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Abstract — This paper describes a Kalman filter for theThe set of quaterniornH is a superset of the complex num-
real-time estimation of a rigid body orientation from meabersC and the elements can be used to describe spatial rota-
surements of acceleration, angular velocity and magnetions similarly to the way complex numbers describe planar
field strength. A quaternion representation of the orientaetations. Quaternions offer a singularity-free desavipt
tion is computationally effective and avoids problems wiitas opposed to Euler angles) and rotations are computed
singularities. The nonlinear relationship between esteda more effectively compared to rotation matrices. A descrip-
orientation and expected measurement prevent the usagéaf of quaternion algebra can be found at [1].

a classical Kalman filter. This pl’oblem is solved by an Un- The Unscented Kalman filter (UKF) is an extension of

scented Kalman filter which allows nonlinear process artﬁe classical Kalman filter to nonlinear process and mea-
measurement models and is more accurate and less cogtlyement models. The main difference to the well known
than the common Extended Kalman filter. Several extgfiztended Kalman Filter (EKF) is that the UKF approxi-

sions to the original Unscented Kalman filter are necessapyates the Gaussian probability distribution by a set of sam-
to treat the inherent properties of unit quaternions. Resulp|e points whereas the EKF linearises the (nonlinear) model
with simulated and measured data are discussed. equations. This leads to results which are usually both more

accurate (because the original equations are used) and less

Keywords: Tracking, filtering, estimation, Quaternionscostly to compute (because no Jacobi matrices need to be
Unscented Kalman Filter. calculated) [2].

1 Introduction

The determination of a rigid body orientation from vari2  Filter Concept

ous types of measurements is one of the basic problems o_]i_h - dhere | : | and
all object tracking applications. Yet the algorithmic solu e filter concept presented here is quite general and ap-

tions to this problem still vary widely in terms of accuracyE"C&fble to a W'dﬁl range gf p(;]ssrllble sensor sdystems. I:s
stability and computational effectiveness. This artiate d eyt (taature? ?hre EFSt;?tek wit E N ietup uste N an early
scribes an approach which combines the benefits of pppPtotype of the bluglrak user tracking system (now re-

different key ingredients, quaternions and the Unscent _red to asiracker), Wh'_Ch |s_7under development at_ the
Kalman filter. Silicon Lab of Bonn University. The system comprises

, . . . sensor groups for acceleration, angular rate and magnetic
The body's orientation is represented by a quatefeld strength, each consisting of three sensors at orthog-
nion ¢, which is a number with four real component gt 9 . oY
(40, 01,42, g5) € R onal angles — a common setup for sourceless orientation
TS ' measurements. The output of this system is a set of spatial
vectors for these quantities, measured with respect to the

= i j k with 1 . : .
q,2 qo.;r Ch;LJ?_z J: % b local (tracker) reference frame. Given this data, the filter
F=f=k=ik=-1 and (2) computes an estimate of the system state vector.
iFjFE ®3)

.. . . . 1Research activities in filter and tracking system are furigettie Fed-
i,j and k are three different square roots of #h&ginary eral Ministry of Education and Research (BMBF, Germany) undatract

unitieg similar to the i known from the complex numbersnumber 01 IR A04 D.
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2.1 State vector |5k | is the total angular velocity if/ sec. The correspond-

The state vector of the Kalman filter combines the es-N quaternion is given by:
timates of the orientatiop and the angular velocity: axN . . Jaa
oo = [eon () casn ()] an

x=<€> 4)

This notation separates the components of the quaternion

It has seven components, four fram(qo, 1, g2,¢3) and into a scalar partg) and a vectorial partqi, g2, g3), il-
three fromw (w,, wy,w.). ¢ is aunit quaternion, meaning lustrating the similarity between a quaternion and the an-

that it is of size one: gle/axis notation of the orientationa is used to calculate
the new orientationy;; from the previous one by multi-
lal| = ¢%+ﬁ+ﬁ+% (5) plying:
Hy = {qeH]||ql|=1} (6) Te+1 = qrqa 12)

