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Abstract

This article provides a comprehensive description of FastSLAM, a new family of algorithms for the
simultaneous localization and mapping problem, which specifically address hard data association
problems. The algorithm uses a particle filter for sampling robot paths, and extended Kalman filters
for representing maps acquired by the vehicle. This article presents two variants of this algorithm, the
original algorithm along with a more recent variant that provides improved performance in certain
operating regimes. In addition to a mathematical derivation of the new algorithm, we present a proof
of convergence and experimental results on its performance on real-world data.

1 Introduction

The simultaneous localization and mapping (SLAM) problem has received tremendous attention in the
robotics literature. The SLAM problem involves a moving vehicle attempting to recover a spatial map
of its environment, while simultaneously estimating its own pose (location and orientation) relative to
the map. SLAM problems arises in the navigation of mobile robots through unknown environments for
which no accurate map is available. Since robot motion is subject to error, the mapping problem nec-
essarily induces a robot localization problem—hence the name SLAM. Applications of SLAM include
indoors [8, 68], outdoors [3], underwater [73], underground [69, 62], and planetary exploration [36, 71].
The number of robots that use maps for navigation is long [7, 10, 13, 32, 33].

Mapping problems come at varying degrees of difficulty. In the most basic case, the vehicle has
access to a global positioning system (GPS) which provides it with accurate pose information. The
problem of acquiring a map with known robot poses [49, 66] is significantly easier than the general
SLAM problem. When GPS is unavailable, as is the case indoors, underground, or underwater, the
vehicle will inevitably accrue pose errors during mapping. Such pose errors have the displeasing side-
effect that they induce systematic errors in the map. SLAM addresses this very problem of acquiring a
map without an external source of vehicle pose information.

The dominant approach to the SLAM problem was introduced in a seminal paper by Smith, Self, and
Cheeseman [64]. It was first developed into an implemented system by Moutarlier and Chatila [50, 51].
This approach uses an extended Kalman filter (EKF) for estimating the posterior distribution over the map
and the robot pose. The EKF approach represents the vehicle’s internal map (and the robot pose estimate)
by a high-dimensional Gaussian, over all features in the map and the vehicle pose. The off-diagonal
elements in the covariance matrix of this multivariate Gaussian represent the correlations between errors
in the vehicle pose and the features in the map. As a result, the EKF can accommodate the correlated
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nature of errors in the map. The EKF approach has been the basis of many recent developments in the
field [17, 34].

One limitation of the EKF approach is computational in nature. Maintaining a multivariate Gaussian
requires time quadratic in the number of features in the map. This limitation has been recognized, and
a number of more efficient approaches has been proposed [3, 11, 25, 35, 56, 57, 70]. The common
idea underlying most of these approaches is to decompose the problem of building one large map into a
collection of smaller maps, which can be updated more efficiently. Depending on the nature of the local
maps and the mechanics of tracing dependencies among them, the resulting savings range from a much
reduced constant factor to implementations that require constant update time [35, 56, 70].

A second and more important limitation of the EKF approach is related to the data association prob-
lem, also known as the correspondence problem [4, 14]. The data association problem arises when
different features in the environment look alike. In such cases, different data association hypotheses
induce multiple, distinct looking maps. Gaussians cannot represent such multi-modal distributions. The
standard approach in the SLAM literature is to restrict the inference to the most plausible of these map
hypotheses, incorporating only the most likely data association given the robot’s current map. The de-
termination of the most likely data association may be performed on a per-measurement basis [17], or it
may incorporate multiple measurements at a time [3, 53]. The latter approach is more robust; however,
both approaches tend to fail catastrophically when the alleged data association is incorrect. Alternative
approaches exist that interleave data association decisions with map building in a way that enables them
to revise past data association decisions, such as the RANSAC algorithm [22], the expectation maxi-
mization approach [63, 68], or approaches based on MCMC techniques [1]. However, such techniques
cannot be executed in real-time and are therefore of lesser relevance to the problems studied here.

This article describes a family of algorithms called FastSLAM [27, 46]. FastSLAM is a SLAM
algorithm that integrates particle filters [18, 37] and extended Kalman filters. It exploits a structural
property of the SLAM problem first pointed out by Murphy [52]: feature estimates are conditional in-
dependent given the robot path. More specifically, correlations in the uncertainty among different map
features arise only through robot pose uncertainty. If the robot was told its correct path, the errors in its
feature estimates would be independent of each other. This observation allows us to define a factored
representation of the posterior over poses and maps. FastSLAM implements such a factored represen-
tation, using particle filters for estimating the robot path. Conditioned on these particles the individual
map errors are independent, hence the mapping problem can be factored into separate problems, one for
each feature in the map. FastSLAM estimates these feature locations by EKFs. The basic algorithm can
be implemented in time logarithmic in the number of landmarks, using efficient tree representations of
the map [45]. Hence, FastSLAM offers computational advantages over plain EKF implementations and
many of its descendants.

The key advantage of FastSLAM , however, is the fact that data association decisions can be made
on a per-particle basis, similar to multi-hypothesis tracking algorithms [60]. As a result, the filter main-
tains posteriors over multiple data associations, not just the most likely one. As shown empirically, this
feature makes FastSLAM significantly more robust to data association problems than algorithms based
on maximum likelihood data association. A final, advantage of FastSLAM over EKF-style approaches
arises from the fact that particle filters can cope with non-linear robot motion models, whereas EKF-style
techniques approximate such models via linear functions.

This article describes two instantiations of the FastSLAM algorithm, referred here to FastSLAM 1.0
and 2.0. FastSLAM 1.0 is the original FastSLAM algorithm [45], which is conceptually simple and easy
to implement. In certain situations, however, the particle filter component of FastSLAM 1.0 generates
samples inefficiently. The algorithm FastSLAM 2.0 [45] overcomes this problem through an improved
proposal distribution, but at the expense of an implementation that is significantly more involved (as is
the mathematical derivation). For both algorithms, we provide techniques for estimating data association
in SLAM [44, 55]. The derivation of all algorithms is carried out using probabilistic notation; however,
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the resulting expressions will be provided using linear algebraic equations familiar from the filtering
literature. We offer a proof of convergence in expectation for FastSLAM 2.0 in linear-Gaussian SLAM.
Further, we provide extensive experimental results using real-world data. We show empirically that the
FastSLAM 2.0 outperforms EKFs in situations plagued with hard data association problems, thanks to
its ability to pursue multiple data association hypotheses simultaneously. We also provide experimental
results for learning maps with as many as 106 features, which is orders of magnitude larger than the
largest maps ever built with EKFs.

2 The SLAM Problem

The SLAM problem is defined as the problem of recovering a map and a robot pose (location and orien-
tation) from data acquired by a mobile robot. The robot gathers information about nearby landmarks, and
it also measures its own motion. Both types of measurements are subject to noise. They are compiled
into a probabilistic estimate of the map along with the robot’s momentary pose (location and orientation).

Figure 1 illustrates the SLAM problem graphically. Panel (a) shows the uncertainty accrued along
a robot’s path, along with the uncertainty in the location of all features seen thus far. As this graphic
illustrates, the robot’s pose uncertainty increases over time, as does its estimate on the absolute location
of individual features. A key characteristic of the SLAM problem is highlighted in Figure 1b: Here the
robot senses a previously observed landmark whose position is relatively well known. This observation
provides the robot with information about its momentary position. It also increases its knowledge of other
feature locations in the map, which leads to a reduction of map uncertainty as indicated in Figure 1b.
Notice that while in principle, the robot could also improve its estimate of past poses, it is common in
SLAM no to consider past poses so as to keep the amount of computation independent on the length of
the robot’s history.

To describe SLAM more formally, let us denote the map by Θ. The map consists of a collection of
features, each of which will be denoted θn. The total number of stationary features will be denoted N .
The robot pose is defined at st, where t is a discrete time index. Poses of robots operating on the plane
typically comprise the robot’s two-dimensional Cartesian coordinates, along with its angular orientation.
The sequence st = s1, s2, . . . , st denotes the path of the robot up to time t. Throughout this article, we
will use the superscript st to denote sequence of variables from time 1 up to time t.

To acquire a map, the robot can sense. Sensor measurements convey information about the range,
distance, appearance etc. of nearby features. This is illustrated in Figure 2, in which a robot measures the
range and bearing to a nearby landmark. Without loss of generality, we assume that the robot observes
exactly one landmark at a time. The measurement at time t, denoted zt, may be the range and bearing
of a nearby feature. The assumption of observing a single feature at a time is adopted for convenience;
multiple feature sightings are easily processed sequentially. Highly restrictive, however, is an assumption
that we will initially adopt but eventually drop in later sections of this paper, namely that the robot can
determine the identify of each feature. For each measurement zt, nt specifies the identity of the observed
feature. The range of the correspondence variable nt is the finite set {1, . . . , N}.

At the core of our SLAM algorithm is a generative model of sensor measurements, that is, a proba-
bilistic law that specifies the process according to which measurements are generated. This model will
be referred to as measurement model and is of the following form:

p(zt | st, θnt
, nt) = g(θnt

, st) + εt (1)

The measurement model is conditioned on the robot pose st, the landmark identity nt, and the specific
feature θnt

that is being observed. It is governed by a (deterministic) function g distorted by noise. The
noise at time t is modeled by the random variable εt, which will be assumed to be normally distributed
with mean zero and covariance Rt. The Gaussian noise assumption is usually just an approximation,
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Figure 1: The SLAM problem: (a) A robot navigates through unknown terrain; as it progresses, its own pose uncertainty
increases, as indicated by the shaded ellipses along the robot’s path, and so does the uncertainty in the map (red ellipses). (b)
Loop closure: Revisiting a previously seen landmark leads to a reduction in the uncertainty of the momentary pose and all
landmarks. In online SLAM algorithms, this reduction is usually only applied to the momentary pose.

(a)

(b)

but one that tends to work well across a range of sensors [64, 17]. The measurement function g is
generally nonlinear in its arguments. A common example is that of range and bearing measurement, as
discussed above. The range (distance) and bearing (angle) to a landmarks are easily calculated through
simple trigonometric functions that are non-linear in the coordinate variables of the robot and the sensed
feature.

A second source of information for solving SLAM problems are the controls of the vehicle. Controls
are denoted ut, and refer to the collective motor commands carried out in the time interval [t− 1, t). The
probabilistic law governing the evolution of poses is commonly referred to as kinematic motion model,
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Figure 2: Vehicle observing the range and bearing to a nearby landmark.

and will be assumed to be of the following form:

p(st | ut, st−1) = h(ut, st−1) + δt (2)

As this expression suggests, the pose at time t is a function h of the robot’s pose one time step earlier,
distorted by Gaussian noise. The latter is captured by the random variable δt, whose mean is zero and
whose covariance will be denoted by Pt. As was in the case of the measurement model, the function h

is usually nonlinear in its argument.
The goal of SLAM is the recovery of the map from sensor measurements zt and controls ut. Most

SLAM algorithms are instances of Bayes filters [29], and as such recover at any instant in time a proba-
bility distribution over the map Θ and the momentary robot pose st:

p(st, Θ | zt, ut, nt) (3)

If this probability is calculated recursively from earlier probabilities of the same kind, the estimation
algorithm is a filter. Most SLAM algorithms are instantiations of the Bayes filter, which computes this
posterior from the one calculated one time step earlier (see [65] for a derivation):

p(st, Θ | zt, ut, nt)

= η p(zt | st, θnt
, nt)

∫

p(st | st−1, ut) p(st−1, Θ | zt−1, ut−1, nt−1) dst−1 (4)

Here η is a normalization constant (which is equivalent to p(zt | zt−1, ut, nt) in this equation). The
normalizer η does not depend on any of the variables over which the posterior is being computed.
Throughout this article, we will adopt the common notation of using the letter η for generic normal-
ization constants, regardless of their actual values.

