t}\right) \sim p_{f}\left(\cdot \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)$
- Observation model: $\mathbf{z}_{t}=h\left(\mathbf{x}_{t}, \mathbf{v}_{t}\right) \sim p_{h}\left(\cdot \mid \mathbf{x}_{t}\right)$
- Bayes filter: recursive computation of $p\left(\mathbf{x}_{T} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ that tracks:
- Updated pdf: $p_{t \mid t}\left(\mathbf{x}_{t}\right):=p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right)$
- Predicted pdf: $p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right):=p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$
$p_{t+1 \mid t+1}\left(\mathbf{x}_{t+1}\right)=\overbrace{\underbrace{\frac{1}{p\left(\mathbf{z}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)}}_{\text {Update }} p_{h}\left(\mathbf{z}_{t+1} \mid \mathbf{x}_{t+1}\right)}^{\frac{1}{\eta_{t+1}}} \overbrace{\int p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right) p_{t \mid t}\left(\mathbf{x}_{t}\right) d \mathbf{x}_{t}}^{\text {Predict: } p_{t+1 \mid t}\left(\mathbf{x}_{t+1}\right)}$

Bayes Smoother

- Bayes smoother: recursive computation of $p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ for all $t \in\{0, \ldots, T\}$ instead of only the most recent state \mathbf{x}_{T}
- Smoothed pdf: $p_{t \mid T}\left(\mathbf{x}_{t}\right):=p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)$ for $t \in\{0, \ldots, T\}$
- Forward pass: compute $p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t+1}, \mathbf{u}_{0: t}\right)$ and $p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)$ for $t=0, \ldots, T$ via the Bayes filter
- Backward pass: for $t=T-1, \ldots, 0$ compute:

$$
\begin{aligned}
& p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) \xlongequal[\text { Probability }]{\text { Total }} \int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) d \mathbf{x}_{t+1} \\
& \xlongequal[\text { Assumption }]{\text { Markov }} \int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t+1}, \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right) p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right) d \mathbf{x}_{t+1} \\
& \xlongequal[\text { Rule }]{\text { Bayes }} \underbrace{p\left(\mathbf{x}_{t} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t-1}\right)}_{\text {forward pass }} \int[\overbrace{\underbrace{\text { motion model }}_{\text {forward pass }}}^{\frac{p_{f}\left(\mathbf{x}_{t+1} \mid \mathbf{x}_{t}, \mathbf{u}_{t}\right)}{p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: t}, \mathbf{u}_{0: t}\right)} p\left(\mathbf{x}_{t+1} \mid \mathbf{z}_{0: T}, \mathbf{u}_{0: T-1}\right)}
\end{aligned}
$$