This is denoted by € H;. The constraint on the size sim-This quaternion multiplicationis performed according to
plifies the handling and deprives the quaternion of one deguations/(1) to_(3). It is different from a simple product
gree of freedom. The remaining three degrees of freedahthe corresponding components [1]. The resulting rota-
are sufficient to provide a representation for any spatial ron ¢, ; is equivalent to the rotatioga followed by the
tation (actually there are two, becausand—q cause iden- rotationgy.

tical rotations). Another side effect of the constraintiatt ~ Equations|(8) through (12) define the process matigl

the first four components of the state vector are no longieir the undisturbed state vector. It has already been noted
independent of each other. This causes a conflict with tikeat the state vector has only got six degrees of freedom.
concept underlying a Kalman filter and the way how noisgherefore we choose to describe the influence of the pro-
is treated. cess noise with a six-dimensional noise veatgr Its first
three components (denoted k) affect the orientation,

2.2 Process model the last three components () affect the angular velocity:
The process model predicts the evolution of the state

vectorz and describes the influence of the random variable | Wy
(process nois)ewP In the generalisation of the classical W W
Kalman filter, the process model equation is given by

(13)

Ww

Despite the values of;, change with every time step, the

1 = Ay, wi) () subscriptk is omitted in the;- andw- components for mat-
A is an arbitrary function of: andw. The process noise ters of readability. The covariancgof the random variable
w does neither have to be additive, nor does it have to hadS @ measure of the rate at which the uncertainty of the
the same dimension as the state veetoEquation (7) of- System state estimate increases with time. In the simplest
fers a wide range of possible models and is the basis of #S€, thev,,-part can be assumed to be additive, meaning
process model of the filter described here. The simpldBgt the uncertainty in the angular velocity increases fer e
process model, a static orientation, is only a crude approRmple at a rate of T@s per time interval. Similarlysv,
mation to the expected behaviour of the tracked object (eS@Uses an increase of the uncertainty in the orientation (de
a human head). Thus the second simplest one, motion wli§es per time interval). Sincg, is a three dimensional

constant angular velocity, is chosen. noise vector, it can not simply be added to the four compo-
nent quaternion. It has to be converted into a unit quater-
Wit1 = Wk- (8) nion.

Experimental results show this choice is sufficient for our L€t the random variable, follow a normal distribution

application to provide a robust prediction, but more elap$th covariancey, (a 3,3-matrix) and mean 0. The vector
rate models can easily be implemented. w4 can be regarded asratation vector This means that

Given &, of the previous state estimate and the lengtfi represents a random rotation with the
At of the time interval, the differential rotation during this

interval has the angle: Oy = Wy and the (14)

. L Wy
angle: aa = || - At andthe 9) axis: & = TRl (15)

- q

‘. L W
axis: €A = |G| (10) The quaternion representatigp of this rotation is:
2please note that the filter described here limits itself te pitacking Oty L. Oy

applications and does thus not consider any control inputs. Qw = [COS ( ) ; Ew Sl <—)} (16)
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This noise quaterniom,, is the equivalent to the noise vec-o introduce the identification of three dimensional vestor
tor w,. It can be applied to the original quaternion compowith so calledvector quaternionsThe vector
nentq, of the state vector estimate, resulting idiaturbed

. 9z
uaterniongy: .
q . _ = Gy (25)
qk = qk Gw (17) g,
The respective term for the disturbed angular velocity pagll be identified with the corresponding vector quaternion
Wy, is given by: S
pIBgVERDY 6= (0,19::95.9:) = (0,9) (26)

and vice versa. A vector quaternion is a quaternion with a

Combining both equations, the disturbed state vector is: scalar value of zero. There is no restriction on the size®f th
_ other components. Using this identity, the transformation

Tn = ( 4k ) — ( Qk Qw ) (19) ofg‘andgfrom the global coordinate system to the tracker