The Bayes filter (4) is at the core of many contemporary SLAM algorithms. In cases where both
g and h are linear, (4) is equivalent to the well-known Kalman filter [31, 40]. Extended Kalman filters
(EKFs) allow for nonlinear functions g and h, but approximate those using a linear function, obtained
through a first degree Taylor expansion. Taylor expansions are used by the seminal EKF algorithm
for SLAM [64]. Other, less explored options for linearization include the unscented filter [30, 72] and
moments matching [42].

At first glance, one might consider that the posterior (3) captures all relevant information, hence is
should the “gold standard” for robotic SLAM. However, there are other, more elaborate distributions
that can be estimated in SLAM. The algorithm FastSLAM, in particular, estimates a posterior over robot
paths, not just momentary poses, along with the map:

p(st, Θ | zt, ut, nt) (5)
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At first glance, estimating the entire path posterior might appear to be a questionable choice. As the path
length increases, so does the space over which the posterior (5) is defined. Such a property seems to be
at odds with the real-time execution of a filter. However, as we will see below, specific types of filters
calculate posteriors over paths just as efficiently as over momentary poses. This alone, however, would
barely serve as a motivation to prefer path posteriors over pose posteriors. The true motivation behind
(5) arises from the fact that it can be decomposed into a product of much smaller terms—a topic that will
be discussed in a separate section below.

The filter for calculating the posterior (5) is as follows:

p(st, Θ | nt, zt, ut) = η p(zt | st, θnt
, nt) p(st | st−1, ut) p(st−1, Θ | nt−1, zt−1, ut−1) (6)

This update equation differs from the standard Bayes filter (4) in the absence of an integral sign: in
particular, the pose at time t − 1, st−1, is not integrated out. Its derivation is mostly analogous to that of
the regular Bayes filter (4), as provided in [65]. Bayes rule enables us to transform the left-hand side of
(6) into the following product:

p(st, Θ | nt, zt, ut) = η p(zt | st, Θ, nt, zt−1, ut) p(st, Θ | nt, zt−1, ut) (7)

We now exploit the fact that the measurement zt depends only on three variables: the robot pose st at the
time the measurement was taken and the identity nt and location θnt

of the observed feature. Put into
equations, we have

p(zt | st, Θ, nt, zt−1, ut) = p(zt | st, θnt
, nt) (8)

Furthermore, the probability p(st, Θ | nt, zt−1, ut) in (7) can be factored as follows:

p(st, Θ | nt, zt−1, ut) = p(st | st−1, Θ, nt, zt−1, ut) p(st−1, Θ | nt, zt−1, ut) (9)

Both terms can greatly be simplified, by dropping variables that convey no information for the specific
probability. In particular, knowledge of st−1 and ut are sufficient to predict st; all other variables in
the first term on the right hand side of (9) carry no additional information and can therefore be omitted.
Similarly, nt and ut carry no information about the posterior over st−1 and Θ. Hence, we can re-write
(9) as follows:

p(st, Θ | nt, zt−1, ut) = p(st | st−1, ut) p(st−1, Θ | nt−1, zt−1, ut−1) (10)

As the reader may easily verify, substituting this equation and (8) back into (7) yields the desired filter
(6). This filter, and the posterior it represents, form the core of all FastSLAM algorithms.

3 Factoring the SLAM Posterior

A key mathematical insight pertains to the fact that the posterior (5) possess an important characteristic.
This characteristic was first reported in [52] and later exploited in [2, 47] and various FastSLAM 2.0
papers [45, 44, 55]. It also was used in an earlier mapping algorithms [67] but was not made explicit at
that time.

The insight is that the SLAM posterior can be written in the factored form give by the following
product:

p(st, Θ | nt, zt, ut) = p(st | nt, zt, ut)
N∏

n=1

p(θn | st, nt, zt) (11)

This factorization states that the calculation of the posterior over paths and maps can be decomposed into
N + 1 recursive estimators, an estimator over robot paths, p(st | nt, zt, ut), and N separate estimators
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s1 s2 st

u2 ut

θ2

θ1

z1

z2

s3

u3

z3

zt

. . .

Figure 3: The SLAM problem: The robot moves from pose s1 through a sequence of controls, u1, u2, . . .. As it moves, it
measures nearby landmarks. At time t = 1, it observes landmark θ1 out of two landmarks, {θ1, θ2}. The measurement is
denoted z1 (range and bearing). At time t = 1, it observes the other landmark, θ2, and at time t = 3, it observes θ1 again. The
SLAM problem is concerned with estimating the locations of the landmarks and the robot’s path from the controls ut and the
measurements zt. The gray shading illustrates a conditional independence relation.

over feature locations p(θn | st, nt, zt) conditioned on the path estimate, one for each n = 1, . . . , N .
The product of these probabilities represent the desired posterior in a factored way. This factored repre-
sentation is exact, not just an approximation. It is a generic property of the SLAM problem.

To illustrate the correctness of this factorization, Figure 3 depicts the data acquisition process graphi-
cally, in form of a dynamic Bayesian network [24]. As this graph suggests, each measurement z1, . . . , zt

is a functions of the position of the corresponding feature, along with the robot pose at the time the mea-
surement was taken. Knowledge of the robot path “d-separates” [58] the individual feature estimation
problems and renders them independent of each other. Knowledge of the exact location of one feature
will therefore tell us nothing about the locations of other features.

The same observation is easily derived mathematically. The stated independence is given by the
following product form:

p(Θ | st, nt, zt) =
N∏

n=1

p(θn | st, nt, zt) (12)

Notice that all probabilities are conditioned on the robot path st. Our derivation of (12) requires the
distinction of two possible cases, depending on whether or not the feature θn was observed in the most
recent measurement. In particular, if nt 6= n, the most recent measurement zt has no effect on the
posterior, and neither has the robot pose st or the correspondence nt. Thus, we obtain:

p(θn | st, nt, zt) = p(θn | st−1, nt−1, zt−1) (13)

If nt = n, that is, if θn = θnt
was observed by the most recent measurement zt, the situation calls for

applying Bayes rule, followed by some standard simplifications:

p(θnt
| st, nt, zt) =

p(zt | θnt
, st, nt, zt−1) p(θnt

| st, nt, zt−1)

p(zt | st, nt, zt−1)

=
p(zt | st, θnt

, nt) p(θnt
| st−1, nt−1, zt−1)

p(zt | st, nt, zt−1)
(14)

This gives us the following expression for the probability p(θnt
| st−1, nt−1, zt−1):

p(θnt
| st−1, nt−1, zt−1) =

p(θnt
| st, nt, zt) p(zt | st, nt, zt−1)

p(zt | st, θnt
, nt)

(15)

7



The proof of the correctness of (12) is now carried out by mathematical induction. Let us assume that
the posterior at time t − 1 is already factored:

p(Θ | st−1, nt−1, zt−1) =
N∏

n=1

p(θn | st−1, nt−1, zt−1) (16)

This statement is trivially true at t = 1, since in the beginning the robot has no knowledge about any
feature, and hence all estimates are independent. At time t, the posterior is of the following form:

p(Θ | st, nt, zt) =
p(zt | Θ, st, nt, zt−1) p(Θ | st, nt, zt−1)

p(zt | st, nt, zt−1)

=
p(zt | st, θnt

, nt) p(Θ | st−1, nt−1, zt−1)

p(zt | st, nt, zt−1)
(17)

Plugging in our inductive hypothesis (16) gives us:

p(Θ | st, nt, zt)

=
p(zt | st, θnt

, nt)

p(zt | st, nt, zt−1)

N∏

n=1

p(θn | st−1, nt−1, zt−1)

=
p(zt | st, θnt

, nt)

p(zt | st, nt, zt−1)
p(θnt

| st−1, nt−1, zt−1)
︸ ︷︷ ︸

Eq. (15)

∏

n6=nt

p(θn | st−1, nt−1, zt−1)
︸ ︷︷ ︸

Eq. (13)

= p(θnt
| st, nt, zt)

∏

n6=nt

p(θn | st, nt, zt)

=
N∏

n=1

p(θn | st, nt, zt) (18)

Notice that we have substituted our Equations (13) and (15) as indicated. This shows the correctness
of Equation (12). The correctness of the main form (11) follows now directly from this result and the
following generic transformation:

p(st, Θ | nt, zt, ut) = p(st | nt, zt, ut) p(Θ | st, nt, zt, ut)

= p(st | nt, zt, ut) p(Θ | st, nt, zt)

= p(st | nt, zt, ut)
N∏

n=1

p(θn | st, nt, zt) (19)

We note that conditioning on the entire path st is indeed essential for this result. The most recent pose st

would be insufficient as conditioning variable, as dependencies may arise through previous poses This
observation provides the motivation for our choice of posterior over paths and maps (5), in place of the
much more common form stated in Equation (3).

4 FastSLAM with Known Data Association

Historically, FastSLAM 1.0 was the earliest version of the FastSLAM family of algorithms, and it is
also the easiest to implement [45]. We will therefore begin our description of FastSLAM with version
1.0, although most of the observations in this sections apply equally to FastSLAM 2.0. Both FastSLAM
algorithms exploit the factored posterior derived in the previous section. The factorial nature of the
posterior provides us with significant computational advantages over SLAM algorithms that estimate an
unstructured posterior distribution. FastSLAM exploits the factored representation by maintaining N +1
filters, one for each factor in (11). By doing so, all N + 1 filters are low dimensional.

8



Robot Pose Landmark 1

µ      Σ1      1

Landmark 2 Landmark N

µ      Σ

µ      Σ µ      Σ

µ      Σ

µ      Σ µ      Σ

µ      Σ

µ      Σ

1      1

1      1 2      2

2      2

2      2 N      N

Ν      Ν

Ν      ΝParticle M:

Particle 2:

Particle 1:

.  .  .

.  .  .

.  .  .

.

.

.

x    y θ

x    y θ

x    y θ

Figure 4: Particles in FastSLAM.

More specifically, both FastSLAM versions calculates the posterior over robot paths p(st | nt, zt, ut)
by a particle filter [18, 37], similar to previous work in mobile robot localization [23], mapping [65], and
visual tracking [28]. The particle filter has the pleasing property that the amount of computation needed
for each incremental update stays constant, regardless of the path length t. Additionally, it can cope
gracefully with non-linear robot motion models. The remaining N (conditional) posteriors over feature
locations p(θn | st, nt, zt, ut) are calculated by extended Kalman filters (EKFs). Each EKF estimates a
single landmark pose, hence it is low-dimensional. The individual EKFs are conditioned on robot paths.
Hence, each particle possesses its own set of EKFs. In total there are NM EKFs, one for each feature in
the map and one for each landmark.1

Figure 4 illustrates the structure of the M particles in FastSLAM. Put into equations, each particle is
of the form

S
[m]
t =

〈

st,[m], µ
[m]
1,t , Σ

[m]
1,t , . . . , µ

[m]
N,t, Σ

[m]
N,t

〉

(20)

The bracketed notation [m] indicates the index of the particle; st,[m] is its path estimate, and µ
[m]
n,t and

Σ
[m]
n,t are the mean and variance of the Gaussian representing the n-th feature location. Together, all these

quantities form the m-th particle S
[m]
t , of which there are a total of M in the FastSLAM posterior.

