
ECE276A: Sensing and Estimation in Robotics
Final Exam Practice Problems

Problem 1

Consider a camera with position p = [1, 1, 0]T , roll 0◦, pitch 0◦, yaw 45◦, focal length f = 0.2 m,
image center (cu, cv) = (160.5, 120.5) pixels, scaling (su, sv) = (10, 10) pixels/m, and skew-factor
st = 0 pixels/m. Suppose that the camera observes a point m = [2, 1, 2]⊤. What are the pixel
coordinates of m assuming a noise-free perspective projection?

Reminders

� The rotation from the camera frame to the optical frame is given by oRr :=

0 −1 0
0 0 −1
1 0 0


Problem 2

Assume that we have obtained T measurement pairs (xt, yt) from the linear model:

yt = θ1xt + θ2, t = 1, . . . , T (1)

Derive estimates of the parameters θ1 and θ2 such that the following error is minimized (least
squares estimate):

E(θ1, θ2) =
T∑
t=1

(yt − θ1xt − θ2)
2 (2)

(a) Define y := [y1, . . . , yT ]
T and θ := [θ1, θ2]

T . Show that the set of equations (1) can written
in matrix form as:

y = Aθ

for a suitably defined matrix A

(b) Write the error function in matrix form in terms of y, A, and θ

(c) Compute the gradient of the matrix form error function and solve the least squares estimate
of the parameters θ by finding the point where the gradient is zero

Problem 3

Inspired by the recent success of deep learning, you use a neural network with one layer to approx-
imate the motion model of your robot:

xt+1 = σ(axt + but) + η

where a, b ∈ R are the (known) parameters that your neural network learned, η ∼ N (0, 1) is a
Gaussian motion noise, and σ(x) := (1 + e−x)−1 is the logistic sigmoid function. You guess that
your robot is located at position µ0 = 1 and place a Gaussian distribution with covariance 2 on
your guess. You apply control input u0 = 2 to your robot and use the extended and unscented
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Kalman filters to predict the robot motion. Compute the mean µEKF and covariance ΣEKF

of the EKF after the single prediction step and compare those to the mean µUKF and
covariance ΣUKF of the UKF. Your answer should only involve numbers, the function σ, and
the constants a, b.

Reminders

� To approximate the distribution of a random vector s = g(y) for known function g and d-
dimensional random variable y ∼ N (µ,Σ), the unscented Kalman filter chooses mean and
covariance weights:

v(0) < 1, v(i) =
1− v(0)

2d
, i = 1, . . . , 2d

w(0) ≥ v(0), w(i) =
1− v(0)

2d
, i = 1, . . . , 2d

and uses the following sigma points:

y(0) = µ, y(i) = µ±
√

d

1− v(0)

[√
Σ
]
i
, i = 1, . . . , d.

A common choice of weights is v(0) = 0 and w(0) = 2.

Problem 4

You are using a robot equipped with a camera to localize a chair in your room. The robot is

located at position p0 = [−1, 1, 0]⊤ with orientation R0 =

√3/2 1/2 0

−1/2
√
3/2 0

0 0 1

. In other words,

p0 and R0 specify the position and orientation of the robot frame of reference at time t = 0 with
respect to the world frame. Assume that the frames of reference of the robot and the camera

coincide. Your camera is calibrated and has an intrinsic calibration matrix K =

[
1 0 100
0 1 100

]
. You

are guessing that your chair is located at µ0 = [1, 1, 0]⊤ and place a Gaussian distribution with
identity covariance on your guess. You rotate your robot 30◦ counter-clockwise while translating
it by p∆ = 1

2 [
√
3 − 1,

√
3 + 1, 0]⊤. In other words, p∆ and R∆ := Rz(30

◦) specify the position
and orientation of the robot frame of reference at time t = 1 with respect to the robot frame of
reference and time t = 0. You run your chair-detection algorithm on the image received at the new
robot pose and detect the chair at pixel location z = [100, 100]⊤. You know that your algorithm
reports detections perturbed by Gaussian noise with zero mean and identity covariance. Use this
measurement and the extended Kalman filter to update your prior guess about the chair’s position.
Compute the updated mean µ and covariance Σ of the chair position.

Reminders:

� The pixel coordinates of a point m ∈ R3 observed by a camera with position p ∈ R3,
orientation R ∈ SO(3), and intrinsic parameters K ∈ R2×3 are:

z = Kπ(oRrR
⊤(m− p)) ∈ R2
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where oRr =

0 −1 0
0 0 −1
1 0 0

 and π(x) := 1
x3
x ∈ R3

� A rotation of θ radians around the z-axis can be represented by a rotation matrix:

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


� The a posteriori covariance of the update step of the Kalman filter is

Σt+1|t+1 = Σt+1|t − Σt+1|tH
⊤(HΣt+1|tH

⊤ + V )−1HΣt+1|t

Problem 5

Suppose that the pose of a moving robot with respect to the world frame is given by the following
function of time t:

T (t) =


cos tπ

3 0 − sin tπ
3 t

0 1 0 0
sin tπ

3 0 cos tπ
3 2t

0 0 0 1

 ∈ SE(3)

1. Find the axis-angle representations of the robot orientation at time t = 1.

2. Find the quaternion representations of the robot orientation at time t = 1 and of the inverse
of this orientation.

3. Compute the linear and the angular velocity of the robot with respect to the robot frame and
with respect to the world frame at time t = 1.