W Gk + W coordinate systenﬂ, b7) can be written as:
. . —1
The full process model equations can be obtained by replac- g = agaq; (27)
ing the components of the undisturbed vector in equations V o= q.bg’ (28)

(12) and|(8) with those of the disturbed state vector: g,9',b andd’ are vector quaternions. All multiplications

W+l = Gk4a =  QrGwda (20) are quaternion multiplications. These equations are typi-
* o~ v cal examples of the computation of spatial rotations using

Gpp1 = W = pt W (21)  quaternions [1]. The measurement models for acceleration

L . and magnetic field strength are hence:
This implies that we choose to apply the process nbese

fore the process model. Finally, the process madgl is Hy : Zace =0 + Vace (29)
given by Hj: 2mag =0+ vmag (30)

Qe dwdA Vace aNdV,,, are the measurement noise variables of the
Tp1 = A(Tg, Wi) = ( B b ) (22) acceleration and magnetic field. Note that all three func-
w . .
tions H,, H, and H3 are functions of the state vectoy,

with ¢, from equations (14) to (16) angh as defined in €ven though/f; uses only thev;-component and{, and
(9) to (12). Hj use only they,-component.

23 Measurement Model 2.4 Problematic Properties

Although the described models are reasonably simple,

The measurement modél relates the meas.uremenEhere are two major problems which prevent an implemen-
value z to the value of the state vectorand describes the tation of these models with a classical Kalman filter:

influence of a random variable v (measurement noise) ONp ., it problem is thatH, and Hs are nonlinear

the m.eas_urgd Valllje' The gc.anerahsed form of the Moggl, ions of the state vectar), (more precisely, they,-
equation is (in analogy to (7)): component). Even thoug§l of equation[(27) is a linear
function of g (the rotation could also be expressed with a

2 = H(wk, ve) (23) " rotation matrix), there is generally no matdx which ful-

. . . fills
Since the tracking system produces three (_jlfferent typég J=Ha or J = Hoa (31)
of measurements, three modéfs.. H; are defined corre- ~
sponding to the measurements, Zacc, Zmag). The an- This means thay’ is not a linear function of theotation .
gular velocitys is already part of the state vector, leading The second problem is the mismatch of state vector di-

to the simplest possible model: mension and its number of degrees of freedom. This leads
to a non-additive, six-dimensional process noise thata@iann
H,: Zrot = Or + Vrot (24) be described by the process equation of the classical linear
Kalman filter.
Vrot IS the measurement noise of the angular velocity. The solution to these problems is the usage of an exten-

Let g be the vector of the gravitational field ("down”) andsion to the classical Kalman filter, namely the Unscented
b be the vector of the magnetic field ("north”). The expectedalman filter. This filter bases on the generalised equa-
measurements of these fields are given by the transforrtians (7) and[(23), allows nonlinear measurement and pro-
tion of ¢ andb to the tracker coordinate system. In ordecess models and offers the necessary flexibility in dealing
to express this notion in terms of quaternions, we first hawéth the random variables v and w.
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3 The Unscented Kalman Filter has a mean of zero but a covariance(pf If we interpret
From an abstract point of view, the Kalman filter OpLhe sigma points as a set dBturbedsFate vectors, then
erates on a probability distribution in the n-dimension&duation((33) describes how these disturbed state vectors

state vector space. This distribution is characterisedspy #€ build from the se{)V;}. In our specific case (unit

first two statistical moments: mean and covariance. THgaternion in state vector) we already know a simple ad-

process and measurement models transform this distrigifion of the random variable to the state vector is not pos-

tion. They project the distribution ahead in time or int§iPle because the dimensions do not match. Instead, the

the m-dimensional measurement vector space. New val§&ima points have to be calculated in the way described for

for mean and covariance are computed to parameterise {ffe Process noise, similar to equation (19).