Filtering, that is, calculating the posterior at time t from the one at time t − 1 involves generating a
new particle set St from St−1, the particle set one time step earlier. This new particle set incorporates a
new control ut and a measurement zt (with associated correspondence nt). This update is performed in
the following steps:

1. Extending the path posterior by sampling new poses. FastSLAM 1.0 uses the control ut to
sample new robot pose st for each particle in St−1. More specifically, consider the m-the particle
in St−1, denoted by S

[m]
t . FastSLAM 1.0 samples the pose st in accordance with the m-th particle,

by drawing a sample according to the motion posterior

s
[m]
t ∼ p(st | s

[m]
t−1, ut) (21)

Here s
[m]
t−1 is the posterior estimate for the robot location at time t−1, residing in the m-th particle.

The resulting sample s
[m]
t is then added to a temporary set of particles, along with the path of

previous poses, st−1,[m]. This operation requires constant time per particle, independent of the
map size N . The sampling step is graphically depicted in Figure 5, which illustrates a set of pose
particles drawn from a single initial pose.

1Readers familiar with the statistical literature may want to note that both FastSLAM versions are instances of so-called
Rao-Blackwellized particle filters [19, 52], by virtue of the fact that it combines particle representations with closed-form
representations of certain marginals.
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Figure 5: Samples drawn from the probabilistic motion model.

2. Updating the observed landmark estimate. Next, FastSLAM 1.0 updates the posterior over
the landmark estimates, represented by the mean µ

[m]
n,t−1 and the covariance Σ

[m]
n,t−1. The updated

values are then added to the temporary particle set, along with the new pose.

The update depends on whether or not a landmark n was observed at time t. For n 6= nt, we
already established in Equation (13) that the posterior over the landmark remains unchanged. This
implies the simple update:

〈

µ
[m]
n,t , Σ

[m]
n,t

〉

=
〈

µ
[m]
n,t−1, Σ

[m]
n,t−1

〉

(22)

For the observed feature n = nt, the update is specified through Equation (14), restated here with
the normalizer denoted by η:

p(θnt
| st, nt, zt) = η p(zt | st, θnt

, nt) p(θnt
| st−1, nt−1, zt−1) (23)

The probability p(θnt
| st−1, nt−1, zt−1) at time t − 1 is represented by a Gaussian with mean

µ
[m]
n,t−1 and covariance Σ

[m]
n,t−1. For the new estimate at time t to also be Gaussian, FastSLAM

linearizes the perceptual model p(zt | st, θnt
, nt) in the same way as EKFs [40]. In particular,

FastSLAM approximates the measurement function g by the following first-degree Taylor expan-
sion:

g(θnt
, s

[m]
t ) ≈ g(µ

[m]
nt,t−1, s

[m]
t )

︸ ︷︷ ︸

=: ẑ
[m]
t

+ g′(s
[m]
t , µ

[m]
nt,t−1)

︸ ︷︷ ︸

=: G
[m]
t

(θnt
− µ

[m]
nt,t−1)

= ẑ
[m]
t + G

[m]
t (θnt

− µ
[m]
nt,t−1) (24)

Here the derivative g′ is taken with respect to the feature coordinates θnt
. This linear approximation

is tangent to g at s
[m]
t and µ

[m]
nt,t−1. Under this approximation, the posterior for the location of

feature nt is indeed Gaussian. The new mean and covariance are obtained using the standard EKF
measurement update [40]:

K
[m]
t = Σ

[m]
nt,t−1G

[m]
t (G

[m]T
t Σ

[m]
nt,t−1G

[m]
t + Rt)

−1

µ
[m]
nt,t

= µ
[m]
nt,t−1 + K

[m]
t (zt − ẑ

[m]
t )T

Σ
[m]
nt,t

= (I − K
[m]
t G

[m]T
t )Σ

[m]
nt,t−1 (25)
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Samples from
proposal distribution

Weighted samples

Proposal

Target

Figure 6: Samples cannot be drawn conveniently from the target target distribution (shown as a solid line). Instead, the
importance sampler draws samples from the proposal distribution (dashed line), which has a simpler form. Below, samples
drawn from the proposal distribution are drawn with lengths proportional to their importance weights..

Steps 1 and 2 are repeated M times, resulting in a temporary set of M particles.

3. Resampling. In a final step, FastSLAM resamples this set of particles, that is, FastSLAM draws
from this temporary set M particles (with replacement), which then form the new particle set,
St. The necessity to resample arises from the fact that the particles in the temporary set are not
distributed according to the desired posterior: Step 1 generates poses st only in accordance with
the most recent control ut, paying no attention to the measurement zt. Resampling is a common
technique in particle filtering to correct for such mismatches.

This situation is illustrated—for a simplified 1-D example—in Figure 6. Here the dashed line
symbolizes the proposal distribution, which is the distribution at which particles are generated, and
the solid line is the target distribution [41]. In FastSLAM, the proposal distribution does not depend
on zt, but the target distribution does. By weighing particles as shown in the bottom of this figure,
and resampling according to those weights, the resulting particle set indeed approximates the target
distribution. The weight of each sample used in the resampling step is called the importance
factor [61].

To determine importance factor of each particle, it will prove useful to calculate the actual proposal
distribution of the path particles in the temporary set. Under the assumption that the set of path
particles in St−1 is distributed according to p(st−1 | zt−1, ut−1, nt−1) (which is an asymptotically
correct approximation), path particles in the temporary set are distributed according to:

p(st,[m] | zt−1, ut, nt−1) = p(s
[m]
t | s

[m]
t−1, ut) p(st−1,[m] | zt−1, ut−1, nt−1) (26)

The factor p(s
[m]
t | s

[m]
t−1, ut) is the sampling distribution used in Equation (21).

The target distribution takes into account the measurement at time zt, along with the correspon-
dence nt:

p(st,[m] | zt, ut, nt) (27)

The resampling process accounts for the difference of the target and the proposal distribution. The
importance factor for resampling is given by the quotient of the target and the proposal distribu-
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tion [41]:

w
[m]
t =

target distribution
proposal distribution

=
p(st,[m] | zt, ut, nt)

p(st,[m] | zt−1, ut, nt−1)
(28)

= η p(zt | st,[m], zt−1, nt)

The last transformation is a direct consequence of the following transformation of the enumerator
in (28):

p(st,[m] | zt, ut, nt) = η p(zt | st,[m], zt−1, ut, nt) p(st,[m] | zt−1, ut, nt)

= η p(zt | st,[m], zt−1, nt) p(st,[m] | zt−1, ut, nt−1) (29)

To calculate the probability p(zt | st,[m], zt−1, nt) in (28), it will be necessary to transform it
further. In particular, it is equivalent to the following integration, where we once again omit
variables irrelevant to the prediction of sensor measurements:

w
[m]
t = η

∫

p(zt | θnt
, st,[m], zt−1, nt) p(θnt

| st,[m], zt−1, nt) dθnt

= η

∫

p(zt | θnt
, nt, s

[m]
t ) p(θnt

| st−1,[m], zt−1, nt−1)
︸ ︷︷ ︸

∼ N (µ
[m]
nt,t−1,Σ

[m]
nt,t−1)

dθnt
(30)

Here N (x; µ, Σ) denotes a Gaussian distribution over the variable x with mean µ and covariance
Σ. The integration in (30) involves the estimate of the observed landmark location at time t, and the
measurement model. To calculate (30) in closed form, FastSLAM employs the very same linear
approximation used in the measurement update in Step 2. In particular, the importance factor is
given by

w
[m]
t ≈ η |2πQ

[m]
t |−

1
2 exp

{

−1
2(zt − ẑ

[m]
t )T Q

[m]−1
t (zt − ẑ

[m]
t )

}

(31)

with the covariance

Q
[m]
t = G

[m]T
t Σ

[m]
n,t−1G

[m]
t + Rt (32)

This expression is the probability of the actual measurement zt under the Gaussian that results from
the convolution of the distributions in (30), exploiting our linear approximation of g. The resulting
importance weights are used to draw (with replacement) M new samples from the temporary
sample set. Through this resampling process, particles survive in proportion of their measurement
probability. Unfortunately, resampling may take time linear in the number of features N , since
entire maps may have to be duplicated when a particle is drawn more than once.

These three steps together constitute the update rule of the FastSLAM 1.0 algorithm for SLAM problems
with known data association. We note that the execution time of the update does not depend on the total
path length t. In fact, only the most recent pose s

[m]
t−1 is used in the process of generating a new particle at

time t. Consequently, past poses can safely be discarded. This has the pleasing consequence that neither
the time requirements, not the memory requirements of FastSLAM depend on t.

12



(a) (b)

Figure 7: Mismatch between proposal and posterior distributions: (a) illustrates the forward samples generated by FastSLAM
1.0, and the posterior induced by the measurement (ellipse). Diagram (b) shows the sample set after the resampling step.

5 FastSLAM 2.0: Improved Proposal Distribution

FastSLAM 2.0 [46] is largely equivalent to FastSLAM 1.0, with one important exception: Its proposal
distribution takes the measurement zt into consideration. By doing to it can avoid some important prob-
lems that can arise in FastSLAM 1.0. In particular, FastSLAM 1.0 samples poses bases on the control ut

only, and then uses the measurement zt to resample those poses. This is problematic when the accuracy
of control is low relative to the accuracy of the robot’s sensors. Such a situation is illustrated in Figure 7:
Here the proposal generates a large spectrum of samples shown in Figure 7a, but only a small subset
of these samples have high likelihood, as indicated by the ellipsoid. After resampling, only particles
within the ellipsoid “survive” with reasonably high likelihood. Clearly, it would be advantageous to take
the measurement into consideration when generating particles—which FastSLAM 1.0 fails to do. Fast-
SLAM 2.0 achieves this by sampling poses based on the measurement zt, in addition to the control ut.
Thus, as a result, FastSLAM 2.0 is less wasteful with its particle than FastSLAM 1.0. We will quantify
the effect of this change in detain in the experimental results section of this paper. Unfortunately Fast-
SLAM 2.0 is more difficult to implement than FastSLAM 1.0, and its mathematical derivation is more
involved. In the remainder of this section we will discuss the individual update steps in FastSLAM 2.0,
which parallel the corresponding steps in FastSLAM 1.0 as described in the previous section.

5.1 Extending The Path Posterior By Sampling A New Pose

In FastSLAM 2.0, the pose s
[m]
t is drawn from the posterior

s
[m]
t ∼ p(st | st−1,[m], ut, zt, nt) (33)

which differs from the proposal distribution provided in (21) in that (33) takes the measurement zt into
consideration, along with the correspondence nt. The reader may recall that st−1,[m] is the path up to
time t − 1 of the m-th particle.