4. Let pW = (9, 0, 0) be a point with coordinates specified in the world frame. Compute the
coordinates pR of the point pW in the robot frame at time t = 1.

Problem 6

Let T ∈ SE(3) be the pose of a camera in the world frame. In other words, T specifies a transfor-
mation from the camera optical frame to the world frame. Suppose that the camera is calibrated
so that K = I ∈ R3×3. Let m ∈ R4 be the homogeneous world frame coordinates of a landmark
observed by the camera. Consider a camera observation model based on a spherical perspective pro-
jection function so that the homogeneous coordinates of the projection of m in the optical frame
are:

z = πs
(
T−1m

)
∈ R3 πs(q) :=

1

∥q∥2
q ∈ R4.

Determine the Jacobian J ∈ R3×6 of the pixel observation z ∈ R3 with respect to the six degrees
of freedom of the camera pose T ∈ SE(3).

3



Problem 7

Consider a system with an unknown state x ∈ R. The system is equipped with a sensor, whose
measurements zt ∈ R will be used to estimate x. Suppose that the observation model describing
the sensor is:

zt = vt
√
x

where vt is a multiplicative measurement noise, which follows a Gaussian distribution N (0, 1) with
zero mean and variance 1. Assume also that the prior distribution of x is Inverse Gamma with
shape α > 0 and scale β > 0.

1. Derive a closed-form expression for the update step of the Bayes filter applied to this system

2. What is the distribution of x given measurements z0, . . . , zt?

Reminders:

� The normal distribution with mean µ and variance σ2 has pdf p(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
for x ∈ (−∞,∞).

� The inverse gamma distribution with shape α > 0 and scale β > 0 has pdf p(x) = βα

Γ(α)x
−α−1 exp

(
−β

x

)
for x ∈ (0,∞).

� The gamma function is defined as Γ(z) :=
∫∞
0 xz−1e−xdx and if z is a positive integer, then

Γ(z) = (z − 1)!.

Problem 8

Complete each of the following statements with one sentence, possibly containing mathematical
expressions.

1. Gaussian Näıve Bayes models the joint distribution p(y,x) of an example x ∈ Rd and its label
y ∈ {1, . . . ,K} as:

2. The space of 3× 3 skew-symmetric matrices is defined as:

3. Let (x, y, z) ∈ R3 be a point in the optical frame of a monocular camera. The 3D-to-2D
perspective projection operation transforms (x, y, z) to:

4. The prediction step of the Bayes filter is:

5. Consider a joint Gaussian distribution of the form:(
x
z

)
∼ N

((
µ
η

)
,

[
Σ ΣH⊤

HΣ HΣH⊤ +V

])
.

The distribution of x conditioned on z is:
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Problem 9

Consider a rigid body with position p ∈ R3 and orientation R ∈ SO(3) in the world frame. Let
m ∈ R3 be the body-frame coordinates of a point attached to the rigid body. Suppose that the body
is undergoing pure rotation (no translation) with constant angular velocity ω ∈ R3 (body-frame
coordinates).

1. What are the coordinates of the point m in the world frame at time t?

2. Suppose that a range sensor with position a ∈ R3 and quaternion orientation q in the world
frame is measuring the squared distance z(t) to the point m at time t without any noise.
What is the observation model for this range sensor? Simplify the relationship between z(t)
and m as much as possible before moving on to the next part.

3. Determine the derivative of the range measurement z(t) with respect to time t.

4. Determine the derivative of the range measurement z(t) at time t with respect to the three
degrees of freedom θ ∈ R3 of the initial body orientation R = exp(θ̂).

Problem 10

Consider a Kalman filter applied to a discrete-time system with motion model:

xt+1 =
1

2
xt + wt, wt ∼ N (0, a2), (3)

and observation model:
zt = xt + vt, vt ∼ N (0, b2). (4)

Suppose that the noise terms wt and vt are independent of each other, independent across time,
and independent of the system state xt.

1. What is the predicted state variance σ2
t+1|t at time t+ 1 as a function of the predicted state

variance σ2
t|t−1 at time t?

2. Denote the function above by σ2
t+1|t = f(σ2

t|t−1). Does the function f have a fixed point? In

other words, what is the solution σ2
∞ to the equation σ2

∞ = f(σ2
∞)?

3. What is the Kalman gain corresponding to σ2
∞ when a = b? What is the Kalman gain

corresponding to σ2
∞ when a = 2b? Based on these computations, describe intuitively the

behavior of the Kalman filter when the motion noise increases relative to the measurement
noise.
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