transformed distributions. Finally, the residual betwten

predicted measurement and the measured value is used to X = ( qufl_fg ) (34)

compute an update of the probability distribution. The ex- ot W

tend of this update is determined by the Kalman gédina ¢, is the quaternion corresponding to the first three com-

m,n-matrix whose components depend on the relative s@genents obV;, &y, denotes the angular velocity vector built

of the covariances of estimate and measureméntper- from the remaining three componenis,.; and,_; are

forms two functions: it weighs the update and transformgart of the previous estimatg,_.

the residual from measurement space to state vector spacerhis treatment of the noise has some effect on the di-
Both the classical and the Unscented Kalman filter follomensionality of the vectors and covariances involved. The

this underlying scheme, yet they do so in a different manneectors)V; are six-dimensional, because they have the same

A detailed discussion of the differences and similariti@s ¢ dimension as the process noise vector. Their covari&jce

be found in [2] and lies beyond the focus of this paper. is hence a 6,6-matrix. The sigma poirts, on the other

. . hand, are state vectors with a quaternion component and are

3.1 Sigma Points therefore seven dimensional. Equation (34) performs the
In the beginning of every UKF recursion the previougransition between the six and the seven dimensional set.

estimates of the state vectof_; and its covariancé’,_;  This transition bases on the conversion of a rotation vec-

are known. The n,n-matri¥;,_, is transformed into a settor representation to a quaternion representation, as give

{X;} of 2n sigmapoints, a set of state vectors which ham equations (14) to (16).

the same mean and covariancefas;. This is done by  As described in section 2.2, we choose to apply the pro-

computing a matrixS with the property cess noise (with covarian@@) beforethe process model.
. Equations (34) and (19) show that similar steps occur dur-
Py =575 (32) ing the transformation of the state vector covariae

Si lled " " o b o s into the sigma points and in the application of the process
Is called "square root” of;,, because I, IS just noise to an undisturbed state vector. Therefore we can com-

a number (a 1,1-matrix), then S equals the usydl._1. pine hoth steps and include the process noise into the set of
SinceP; 1 is a covariance matrix, it happens to be symmet

igma points by adding to P, beforethe sigma points are
ric and positive definite. This allows us to us€holesky cglculapt)ed Thi)é is der%))ted ]tjy gmap
Decompositiorto computeS. The n column vectors of '

S are multiplied by++/2n and form the se{)V;}. This S = /Po_1+0Q and (35)

set ha2n elements, which are distributed around the mean NI )
value zero (positive and the square root cancel each other) Wiien = columngdy/2n - (Pe1+@Q)). (36)

with the covariance?’; ;. We can shift the mean to the de-z more elaborate treatment of noise using augmented state
sired value (in this casg,.,) by adding it to every element, yactors is described in [2].

thus creating the set of sigma points: ) . )
3.3 Transformations of the sigma points

After the sigma points X;} are obtained, the process

The original mean valug,_, can be included into the set.mOdeI is used to project each point ahead in time, result-

of sigma points (with an arbitrary weighting factey with- ing in a different set of state vecto{3; }.

Xy =Zp_1 + Wi (33)

out affecting the mean value or the covariance. The effect V; = A(X;,0) (37)
of k on the filter performance is summarisedlin [2]. It is
omitted here for matters of clarity. Note that no additional noise vector is being considered in
. . . the equation above (denoted by the second argument being
3.2 Quaternion Sigma Points 0), because the influence of the process noise is already re-

Note that the elements dWV;} are similar to the pro- presented in the distribution of the sigma points. Equation
cess noise random vecter of equation[(13), which also (37) is equal to the left part of the process model equations
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(20) and(21), withx; replacing the disturbed state vectoB8.4 Computation of the mean

—~

Tk-1- S If the state vector is element of a vector space (which is
The set{);} sa[n_pl_es the probability distribution of theyhe case in the original concepts of Kalman filter and UKF,
a priori estimate.z, is defined as the mean value of thigyt not in our application), the mean value is simply the

distribution andp,” is the covariance. Sections 3.4 and 3.gym over all elements of the set divided by the number of
describe how these values are computed from the set. addendsgn). This is called thévarycentricmean.