The mechanism for sampling from (33) requires further analysis. First, we rewrite (33) in terms of the
‘known’ distributions, such as the measurement and motion models, and the Gaussian feature estimates
in the m-th particle.

p(st | st−1,[m], ut, zt, nt)

Bayes
=

p(zt | st, s
t−1,[m], ut, zt−1, nt) p(st | st−1,[m], ut, zt−1, nt)

p(zt | st−1,[m], ut, zt−1, nt)

= η[m] p(zt | st, s
t−1,[m], ut, zt−1, nt) p(st | st−1,[m], ut, zt−1, nt)
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Markov
= η[m] p(zt | st, s

t−1,[m], ut, zt−1, nt) p(st | s
[m]
t−1, ut)

= η[m]
∫

p(zt | θnt
, st, s

t−1,[m], ut, zt−1, nt) p(θnt
| st, s

t−1,[m], ut, zt−1, nt) dθnt

p(st | s
[m]
t−1, ut)

Markov
= η[m]

∫

p(zt | θnt
, st, nt)

︸ ︷︷ ︸

∼ N (zt;g(θnt
,st),Rt)

p(θnt
| st−1,[m], zt−1, nt−1)

︸ ︷︷ ︸

∼ N (θnt
;µ

[m]
nt,t−1,Σ

[m]
nt,t−1)

dθnt
p(st | s

[m]
t−1, ut)

︸ ︷︷ ︸

∼ N (st;h(s
[m]
t−1,ut),Pt)

(34)

This expression makes apparent that our sampling distribution is truly the convolution of two Gaussians
multiplied by a third. Unfortunately, in the general case the sampling distribution possesses no closed
form from which we could easily sample. The culprit is the function g: If it were linear, this probability
would be Gaussian, a fact that shall become more obvious below. In the general case, not even the
integral in (34) possess a closed form solution. For this reason, sampling from the probability (34) is
difficult.

This observation motivates the replacement of g by a linear approximation. As in FastSLAM 1.0, this
approximation is obtained through a first order Taylor expansion, given by the following linear function:

g(θnt
, st) ≈ ẑ

[m]
t + Gθ(θnt

− µ
[m]
nt,t−1) + Gs(st − ŝ

[m]
t ) (35)

Here we use the following abbreviations:

ẑ
[m]
t = g(µ

[m]
nt,t−1, ŝ

[m]
t ) (36)

ŝ
[m]
t = h(s

[m]
t−1, ut) (37)

The matrices Gθ and Gs are the Jacobians of g, that is, they are the derivatives of g with respect to θnt

and st, respectively, evaluated at the expected values of their arguments:

Gθ = ∇θnt
g(θnt

, st)
∣
∣
∣
st=ŝ

[m]
t

;θnt
=µ

[m]
nt,t−1

(38)

Gs = ∇st
g(θnt

, st)|st=ŝ
[m]
t

;θnt
=µ

[m]
nt,t−1

(39)

Under this approximation, the desired sampling distribution (34) is a Gaussian with the following pa-
rameters:

Σ[m]
st

=
[

GT
s Q

[m]−1
t Gs + P−1

t

]−1
(40)

µ[m]
st

= Σ[m]
st

GT
s Q

[m]−1
t (zt − ẑ

[m]
t ) + ŝ

[m]
t (41)

where the matrix Q
[m]
t is defined as follows:

Q
[m]
t = Rt + GθΣ

[m]
nt,t−1G

T
θ (42)

To see, we note that under out linear approximation the convolution theorem provides us with a closed
form for the integral term in (34):

N (zt; ẑ
[m]
t + Gsst − Gsŝ

[m]
t , Q

[m]
t ) (43)

The sampling distribution (34) is now given by the product of this normal distribution and the rightmost
term in (34), the normal N (st; ŝ

[m]
t , Pt). Written in Gaussian form, we have

p(st | st−1,[m], ut, zt, nt) = η exp
{

−y
[m]
t

}

(44)
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with

y
[m]
t = 1

2

[

(zt − ẑ
[m]
t − Gsst + Gsŝ

[m]
t )T Q

[m]−1
t (zt − ẑ

[m]
t − Gsst + Gsŝ

[m]
t )

+(st − ŝ
[m]
t )T P−1

t (st − ŝ
[m]
t )

]

(45)

This expression is obviously quadratic in our target variable st, hence p(st | st−1,[m], ut, zt, nt) is Gaus-

sian. The mean and covariance of this Gaussian are equivalent to the minimum of y
[m]
t and its curvature.

Those are identified by calculating the first and second derivatives of y
[m]
t with respect to st:

∂y
[m]
t

∂st
= −GT

s Q
[m]−1
t (zt − ẑ

[m]
t − Gsst + Gsŝ

[m]
t ) + P−1

t (st − ŝ
[m]
t )

= (GT
s Q

[m]−1
t Gs + P−1

t )st − GT
s Q

[m]−1
t (zt − ẑ

[m]
t + Gsŝ

[m]
t ) − P−1

t ŝ
[m]
t (46)

∂2y
[m]
t

∂s2
t

= GT
s Q

[m]−1
t Gs + P−1

t (47)

The covariance Σ
[m]
st of the sampling distribution is now obtained by the inverse of the second derivative

Σ[m]
st

=
[

GT
s Q

[m]−1
t Gs + P−1

t

]−1
(48)

The mean µ
[m]
st of the sample distribution is obtained by setting the first derivative (46) to zero, which

gives us:

µ[m]
st

= Σ[m]
st

[

GT
s Q

[m]−1
t (zt − ẑ

[m]
t + Gsŝ

[m]
t ) + P−1

t ŝ
[m]
t

]

= Σ[m]
st

GT
s Q

[m]−1
t (zt − ẑ

[m]
t ) + Σ[m]

st

[

GT
s Q

[m]−1
t Gs + P−1

t

]

ŝ
[m]
t

= Σ[m]
st

GT
s Q

[m]−1
t (zt − ẑ

[m]
t ) + ŝ

[m]
t (49)

This Gaussian is the approximation of the desired sampling distribution (33) in FastSLAM 2.0. Obvi-
ously, this proposal distribution is quite a bit more involved than the much simpler one for FastSLAM
1.0 in Equation (21). Its advantage will be characterized below, when we will empirically compare both
FastSLAM algorithms.

5.2 Updating The Observed Landmark Estimate

Just like FastSLAM 1.0, FastSLAM 2.0 updates the posterior over the landmark estimates based on the
measurement zt and the sampled pose s

[m]
t . The estimates at time t−1 are once again represented by the

mean µ
[m]
n,t−1 and the covariance Σ

[m]
n,t−1, and the updated estimates are the mean µ

[m]
n,t and the covariance

Σ
[m]
n,t . The nature of the update depends on whether or not a landmark n was observed at time t. For

n 6= nt, we already established in Equation (13) that the posterior over the landmark remains unchanged.
This implies that instead of updating the estimated, we merely have to copy it.

For the observed feature n = nt, the situation is more intricate. Equation (14) already specified the
posterior over observed features, here written with the particle index m:

p(θnt
| st,[m], nt, zt) = η p(zt | θnt

, s
[m]
t , nt)

︸ ︷︷ ︸

∼ N (zt;g(θnt
,s

[m]
t

),Rt)

p(θnt
| st−1,[m], zt−1, nt−1)

︸ ︷︷ ︸

∼ N (θnt
;µ

[m]
nt,t−1,Σ

[m]
nt,t−1)

(50)

As in (34), the nonlinearity of g causes this posterior to be non-Gaussian, which is at odds with Fast-
SLAM 2.0’s Gaussian representation for feature estimates. Luckily, the exact same linearization as above
provides the solution:

g(θnt
, st) ≈ ẑ

[m]
t + Gθ(θnt

− µ
[m]
nt,t−1) (51)
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(Notice that st is not a free variable here, hence we can omit the third term in (35).) This approximation
renders the probability (50) Gaussian in the target variable θnt

:

p(θnt
| st,[m], nt, zt)

= η exp
{

−1
2(zt − ẑ

[m]
t − Gθ(θnt

− µ
[m]
nt,t−1))

T R−1
t (zt − ẑ

[m]
t − Gθ(θnt

− µ
[m]
nt,t−1))

−1
2(θnt

− µ
[m]
nt,t−1)

T Σ
[m]−1
nt,t−1(θnt

− µ
[m]
nt,t−1)

}

(52)

The new mean and covariance are obtained using the standard EKF measurement update equations [29,
40], whose derivation can be found in in Appendix A.

K
[m]
t = Σ

[m]
nt,t−1G

T
θ Q

[m]−1
t (53)

µ
[m]
nt,t

= µ
[m]
nt,t−1 + K

[m]
t (zt − ẑ

[m]
t ) (54)

Σ
[m]
nt,t

= (I − K
[m]
t Gθ)Σ

[m]
nt,t−1 (55)

5.3 Calculating Importance Factors

The particles generated thus far do not yet match the desired posterior. In FastSLAM 2.0, the culprit is
the normalizer η[m] in (34), which may be different for different particles m. These differences are not
yet accounted for in the re sampling process. As in FastSLAM 1.0, the importance factor is given by the
following quotient.

w
[m]
t =

target distribution
proposal distribution

(56)

Once again, the target distribution that we would like our particles to assume is given by the path pos-
terior, p(st,[m] | zt, ut, nt). Under the (asymptotically correct) assumptions that paths in st−1,[m] were
generated according to the target distribution one time step earlier, p(st−1,[m] | zt−1, ut−1, nt−1), we
note that the proposal distribution is now given by the product

p(st−1,[m] | zt−1, ut−1, nt−1) p(s
[m]
t | st−1,[m], ut, zt, nt) (57)

The second term in this product is the pose sampling distribution (34). The importance weight is obtained
as follows:

w
[m]
t =

p(st,[m] | ut, zt, nt)

p(s
[m]
t | st−1,[m], ut, zt, nt) p(st−1,[m] | ut−1, zt−1, nt−1)

=
p(s

[m]
t | st−1,[m], ut, zt, nt) p(st−1,[m] | ut, zt, nt)

p(s
[m]
t | st−1,[m], ut, zt, nt) p(st−1,[m] | ut−1, zt−1, nt−1)

=
p(st−1,[m] | ut, zt, nt)

p(st−1,[m] | ut−1, zt−1, nt−1)

Bayes
= η

p(zt | st−1,[m], ut, zt−1, nt) p(st−1,[m] | ut, zt−1, nt)

p(st−1,[m] | ut−1, zt−1, nt−1)

Markov
= η

p(zt | st−1,[m], ut, zt−1, nt) p(st−1,[m] | ut−1, zt−1, nt−1)

p(st−1,[m] | ut−1, zt−1, nt−1)

= η p(zt | st−1,[m], ut, zt−1, nt) (58)

The reader may notice that this expression is in essence the inverse of our normalization constant η [m] in
(34). Further transformations give us the following form:

w
[m]
t
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Pose uncertainty

Figure 8: The data association problem in SLAM.