7y = mear{):}) (38) o m
P, = covariancé{);}) (39) y:%zyi 47)
i=1

Usually the a priori estimate is computed when a ne
measurement occurs. A measurement update step req
both the a priori estimate and an estimaje of the mea-

i can be used for the set of measurement vedtarg and
Yo the angular velocity component ¢3; }.

surement. The s€t);} is thus transformed further by the L2
measurement modél, resulting in a se{ Z; } of projected z; = 5 Z Z; (48)
measurement vectors. s

Z; = H(X;,0) (40) The orientation component dfy;} is more difficult, be-

cause orientations are periodic. In other words, they are
The second argument is zero, since zero is the expectativembers of a homogenous Riemannian manifold (the four
value of the random variable v. The mean value of the gditnensional unit sphere) but not of a vector space. Equa-

is the expected measurement vectpr tion (47) does not yield correct results, as can be seen
from an example with two rotations around the x-axis:
z, = meart{Z;}) (41) The calculation with{—178°,180°} gives1°, but the ex-
P,., = covariancé{Zz;}) (42) pected result is-179°. A different argument is that the

mean of two unit quaternions has to be a unit quater-
In a classical Kalman filter, the measurement prediction igon, too. The result of equation (47) with the quaternions
simply z;;, = H#; . The UKF uses the mean value of the(0,0,0,—1), (0,0, 0, 1)} does obviously not fulfill this re-

projected distribution instead, so that generally guirement.
Our approach to this problem uses the intrinsic gradient
2, # H(Z,). (43) descent algorithm described in [3]. The key ingredient is

_ o ~the definition of a new metric which describes the distance
The explanation for this is, that the mean of the project@fitween two elements. For orientations, we use the angle
distribution is generally unequal to the projected mean gfof the rotation which turns one orientation into the other.

the original distribution. Both are identical H () is linear  Gjven two quaterniong;, g2, the rotationy;» which fulfills
- like in the classical Kalman filter. Thi@novationy, is

the difference between the actual measuremgrdnd its g2 = q12 q1 (49)
predicted value, .
is simply given by
Vi =2 — 2y, (44) .

qi2 =q2 q; - (50)
Its expected covarianc®,, is the sum of the projected
state vector covariance (the uncertainty in the measurem@§an be calculated from the scalar partof, see((11).
caused by the uncertainty in the state vector prediciion)
and the measurement noise covariaRqghe additional un-
certainty induced by the measurement process).

6 =2 - arccos(qw) (52)

Starting with an arbitrary orientation, the estimate of the
mean orientatiorg is iterated (iteration steps are denoted
by the indext). In each step, the so calledror vectors

Thea posterioriestimatei;, is finally computed by adding '€ computed for every set element. An error veetos

the a priori estimate to the innovation multiplied by th&1€ rotation vector corresponding to the relative rotakien
Kalman gainKk, tween the set element and the estimated mean of the last

iterationg,. The quaternion representatienof ¢; is

PVV:PZZ+R (45)

7 = v + K . 46
Tp a’,‘k EVE ( ) e; — qi qt_l SO that (52)

These transformations are illustrated in figure 1. qi €; G- (53)
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In other words:e; rotates the mean into the set elemegnt 3.5.1 A Priori State Vector Covariance

The barycentric mea#iof all error vectors The first matrix which has to be calculated from a set of

on sigma points is the a priori state vector covariafte
L1 S
&= Z €; (54) PP (61)

] o ] P_ is a 6,6-matrix and is the covariance of the &t}
is a measure of the deviation between the estimated mgghhe same sense in whidh._; is the covariance of the

and the real mean orientatior® is a rotation vector that \,ntransformed seitt; }. The corresponding mean value of
points in the direction of the real mean. The correspondifgis set is the a priori state vector

quaterniore can hence be used to calculate a better estimate L
for the next iteration step: T Iy (62)

_ (55) In analogy to(59) we can replace the tefA} — 7] by a
Q1= €0 six-dimensional vectorV,. The prime sign denotes the fact

Since¢ is used to adjust the estimated mean from iteratidf@t this vector relates to the transformed{get}.

to iteration it is called theadjustment vector Its value is (X, — 7] > W, (63)

zero if g, is equal to the real mean of the set of orienta- ) . i
tions. The size of the adjustment vector can consequenitlying this notation, equation (57) becomes

be used to stop the iteration once a satisfactory precision 1 & .
is achieved. Note that the result of equation (54) does not Pr=— Z Wi W, (64)
. - 2n 4
suffer from the periodicity problem i, is close to the real i=1
mean. - o Similar toW;, W/ has a rotation vector componef and
q= lim g, (56)  an angular velocity vector componedy,
The error vectors; are introduced solely for the iterative W — T (65)
mean finding algorithm. Interestingly, the dgt} of the Dy

final |'§erat|on finds more use during the computation of thﬁw, is the (standard vectorial) difference of the angular ve-
covariance (see there).

L locity components oy; andz . , denoted b
Switching back and forth between error vectors and their y P v o y

guaternion representation could be avoided by replaciag th Oy =& — @ (66)
sum of equations (54) by a series of qua}ermon mUIt'pI'F?’ / is a representation of the rotation which turns the ori-
tions. Yet even though the above described method ml%ﬂﬂ’ . o ) .

. o ntation part oz, into ;. The corresponding quaternion
seem complex or confusing, it is expected to be computa- ; L
. . ; . 7y Of this rotation is
tionally more effective since the sum of vectors is cheape‘f"
to compute than a series of quaternion multiplications. wr=¢q; G (67)

The starting value of the iterations is arbitrary, but it de= . . . . .
termines the number of iterations needed to reach the ‘%omparmg this equation to equation (52), we find that

: - . . . . as already calculated in form of the error vecipdurin
sired precision. It is therefore feasible to include thevpre y P 9

. i . .~ the last iteration of the mean finding algorithm.
ous state vector estimatg _; into the set of sigma points g4
(as mentioned above) and use its quaternion as a start vaBie.2 Measurement Estimate Covariance

3.5 Computation of the Covariance The uncertaintyP,, of the predicted measuremegyf
' originates in the uncertaint®, of the predicted state vec-

Let {X;} be a set obn (vector space) elements with &q; |t js the covariance of the sgg;}. Since the measure-

meanz. The covariance of this set is given by ment vectors are elements of a vector space, their covari-
L 2 ance can be calculated similarly to (57):
pP= 2_2[;@ —7|[&; — =T (57) L 2n
"4 P, = o [Z2i — 2 |2 — Z;]T (68)
n

The term[X; — 7] is the difference between the sigma point -

and the mean of the distribution. {£Y;} is the untrans- AS Stated in equation (45), the covarianieg, of the inno-

formed set of equation (33), there are the correspondendédion is the sum of.. and the measurement noise covari-
anceR. P,, is not specific to the UKF, even though it is

T < 1 and (58) not computed explicitly in the classical Kalman filter.
X -7 < W, and (59) Unscented KF: P, = P, +R (69)
P < DP_,. (60) classical KF: HP_H" +R

52


Phil Dauwalder
52


3.5.3 Cross correlation matrix

The cross correlation matrik,., is used in the UKF for
the calculation of the Kalman gaif;, (see section 36).

3.

4,

It relates the noise in the state vector to the noise in the

measurement and is computed from the &Y%} and{ 2, }
according to

B 1 2n , o
P, = m i=1[Wi][Zi — 2k ] (70)
1 2n
= g2 i wllEi-0 (0

i=1

The latter equation can be used if the element®gf are

elements of a vector space. In our application the term;

The process model() transforms{X;} into {); }.

The a priori estimate, is computed as the mean of
the transformed sigma poir{y/; }.

5. The set{);} is transformed into the six-dimensional

6.

in the first brackets would produce invalid results, conse-

quentlyW, is used.P,, corresponds to the matrik, H”
of the classical Kalman filter.