= η

∫

p(zt | st, s
t−1,[m], ut, zt−1, nt) p(st | st−1,[m], ut, zt−1, nt) dst

Markov
= η

∫

p(zt | st, s
t−1,[m], ut, zt−1, nt) p(st | s

[m]
t−1, ut) dst

= η

∫ ∫

p(zt | θnt
, st, s

t−1,[m], ut, zt−1, nt) p(θnt
| st, s

t−1,[m], ut, zt−1, nt) dθnt

p(st | s
[m]
t−1, ut) dst

Markov
= η

∫ ∫

p(zt | θnt
, st, nt)

︸ ︷︷ ︸

∼ N (zt;g(θnt
,st),Rt)

p(θnt
| st−1,[m], ut−1, zt−1, nt−1)

︸ ︷︷ ︸

∼ N (θnt
;µ

[m]
nt,t−1,Σ

[m]
nt,t−1)

dθnt
p(st | s

[m]
t−1, ut)

︸ ︷︷ ︸

∼ N (st;ŝ
[m]
t−1,Pt)

dst

(59)

We find that this expression can again be approximated by a Gaussian over measurements zt by lineariz-
ing g. As it is easily shown, the mean of the resulting Gaussian is ẑt, and its covariance is

L
[t]
t = GsPtG

T
s + GθΣ

[m]
nt,t−1G

T
θ + Rt (60)

Put differently, the (non-normalized) importance factor of the m-the particle is given by the following
expression:

w
[m]
t = |2πL

[t]
t |−

1
2 exp

{

−1
2(zt − ẑt)

T L
[t]−1
t (zt − ẑt)

}

(61)

As in FastSLAM 1.0, particles generated in Steps 1 and 2, along with their importance factor calculated
in Step 3, are collected in a temporary particle set. The final step of the FastSLAM 2.0 update is a
resampling step. Just like in FastSLAM 1.0, FastSLAM 2.0 draws (with replacement) M particles from
the temporary particle set. Each particle is drawn with a probability proportional to its importance factor
w

[m]
t . The resulting particle set represent (asymptotically) the desired factored posterior at time t.

6 Unknown Data Association

6.1 Data Association in SLAM

The biggest limitation of both FastSLAM algorithms, as described so far, has been the assumption of
known data association. Real-world features are usually ambiguous. This section extends the FastSLAM
algorithms to cases where the correspondence variables nt are unknown.
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Formally, the data association problem at time t is the problem of determining the variable nt based
on the available data. This problem is illustrated in Figure 8: Here a robot observes to landmarks.
Depending on its actual pose relative to these landmarks, these measurements correspond to different
landmarks in the map (depicted as stars in Figure 8). The ‘classical’ solution to the data association
problem [4, 14, 17] is to chose nt so that it maximizes the likelihood of the sensor measurement zt:

n̂t = argmax
nt

p(zt | nt, n̂
t−1, st, zt−1, ut) (62)

Such an estimator is called maximum likelihood estimator (ML). The term p(zt | nt, n̂
t−1, st, zt−1, ut)

is usually referred to as likelihood. ML data association is often referred to as nearest neighbor method,
interpreting the negative log likelihood as distance function. For Gaussians, the negative log likelihood
is a Mahalanobis distance, and ML selects data associations by minimizing this Mahalanobis distance.

An alternative to the ML method is data association sampling (DAS):

n̂t ∼ η p(zt | nt, n̂
t−1, st, zt−1, ut) (63)

DAS samples the data association variable according to the likelihood function, instead of determin-
istically selecting its most likely value. Both techniques, ML and DAS, make it possible to estimate
the number of features in the map. SLAM techniques using ML create new features in the map if the
likelihood falls below a threshold p0 for all known features in the map. DAS associates an observed
measurement with a new, previously unobserved feature stochastically. They do so with probability
proportional to ηp0, where η is a normalizer defined in (63).

In EKF-style approaches to the SLAM problem, ML is usually given preference over DAS, since
the number of data association errors in ML is smaller. Because only a single data association decision
is made for each measurement in most EKF-based implementations, these approaches tend to be brittle
with regards to data association errors. A single data association error can induce significant errors in
the map which in turn cause new data association errors, often with fatal consequences. Therefore, the
corresponding SLAM algorithms tend to work well only when ambiguous features in the environment
are spaced sufficiently far apart from each other to make confusions unlikely. For this reason, many
implementations of SLAM extract sparse features from otherwise rich sensor measurements.

6.2 Data Association in FastSLAM

The key advantage of the FastSLAM over EKF-style approaches is its ability to pursue multiple data
association hypotheses at the same time. This is due to the fact that the posterior is represented by
multiple particles. In particular, FastSLAM estimates the correspondences on a per-particle basis, not
on a per-filter basis as is the case for the EKF. This enables FastSLAM to use ML or even DAS for
generating particle-specific data association decisions. As long as a small subset of the particles is based
on the correct data association, data association errors are not as fatal as in EKF approaches. This is
because particles subject to such errors tend to possess inconsistent maps, which increases the probability
that they are simply sampled away in future resampling steps.

The mathematical definition of the per-particle data association is straightforward. Each particle
maintains a local set of data association variables, denoted n̂

[m]
t . In ML data association, each n̂

[m]
t is

determined by maximizing the likelihood of the measurement zt:

n̂
[m]
t = argmax

nt

p(zt | nt, n̂
t−1,[m], st,[m], zt−1, ut) (64)

DAS data association samples from the likelihood:

n̂
[m]
t ∼ η p(zt | nt, n̂

t−1,[m], st,[m], zt−1, ut) (65)
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For both techniques cases, the likelihood is calculated as follows:

p(zt | nt, n̂
t−1,[m], st,[m], zt−1, ut)

=

∫

p(zt | θnt
, nt, n̂

t−1,[m], st,[m], zt−1, ut) p(θnt
| nt, n̂

t−1,[m], st,[m], zt−1, ut) dθnt

=

∫

p(zt | θnt
, nt, s

[m]
t )

︸ ︷︷ ︸

∼ N (zt;g(θnt
,s

[m]
t

),Rt)

p(θnt
| n̂t−1,[m], st−1,[m], zt−1)

︸ ︷︷ ︸

∼ N (µ
[m]
nt,t−1,Σ

[m]
nt,t−1)

dθnt
(66)

Linearization of g enables us to obtain this in closed form:

p(zt | nt, n̂
t−1,[m], st,[m], zt−1, ut)

= |2πQ
[m]
t |−

1
2 exp

{

−1
2(zt − g(µ

[m]
nt,t−1, s

[m]
t ))T Q

[m]−1
t (zt − g(µ

[m]
nt,t−1, s

[m]
t ))

}

(67)

The variable Q
[m]
t was defined in Equation (42), as a function of the data association variable nt. New

features are added to the map in exactly the same way as outlined above. In the ML approach, a new
feature is added when the probability p(zt | nt, n̂

t−1,[m], st,[m], zt−1, ut) falls beyond a threshold p0. The
DAS includes the hypothesis that an observation corresponds to a previously unobserved feature in its
set of hypotheses, and samples it with probability ηp0. To accommodate the particle-specific map size,
each particle carries its own feature count. This count will be denoted N

[m]
t .

6.3 Feature Initialization

As in EKF-implementations of SLAM, initializing the newly added Kalman filter can be tricky, especially
when individual measurements are insufficient to constrain the feature’s location in all dimensions [15].
In many SLAM problems the measurement function g is invertible. This the case, for example, for
robots measuring range and bearing to landmarks in the plane, in which a single measurement suffices
to produce a (non-degenerate) estimate on the feature location. The initialization of the EKF is then
straightforward:

s
[m]
t ∼ p(st | s

[m]
t−1, ut) (68)

µ
[m]
n,t = g−1(zt, s

[m]
t ) (69)

Σ
[m]
n,t = (G

[m]
n̂ R−1

t G
[m]T
n̂ )−1 (70)

w
[m]
t = p0 (71)

Notice that for newly observed features, the pose s
[m]
t is sampled according to the motion model p(st |

s
[m]
t−1, ut). This distribution is equivalent to the FastSLAM sampling distribution (33) in situations where

no previous location estimate for the observed feature is available.
Initialization techniques for situations in which g is not invertible are discussed in [15]. In general,

such situations require the accumulation of multiple measurements, to obtain a good estimate for the
linearization of g.

6.4 Feature Elimination and Negative Information

To accommodate features introduced erroneously into the map, FastSLAM features a mechanism for
eliminating features that are not supported by sufficient evidence. In particular, our approach keeps track
of the probabilities on the actual existence of individual features in the map, a technique commonly
used in EKF-style algorithms [17]. Let i

[m]
n ∈ {0, 1} be a binary variable that indicates the existence

of the feature θ
[m]
n . Our approach exploits the fact that each sensor measurement zt carries evidence
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with regards to the physical existence of nearby features θ
[m]
n : Observing the feature provides positive

evidence for its existence, whereas not observing it when µ
[m]
n falls within the robot’s perceptual range

provides negative evidence. The resulting posterior probability

p(i[m]
n | n̂t,[m], st,[m], zt−1) (72)

is estimated by a binary Bayes filter, familiar from the literature on occupancy grid maps [49]. FastSLAM
represents the posterior in its log-odds form:

τ [m]
n = ln

p(i
[m]
n | n̂t,[m], st,[m], zt−1)

1 − p(i
[m]
n | n̂t,[m], st,[m], zt−1)

=
∑

t

ln
p(i

[m]
n | s

[m]
t , zt, n̂

[m]
t )

1 − p(i
[m]
n | s

[m]
t , zt, n̂

[m]
t )

(73)

The advantage of this rule lies in the fact that updates are additive (see [66] for a derivation). In the most
simple implementation, observing of a feature leads to the addition of a positive value

ρ+ = ln
p(i

[m]
n̂t

| s
[m]
t , zt, n̂

[m]
t )

1 − p(i
[m]
n̂t

| s
[m]
t , zt, n̂

[m]
t )

(74)

to the log-odds value, and not observing it leads to the addition of a negative value

ρ− = ln
p(i

[m]
n6=n̂t

| s
[m]
t , zt, n̂

[m]
t )

1 − p(i
[m]
n6=n̂t

| s
[m]
t , zt, n̂

[m]
t )

(75)

To implement this approach in real-time, the variable t starts at the time a feature is first introduced in
the map. Features are terminated when their log-odds of existence falls beyond a certain bound. This
mechanism enables FastSLAM ’s particles to free themselves of spurious features.

6.5 The FastSLAM Algorithms

Tables 1 and 2 summarize both FastSLAM algorithms. In both algorithms, particles are of the form

S
[m]
t =

〈

s
[m]
t , N

[m]
t ,

〈

µ
[m]
1,t , Σ

[m]
1,t , τ

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t

,t
, Σ

[m]

N
[m]
t

,t
, τ

[m]

N
[m]
t

〉〉

(76)

In addition to the pose s
[m]
t and the feature estimates µ

[m]
n,t and Σ

[m]
n,t , each particle maintains the number

of features N
[m]
t in its local map, and each feature carries a probabilistic estimate of its existence τ

[m]
n .

Iterating the filter requires time linear in the maximum number of features maxm N
[m]
t in each map, and

it is also linear in the number of particles M . Further below, we will discuss advanced data structure that
yield more efficient implementations.

We note that both versions of FastSLAM, as described here, consider a single measurement at a time.
As discussed above, this choice has been made for notational convenience. Most competitive SLAM
implementations (including ours) consider multiple features in the data association step [3, 26, 53, 65].
Doing so tends to decreases the data association error rate, and the resulting maps become more accurate.
This follows from a mutual exclusion property, which states that no landmark can be observed at two
different locations at the same time [16]. Like many other implementations before, our implementation
considers all features observed in a single sensor scan when calculating the measurement likelihood. The
necessary modification of FastSLAM is straightforward but will not be further elaborated here. Below,
we will provide an empirical comparison of both variants of this algorithm, highlighting the advantages
of FastSLAM 2.0 over 1.0.
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Algorithm FastSLAM 1.0(zt, ut, St−1):

for m = 1 to M do // loop over all particles

retrieve
〈

s
[m]
t−1, N

[m]
t−1,

〈

µ
[m]
1,t−1,Σ

[m]
1,t−1, i

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t−1

,t−1
,Σ

[m]

N
[m]
t−1

,t−1
, i

[m]

N
[m]
t−1

〉〉

from St−1

s
[m]
t ∼ p(st | s

[m]
t−1, ut) // sample new pose

for n = 1 to N
[m]
t−1 do // calculate measurement likelihoods

ẑn = g(µ
[m]
n,t−1, s

[m]
t ) // measurement prediction

Gn = g′(s
[m]
t , µ

[m]
n,t−1) // calculate Jacobian

Qn = GT
nΣ

[m]
n,t−1Gn + Rt // measurement covariance

wn = |2πQn|
−

1
2 exp

{
− 1

2 (zt − ẑn)T Q−1
n (zt − ẑn)

}
// likelihood of correspondence

endfor
w

N
[m]
t−1

+1
= p0 // importance factor of new landmark

n̂ = argmax
n=1,...,N

[m]
t−1

+1

wn // max likelihood correspondence

N
[m]
t = max{N

[m]
t−1, n̂} // new number of features in map

for n = 0 to N
[m]
t do // update Kalman filters

if n = N
[m]
t−1 + 1 then // is new feature?

µ
[m]
n,t = g−1(zt, s

[m]
t ) // initialize mean

Σ
[m]
n,t = G−1

n̂ Rt(G
−1
n̂ )T // initialize covariance

i
[m]
n,t = 1 // initialize counter

else if n = n̂ then // is observed feature?
K = Σ

[m]
n,t−1Gn̂Q−1

n̂ // calculate Kalman gain

µ
[m]
n,t = µ

[m]
n,t−1 + K(zt − ẑn̂)T // update mean

Σ
[m]
n,t = (I − KGT

n̂ )Σ
[m]
n,t−1 // update covariance

i
[m]
n,t = i

[m]
n,t−1 + 1 // increment counter

else // all other features
µ

[m]
n,t = µ

[m]
n,t−1 // copy old mean

Σ
[m]
n,t = Σ

[m]
n,t−1 // copy old covariance

if µ
[m]
n,t−1 outside perceptual range of s

[m]
t then // should feature have been observed?

i
[m]
n,t = i

[m]
n,t−1 // no, do not change

else
i
[m]
n,t = i

[m]
n,t−1 − 1 // yes, decrement counter

if i
[m]
n,t−1 < 0 then discard feature n endif // discard dubious features

endif
endif

endfor

add
〈

s
[m]
t , N

[m]
t ,

〈

µ
[m]
1,t ,Σ

[m]
1,t , i

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t

,t
,Σ

[m]

N
[m]
t

,t
, i

[m]

N
[m]
t

〉〉

to Saux

endfor
St = ∅ // construct new particle set
for m′ = 1 to M do // resample M particles

draw random index m with probability ∝ w
[m]
t // resample

add
〈

s
[m]
t , N

[m]
t ,

〈

µ
[m]
1,t ,Σ

[m]
1,t , i

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t

,t
,Σ

[m]

N
[m]
t

,t
, i

[m]

N
[m]
t

〉〉

to St

end for
return St

end algorithm

Table 1: Summary of the algorithm FastSLAM 1.0 with unknown data association, as published in [45]. This version does not
implement any of the efficient tree representations discussed in the paper, and it relies on an inferior proposal distribution. Its
chief advantage is that it easier to implement than FastSLAM 2.0.
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Algorithm FastSLAM 2.0(zt, ut, St−1):
for m = 1 to M do // loop over all particles

retrieve
〈

s
[m]
t−1, N

[m]
t−1,

〈

µ
[m]
1,t−1,Σ

[m]
1,t−1, τ

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t−1

,t−1
,Σ

[m]

N
[m]
t−1

,t−1
, τ

[m]

N
[m]
t−1

〉〉

from St−1

for n = 1 to N
[m]
t−1 do // calculate sampling distribution

ŝ
[m]
t = h(s

[m]
t−1, ut); ẑ

[m]
t,nt

= g(µ
[m]
nt,t−1, ŝ

[m]
t )

Gθ,nt
= ∇θnt

g(θnt
, st)

∣
∣
st=ŝ

[m]
t

;θnt
=µ

[m]
nt,t−1

; Gs,nt
= ∇st

g(θnt
, st)|st=ŝ

[m]
t

;θnt
=µ

[m]
nt,t−1

Q
[m]
t,nt

= Rt + Gθ,nt
Σ

[m]
nt,t−1G

T
θ,nt

Σ
[m]
st,nt

=
[

GT
s,nt

Q
[m]−1
t,nt

Gs,nt
+ P−1

t

]
−1

; µ
[m]
st,nt

= Σ
[m]
st,nt

GT
s,nt

Q
[m]−1
t,nt

(zt − ẑ
[m]
t,nt

) + ŝ
[m]
t

s
[m]
nt,t

∼ N (µ
[m]
st,nt

,Σ
[m]
st,nt

) // sample pose

pnt
= |2πQ

[m]
t,nt

|−
1
2 exp

{

− 1
2 (zt − g(µ

[m]
nt,t−1, s

[m]
nt,t

))T Q
[m]−1
t,nt

(zt − g(µ
[m]
nt,t−1, s

[m]
nt,t

))
}

endfor
p

N
[m]
t−1

+1
= p0 // likelihood of new feature

n̂
[m]
t = argmaxnt

pnt
or draw random n̂

[m]
t with probability ∝ pnt

// data association
for n = 1 to N

[m]
t−1 + 1 do // process measurement

if nt = n̂t ≤ N
[m]
t−1 then // known feature?

N
[m]
t = N

[m]
t−1; τ

[m]
nt,t

= τ
[m]
nt,t

+ ρ+; K
[m]
t = Σ

[m]
n̂t,t−1G

T
θ,n̂t

Q
[m]−1
t,n̂t

µ
[m]
n̂t,t

= µ
[m]
n̂t,t−1 + K

[m]
t (zt − ẑ

[m]
t,n̂t

); Σ
[m]
n̂t,t

= (I − K
[m]
t Gθ,n̂t

)Σ
[m]
n̂t,t−1

L
[t]
t = Gs,n̂t

PtG
T
s,n̂t

+ Gθ,n̂t
Σ

[m]
nt,t−1G

T
θ,n̂t

+ Rt

w
[m]
t = |2πL

[t]
t |−

1
2 exp

{

− 1
2 (zt − ẑt,n̂t

)T L
[t]−1
t (zt − ẑt,n̂t

)
}

else if nt = n̂t = N
[m]
t−1 + 1 then // new feature?

n = N
[m]
t = N

[m]
t−1 + 1; τ

[m]
nt,t

= ρ+; w
[m]
t = p0

s
[m]
n,t ∼ p(st | s

[m]
t−1, ut); Gθ,n = ∇θn

g(θn, st)|st=s
[m]
n,t

;θn=µ
[m]
n,t

µ
[m]
n,t = g−1(zt, s

[m]
n,t ); Σ

[m]
n,t = (Gθ,nR−1

t GT
θ,n)−1

else if nt 6= n̂t and nt ≤ N
[m]
t−1 // handle unobserved features

µ
[m]
nt,t

= µ
[m]
nt,t−1; Σ

[m]
nt,t

= Σ
[m]
nt,t−1

if µ
[m]
nt,t

6∈ range(s
[m]
n̂1,t) then // outside sensor range?

τ
[m]
nt,t

= τ
[m]
nt,t−1

else // inside sensor range?
τ

[m]
nt,t

= τ
[m]
nt,t−1 − ρ−; if τ

[m]
nt,t

< 0 then remove nt // discontinue feature?
endif

endif
endfor

add
〈

s
[m]
t , N

[m]
t ,

〈

µ
[m]
1,t ,Σ

[m]
1,t , τ

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t

,t
,Σ

[m]

N
[m]
t

,t
, τ

[m]

N
[m]
t

〉〉

to Saux

endfor // end loop over all particles
St = ∅ // construct new particle set
for m′ = 1 to M do // generate M particles

draw random index m with probability ∝ w
[m]
t // resample

add
〈

s
[m]
t , N

[m]
t ,

〈

µ
[m]
1,t ,Σ

[m]
1,t , τ

[m]
1

〉

, . . . ,

〈

µ
[m]

N
[m]
t

,t
,Σ

[m]

N
[m]
t

,t
, τ

[m]

N
[m]
t

〉〉

to St

end for
return St

end algorithm

Table 2: The FastSLAM 2.0 Algorithm, stated here unknown data association.
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7 Convergence of FastSLAM 2.0 For Linear-Gaussian SLAM

In this section, we will establish a convergence result for FastSLAM 2.0. This result crucially exploits
the proposal distribution in FastSLAM 2.0 and therefore is not directly applicable to FastSLAM 1.0.
It applies to a subset of all SLAM problems, namely for linear SLAM problems with Gaussian noise.
LG-SLAM problems are defined to possess motion and measurement models of the following linear
form:

g(θnt
, st) = θnt

− st (77)

h(ut, st−1) = ut + st−1 (78)

The LG-SLAM framework can be thought of as a robot operating in a Cartesian space equipped with a
noise-free compass, and sensors that measure distances to features along the coordinate axes.

While LG-SLAM is clearly too restrictive to be of practical significance, it plays an important role in
the literature. To our knowledge, the only known convergence proof for a SLAM algorithm is a recently
published result for Kalman filters (KF) applied to specific linear-Gaussian problems. As shown in [17,
54], the KF approach (which is equivalent to EKFs for linear-Gaussian SLAM problems) converges to
a state in which all map features are fully correlated. If the location of one feature is known, the KF
asymptotically recovers the location of all other feature.

The central convergence result in this paper is the following:

Theorem. Linear-Gaussian FastSLAM 2.0 converges in expectation to the correct map with M = 1
particle if all features are observed infinitely often, and if the location of one feature is known in advance.

If no feature location is known in advance, the map will be correct in relative terms, up to a fixed
offset that uniformly applies to all features. The proof of this result can be found in Appendix B. Its
significance lies in the fact that is shows that for specific SLAM problems, FastSLAM 2.0 may converge
with a finite number of particles. In particular, the number of particles required for convergence in LG-
SLAM is independent of the size of the map N . This result holds even if all features are arranged in a
large cycle, a situation often thought of as worst case for SLAM problems [26]. However, our analysis
says nothing about the convergence speed of the algorithm, which in practice depends on the particle set
size M . Below, we will investigate the speed of convergence through empirical means.

8 Efficient Implementation

At first glance, it may appear that each update in FastSLAM requires time O(MN), where M is the
number of particles M and N the number of features in the map. The linear complexity in M is un-
avoidable, given that we have to process M particles with each update. The linear complexity in N is the
result of the resampling process. Whenever a particle is drawn more than once in the resampling process,
a “naive” implementation might duplicate the entire map attached to the particle. Such a duplication pro-
cess is linear in the size of the map N . Furthermore, a naive implementation of data association may
result in evaluating the measurement likelihood for each of the N features in the map, resulting again in
linear complexity in N . We note that a poor implementation of the sampling process might easily add
another factor of logN to the update complexity.