3.6 Kalman Gain and Update Equations
In the UKF, the Kalman gailk’, is given by

Ky =P,. P} (72)

Note that the corresponding equation of the classical

Kalman filter is very similar:

Ky =P HT (HPfHT + R)™ (73)

The update equation of tlzeposterioriestimate is identical 10

for both filters:

&y = &, + Ky (74)

The covariance update equation is also equivalent in bojh
filters, as can easily be shown with the correspondences de-

scribed above.

P, = P; —KyP, K]

(I- Ky H)P;

(75)
(76)

1>

9.

Equations/(74) and (75) are the final steps of an UKF filter

cycle. The updated values, and P, become the basis of

the next cycle. This concludes the description of the key

steps of an UKF for the orientation estimation problem.

3.7 Summary

The filter cycle of a Quaternion-Based Unscented

Kalman Filter comprises the following steps:

1. The sum of previous estimate error covariate
and process noise covarian@eis transformed into a
set{W;} of 2n six-dimensional vectors. This set is
distributed around zero with the covarianBe_; + Q.

2. The previous state estimatg_; is applied to{W;},
resulting in the sefX; } of 2n seven-dimensional state
vectors (sigma points).

53

set{W;} by firstremovingthe mean vectog, from
each element and then converting the quaternion part
into a rotation vector.

The a priori process covariané¥ is computed from
{W!}. This concludes the time update step ("predic-
tion”).

One of the three measurement modéis H, or H;
is used to project the sigma poin{);} into the
three-dimensional measurement space, yielding the set

{Zi}.

. The mean of Z;} is computed, giving the measure-

ment estimate;, . This is compared to the actually
measured valug;, their difference beingy, theinno-
vation

The innovation covarianceé’,, is determined by
adding the measurement noiReo the covariancé’, ,
of the set{ Z;}.

. The cross correlation matri,, is computed from the

sets{W/} and{Z;}.

The Kalman gairk}, is first computed fronP,, and

P, and then used to calculate the a posteriori estimate
zp and its estimate error covariané&, which con-
cludes the measurement update step ("correction”).

Figure 1: Schematic view of the described filter.
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path follows the simulated points closely. The covariances
of the filter were chosen equal to the corresponding covari-
ances of the simulated measurement noise. Like expected,
a higher measurement noise causes a higher reconstruction
error. Despite both the type of simulation and the specific
parameter set for this example are designed to suit the filter
the results demonstrate the general validity of the desdrib
filter concept.

Operation of the filter with real measurements shows
1 the desired performance as well. A set of filter parame-
2007 ters which produces smooth, responsive and stable results

1 ’ is easily found. Comparisons with other filter concepts in
s 25 25 terms of performance, stability or accuracy have not been

angle X made.

30°+

_ _ _ 5 Conclusion
Figure 2: Comparison between simulated path (crosses) ion-based d Kal iiter for th
and reconstructed path (line). A quaternion-based Unscented Kalman Filter for the es-

timation of a rigid body attitude has been described. The
problems caused by the inherent properties of orientations
4 Results were discussed and solutions to these problems presented.

Figure| 2 shows the result of a simulated random wafken though the original UKF can already handle nonlin-
(crosses) in comparison to the path reconstructed by the §8f Models and noise of arbitrary dimension, some exten-

scribed filter (black line). The simulated path is producedl®n Were necessary to deal with state vectors which are
by integrating a disturbed angular velocity vector not elements of a vector space and whose components are

subject to constraints. These extensions were made for the

Wy example application of a sourceless head tracking system.

Dim = ( > (77) The described filter shows the desired performance on both
simulated and measured data.

Wy
0

Here, the components af are interpreted aBuler angles References
denoting a rotation around the global x-axis followed by ﬁ]
rotation around the global y-axigi;., is disturbed by two
random variables, v, which have a zero mean gaussian
distribution with the varianc€);,,/f. f is the frequency
with which the simulated path is sampled (here: 50 Hz).
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