FastSLAM iterations can be executed in O(M log N) time; in particular, FastSLAM updates can
be implemented in time logarithmic in the size of the map N . First, consider the situation with known
data association. Linear copying costs can be avoided by introducing a data structure for representing
particles that allow for more selective updates. The basic idea is to organize the map as a balanced
binary tree. Figure 9a shows such a tree for a single particle, in the case of K = 8 features. Notice that
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Figure 9: (a)A tree representing N = 8 feature estimates within a single particle. (b) Generating a new particle from an old
one, while modifying only a single Gaussian. The new particle receives only a partial tree, consisting of a path to the modified
Gaussian. All other pointers are copied from the generating tree. This can be done in time logarithmic in N .

the Gaussian parameters µ
[m]
k and Σ

[m]
k are located at the leaves of the tree. Assuming that the tree is

balanced, accessing a leaf required time logarithmic in N .
Suppose FastSLAM incorporates a new control ut and a new measurement zt. Each new particle

in St will differ from the corresponding one in St−1 in two ways: First, it will possess a different
pose estimate obtained via (33), and second, the observed feature’s Gaussian will have been updated, as
specified in Equations (54) and (55). All other Gaussian feature estimates, however, will be equivalent to
the generating particle. When copying the particle, thus, only a single path has to be modified in the tree
representing all Gaussians. An example is shown in Figure 9b: Here we assume nt = 3, that is, only the
Gaussian parameters µ

[m]
3 and Σ

[m]
3 are updated. Instead of generating an entire new tree, only a single

path is created, leading to the Gaussian nt = 3. This path is an incomplete tree. The tree is completed
by copying the missing pointers from the tree of the generating particle. Thus, branches that leave the
path will point to the same (unmodified) subtree as that of the generating tree. Clearly, generating this
tree takes only time logarithmic in N . Moreover, accessing a Gaussian also takes time logarithmic in
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Figure 10: The utility car used for collecting outdoor data is equipped with a SICK laser range and bearing sensor, linear
variable differential transformer sensor for the steering and back wheel velocity encoder. This image shows the vehicle in the
Victoria Park environment.

N , since the number of steps required to navigate to a leaf of the tree is equivalent to the length of the
path (which is by definition logarithmic). Thus, both generating and accessing a partial tree can be done
in time O(log N). Since in each updating step M new particles are created, an entire update requires
time in O(M log N). The insight of using trees for efficient mapping can be found in [45]; a similar tree
representation can be found in [21].

Organizing particles in trees raises the question as to when to deallocate memory. Memory dealloca-
tion can equally be implemented in amortized logarithmic time. The idea is to assign a variable to each
node—internal or leaf—that counts the number of pointers pointing to it. The counter of a newly created
node will be initialized by 1. It will be incremented as pointers to a node are created in other parti-
cles. Decrements occur when pointers are removed (e.g., pointers of pose particles that fail to survive the
resampling process). When a counter reaches zero, its children’s counters are decremented and the mem-
ory of the corresponding node is deallocated. The processes is then applied recursively to all children of
the node whose counter may have reached zero. This recursive process will require O(M log N) time
on average. Furthermore, it can be shown to be an optimal deallocation algorithm in that all unneeded
memory will be freed instantaneously.

To obtain logarithmic time complexity for FastSLAM with unknown data association further as-
sumptions are needed. In particular, the number features in the robot’s sensor range must be independent
of N ; otherwise simple operations such as keeping track of the existence posteriors τ

[m]
n may require

more than logarithmic time. Furthermore, a DAS sampler must be restricted to features in the robot’s
vicinity to avoid calculating the likelihood (63) for all N features. Finally, the number of rejected fea-
tures should be small (e.g., within a constant factor of all accepted ones). All these assumptions are
plausible when applying FastSLAM to real-world SLAM problems. Under these assumptions, variants
of kd-trees [6, 48] can guarantee logarithmic time search for high likelihood features, and features in
the robot’s measurement range. Incremental techniques for constructing balanced kd-trees are described
in [39, 59]. For example, the bkd-tree proposed in [59] maintains a sequence of trees of growing com-
plexity. By carefully shifting items across those trees, a logarithmic time recall can be guaranteed under
amortized logarithmic time for inserting new features in the map. In this way, all necessary operations in
FastSLAM can be carried out in logarithmic time on average.
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9 Experimental Results: FastSLAM 1.0

A number of experimental comparisons were carried out, comparing both FastSLAM algorithms with
each other and to the popular EKF solution to the SLAM problem. The goal of these experiments were
to investigate the scaling properties of each algorithm, especially in relation to a classical solution to
the SLAM problem. The experiments were carried out using a benchmark dataset in the SLAM field
known as the “Victoria Park Dataset” [25]; supplemental experiments were obtained using a second real-
world data set obtained in a parking lot, and through robot simulation. Further experiments can be found
in [43],

In this section, we will describe our experiments for FastSLAM 1.0, illustrating that even this simple-
to-implement algorithm yields excellent results. The next section characterizes the advantages of the
more complex FastSLAM 2.0 algorithm over FastSLAM 1.0.

9.1 Victoria Park

The benchmark SLAM data set used in most of our experiments was provided by researchers from
the University of Sydney [25]. An instrumented vehicle, shown in Figure 10, equipped with a laser
range finder was repeatedly driven through Victoria Park, in Sydney, Australia. Victoria Park is an
ideal setting for testing feature-based SLAM algorithms because the park’s trees are distinctive features
in the vehicle’s laser scans. Encoders measured the vehicle’s velocity and steering angle. Range and
bearing measurements to nearby trees were extracted from the laser data using a local minima detector.
The vehicle was driven around for approximately 30 minutes, covering a distance of over 4 km. The
vehicle is also equipped with GPS in order to capture ground truth data. Due to occlusion by foliage
and buildings, ground truth data is only available for part of the overall traverse. While ground truth
is available for the vehicle’s path, no ground truth data is available for the locations of the landmarks.
None of the GPS data was used for mapping; the sole function of this data is to provide ground truth for
evaluating the accuracy of the filter.

Since the vehicle is driving over uneven terrain, the measured controls are fairly noisy. Figure 11 (a)
shows the path of the vehicle obtained by integrating the estimated controls. After 30 minutes of driving,
the estimated position of the vehicle is well over 100 meters away from its true position measured by
GPS. The laser data, on the other hand, is a very accurate measure of range and bearing. However, not
all objects in the vehicle’s field of view are trees, or even static objects. As a result, the feature detector
produced relatively accurate observations of trees, but also generated frequent outliers.

Data association for this experiment was performed using per-particle ML data association. Since
the accuracy of the observations is high relative to the average density of landmarks, data association in
the Victoria Park data set is a relatively straightforward problem. In a later experiment, more difficult
data association problems will be simulated by adding extra control noise.

The output of FastSLAM 1.0 is shown in Figure 11 b&c. The GPS path is shown as a dashed line,
and the output of FastSLAM 1.0 is shown as a solid line. The RMS error of the resulting path is just
over 4 meters over the 4 km traverse. This experiment was run with M = 100 particles. This error is
indistinguishable from the error of other state-of-the-art SLAM algorithms [25, 38].

9.2 Performance Without Odometry

FastSLAM 1.0 was also run on the Victoria Park data set without using the odometry data. The pose of
the vehicle in each particle was supplemented with translational velocity vt and rotational velocity wt.

S
[m]
t = 〈sx,t, sy,t, sθ,t, sv,t, sw,t, Nt, µ1,t, Σ1,t, . . . ., µNt,t, ΣNt,t〉 (79)

A Brownian motion model was used to predict the pose of the vehicle at time t+1 given the pose at time
t. This model assumes that the velocity at time t + 1 is equal to the velocity at time t plus some random
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(a) Raw Vehicle Path (b) FastSLAM 1.0 (solid) and GPS path (dashed)

(c) Paths and map with satellite image (d) Estimated path without odoemtry

Figure 11: (a) Vehicle path predicted by the odometry; (b) True path (dashed line) and FastSLAM 1.0 path (solid line); (c)
Victoria Park results overlayed on aerial imagery with the GPS path in blue (dashed), average FastSLAM 1.0 path in yellow
(solid), and estimated landmarks as yellow circles. (d) Victoria Park Map created without odometry information.

perturbation.

vt = vt−1 + N (v; 0, α2
1)

wt = wt−1 + N (w; 0, α2
2) (80)

After drawing a perturbed velocity, the vehicle’s position is updated accordingly.

xt = xt−1 + vt cos(θt−1)∆t

yt = yt−1 + vt sin(θt−1)∆t

θt = θt−1 + wt ∆t (81)

The specific values of α1 and α2 depend on the maximum translational and rotational accelerations that
the vehicle is capable of executing. The map created without using the odometry is shown in Figure 11d.
The average error of the map is equivalent to the results obtained with odometry. To our knowledge,
no previous technique has been capable of generating consistent maps from this data set without using
odometry information.
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(a) Map without feature elimination (b) Map with feature elimination

Figure 12: FastSLAM 1.0 (a) without and (b) with feature elimination based on negative information.

9.3 Negative Information

In the Victoria Park data set, observations corresponding to non-point objects or non-static objects result
in a large number of spurious landmarks being added to every FastSLAM 1.0 particle. When negative
information is used to estimate the existence of each landmark, as described in Section 6.4, many of these
spurious landmarks can be removed. In the case of Victoria Park, use of negative information results in
44map. While the correct number of landmarks is not available, visual inspection of the maps suggests
that many of the spurious features have been eliminated. Figure 12 shows the Victoria Park map built
with and without considering negative evidence. The number of landmarks in areas that should be free
of landmarks (the roadway, highlighted with a box in the figure) has been significantly reduced.

9.4 Comparison of FastSLAM 1.0 and the EKF

9.5 Accuracy

We compared the accuracy of FastSLAM 1.0 with that of the EKF on a simulated data set with 100 land-
marks. The RMS vehicle pose error was computed for FastSLAM 1.0 for various numbers of particles
from 1 to 5000. Each experiment was run 10 times. The results are shown in Figure 13. The error of the
EKF is shown as a dashed horizontal line.

In this experiment, the accuracy of FastSLAM 1.0 approaches the accuracy of the EKF as the number
of particles is increased. Most notably, the error of FastSLAM 1.0 becomes statistically indistinguishable
from that of the EKF past approximately 10 particles. This is interesting because FastSLAM 1.0 with
10 particles and 100 landmarks requires an order of magnitude fewer parameters than the EKF in order
to achieve this level of accuracy. Clearly, the specific value of this threshold of performance will depend
on both the parameters of the motion and measurement model and the vehicle’s control policy. However,
this experiment suggests that in normal circumstances, a relatively small number of particles may suffice
to achieve high estimation accuracy.

9.6 Scaling Performance

The scaling performance of FastSLAM 1.0 was also evaluated on simulated data. Simulated maps of
constant landmark density were created with varying numbers of landmarks. Constant landmark density
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Figure 13: A comparison of the accuracy of FastSLAM 1.0 and the EKF on simulated data

ensures that the simulated vehicle observed a constant number of landmarks on average across all trials.
The performance of the linear time and logarithmic time versions of the FastSLAM 1.0 algorithm were
compared. The linear time algorithm was tested with up to 10,000 landmarks, and the logarithmic time
algorithm was tested with up to 1,000,000 landmarks. The time required to compute 500 sensor updates
with all landmarks incorporated into the map was evaluated over 10 different runs. All experiments were
done with 100 particles.

The results of the experiment are shown in Figure 14. The performance of the log(N) algorithm is
plotted on a logarithmic scale. The results validate the scaling performance of the tree-based algorithm,
and demonstrate the substantial performance increase enabled by sharing landmark trees across particles.

Sharing subtrees is not only computationally efficient; it also decreases the overall memory required
by the algorithm. The memory required by both versions of the FastSLAM 1.0 algorithm scales linearly
with the number of landmarks. Overall, the FastSLAM 1.0 algorithm must maintain M · N landmark
filters. With 100 particles and 1,000,000 landmarks, this can add up to a substantial amount of memory
(hundreds of megabytes) just to represent the map. In very large maps, landmarks that have not been
visited for a long period of time will be shared in subtrees between all of the particles of the log(N)
algorithm. If only a fraction of the total landmarks are observed at every time step, this memory sharing
may result in a significant savings in memory consumption. A plot of the memory consumed by the linear
and logarithmic FastSLAM 1.0 algorithms for varying numbers of landmarks is shown in Figure 15. In
this experiment, the tree-based representation resulted in over an order-of-magnitude decrease in memory
consumption over the basic FastSLAM 1.0 algorithm.

9.7 Ambiguous Data Association

The performance of FastSLAM 1.0 given unknown data association was evaluated against that of the Ex-
tended Kalman Filter using the Victoria Park data set. Under normal conditions, the levels of odometric
and measurement noise present in the Victoria Park data set do not cause a significant data association
problem. The error of the vehicle’s laser is quite low compared to the average distance between trees
in the park. In order to test performance given data association ambiguity, additional odometric noise
was added to the vehicle controls. Additional control noise results in high motion ambiguity in the data
associations of new observations.

Prototypical outputs of the EKF and FastSLAM 1.0 given low and high levels of odometric noise are
shown in Figure 16. While both algorithms generate accurate maps when control noise is low, the EKF
fails catastrophically with high error. The map generated by FastSLAM 1.0 under high odometric error
is not degraded in quality. The RMS error of the vehicle position was computed for FastSLAM 1.0 and
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Figure 14: Timing results for FastSLAM 1.0 in simulated environments.
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Figure 15: Memory requirements for linear and log(N) version of FastSLAM 1.0 in simulated environments.

the EKF over 20 different runs with four different levels of odometric noise. The results are shown in
Figure 17. As control noise increases, there is no measurable increase in the RMS error of FastSLAM 1.0,
while the error of the vehicle path emitted by the EKF goes up substantially. More telling is the variance
in the error of the EKF maps across multiple runs, indicated by the confidence bars. This suggests that
for high levels of control noise, the EKF is diverging.

9.8 Results for Parking Lot Database:

The next series of experiments was conducted using data collected on the top level of the car park
building at the University of Sydney. The testing site was chosen to maximize the number of satellites in
view to obtain high quality GPS information. A kinematic GPS system of 2 cm CEP accuracy was used
to measure the vehicle location for evaluation. In this experiment, artificial landmarks were used that
consisted of 60 mm steel poles covered with reflective tape. With this, the feature extraction becomes
trivial and the landmark observation model accurate. Since the true position of the landmarks were also
obtained with GPS, a true navigation map is also available for comparison purposes.

In our first series of experiments, the correspondences between the observation and the landmarks
were assumed to be known. Instead of providing this information manually, we used a highly tuned EKF
to provide the correct data association for each measurement. The EKF algorithm was run with the same
data set, dropping all measurements that were not associated with any landmark. As a result, FastSLAM
1.0 only received measurements corresponding to actual landmarks in the environment. Figure 18a
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Extended Kalman Filter

FastSLAM 1.0

(a) Low odometric noise (b) High odometric noise

(c) Low odometric noise (d) High odometric noise

Figure 16: Performance of EKF and FastSLAM 1.0 on the Victoria Park data set with varying levels of odometric noise.
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Figure 17: Position error of vehicle under various levels of odometric noise.

shows the path and beacons position estimation for the car park experimental run using the algorithm
FastSLAM 1.0. This figure shows the particles average for the vehicle trajectory and the average of all
the Gaussian means for the landmarks locations. Figure 18b shows similar results obtained with the
EKF based algorithm. Figure 19 presents the vehicle position error for the EKF and FastSLAM 1.0
filter respectively. It can be appreciated that the error is very small and similar in magnitude and shape
when compared with the GPS ground truth. This is important to verify the consistency of the algorithm
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Figure 18: Estimated path and landmarks with (a) FastSLAM 1.0 and (b). The ’-’ is the path estimated, the ’*’ are the beacons
position estimated, the ’.’ is the GPS path reference and the ’o’ are the beacons position given by the GPS.
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Figure 19: SLAM error (a) FastSLAM 1.0 position error respect to the GPS position. ’-’ indicates the error in the East and
’-.’in North (b) EKF position error respect to the GPS position. ’-’ indicates the error in East and ’-.’ in North.
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Figure 20: Estimated Path and Landmarks with unknown data association. The ’-’ is the path estimated, the ’*’ are the beacons
position estimated, the ’.’ is the GPS path reference and the ’o’ are the beacons position given by the GPS.
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Figure 21: FastSLAM 1.0 and 2.0 with varying levels of measurement noise: As to be expected, FastSLAM 2.0 is uniformly su-
perior to FastSLAM 1.0. The difference is particularly obvious for small particle sets, where the improved proposal distribution
focuses the particles much better.

FastSLAM 1.0. Figure 20 shows the corresponding results for a run with unknown data association. The
accuracy of the resulting map is comparable to our results with known data association, illustrating that
FastSLAM 1.0 succeeds in solving the data association problem in this instance.

10 Experimental Results: FastSLAM 2.0

10.1 Comparison of FastSLAM 2.0 and 1.0

In general, FastSLAM 2.0 is superior to FastSLAM 1.0, but the performance of FastSLAM 2.0 will often
be similar to the performance of FastSLAM 1.0. However, in situations where the measurement error is
significantly small compared to the motion error, FastSLAM 2.0 will outperform the original algorithm.
In the following experiment, the performance of the two algorithms is compared on simulated data while
varying the level of measurement noise. All experiments were run with 100 particles and known data
association. The range and bearing error parameters were scaled equally.

The results of this experiment are shown in Figure 21. As the measurement error gets very large, the
errors of both FastSLAM 1.0 and 2.0 begin to increase slowly, as expected. In this range, the performance
of the two algorithms is roughly equal. For very low values of measurement error, FastSLAM 1.0 clearly
begins to diverge, while the error of FastSLAM 2.0 continues to shrink. By adding more particles, the
threshold below which FastSLAM 1.0 diverges can be decreased. However, FastSLAM 2.0 can produce
accurate maps in these situations without increasing the number of particles.

The performance of the two algorithms can also be compared by keeping the measurement model
constant and varying the number of particles. FastSLAM 2.0 will require fewer particles than FastSLAM
1.0 in order to achieve a given level of accuracy, especially when measurement error is low. In the
limit, FastSLAM 2.0 can produce reasonable maps with just a single particle, while FastSLAM 1.0 will
diverge. Figure 22 shows the results of an experiment comparing the performance of FastSLAM 1.0
and 2.0 given different numbers of particles. The two algorithms were run repeatedly on simulated data
and the Victoria Park data set. On the simulated data, the accuracy of the two algorithms is similar with
more than five particles. Below five particles, FastSLAM 1.0 begins to diverge and the performance of
FastSLAM 2.0 stays approximately constant.
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Figure 22: Performance of FastSLAM algorithms with different numbers of particles.

Figure 23: Map of Victoria Park by FastSLAM 2.0 with M = 1 particle.

On the Victoria Park dataset the difference between the two algorithms is even more pronounced.
Below 50 particles, FastSLAM 1.0 starts to diverge. Again, this is because the vehicle’s controls are
noisy relative to the sensor observations.

10.2 One Particle FastSLAM 2.0

The data associations in the Victoria Park data set are relatively unambiguous, so the one particle version
of FastSLAM 2.0 can be used. With only a single particle, data association in FastSLAM 2.0 is equiv-
alent to the maximum likelihood data association algorithm of the EKF. Figure 23 shows the output of
FastSLAM with a single particle. The algorithm is able to produce results on par with those of the EKF
and FastSLAM 1.0 without storing any correlations between landmarks.

10.3 Scaling Performance

The experiment in Section 10.1 demonstrates that FastSLAM 2.0 requires fewer particles than FastSLAM
1.0 in order to achieve a given level of estimation accuracy. Fewer particles, in turn, results in faster
sensor updates. However, the construction of the improved proposal distribution requires extra time over
the FastSLAM 1.0 proposal. As the number of landmarks in the map increases, the sensor updates take
a smaller fraction of the overall run time relative to the importance resampling. In larger maps, the large
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Figure 24: Comparison of FastSLAM 1.0 and FastSLAM 2.0 timing.

savings gained as a result of needing fewer particles overwhelms the additional complexity of drawing
from the proposal distribution. The actual savings will depend on the parameters of the motion and
measurement models. Figure 24 shows the run time for the linear and log(N) versions of FastSLAM
1.0 and 2.0 all with 100 particles. In very small maps (i.e. 100 landmarks), FastSLAM 2.0 requires
approximately 3 times longer to perform a sensor update. However, in larger maps the sensor updates
only require 10-20% more time. The constant difference between FastSLAM 1.0 and 2.0 with an equal
number of particles depends primarily on the average number of observations incorporated per time step.

10.4 Loop Closing

In FastSLAM, the ability to close loops effectively depends on the number of particles M . The minimum
number of particles is difficult to quantify, because it depends on a number of factors, including the
parameters of the motion and measurement models and the density of landmarks in the environment.
FastSLAM 2.0’s improved proposal distribution insure that fewer particles are eliminated in resampling
compared to FastSLAM 1.0. Better diversity in the sample set results in better loop closing performance,
because new observations can affect the pose of the vehicle further back in the past.

Examples of loop closing with FastSLAM 1.0 and FastSLAM 2.0 are shown in Figure 25a&b, re-
spectively. The histories of all M particles are drawn for both algorithms. In Figure 25a, the FastSLAM
1.0 particles share a common history part of the way around the loop. New observations can not affect
the positions of landmarks observed before this threshold. In this case of FastSLAM 2.0, the algorithm
is able to maintain diversity that extends back to the beginning of the loop. This is crucial for reliable
loop closing and fast convergence.

Figure 26a shows the result of an experiment comparing the loop closing performance of FastSLAM
1.0 and 2.0. As the size of the loop increases, the error of both algorithms increases. However, FastSLAM
2.0 consistently outperforms FastSLAM 1.0. Alternately, this result can rephrased in terms of particles.
FastSLAM 2.0 requires fewer particles to close a given loop than FastSLAM 1.0.

10.5 Convergence Speed

By pruning away improbable trajectories of the vehicle, resampling eventually causes all of the Fast-
SLAM particles to share a common history at some point in the past. New observations cannot affect the
positions of landmarks observed prior to this point. This common history point can be pushed back in
time by increasing the number of particles M . This process of throwing away correlation data over time
enables FastSLAM’s efficient sensor updates. This efficiency comes at the cost of slower convergence
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Particles share common history here

Figure 25: FastSLAM 2.0 can close larger loops than FastSLAM 1.0 given a constant number of particles.

speed. Throwing away correlation information means that more observations will be required to achieve
a given level of accuracy.

The trade-off of number of particles versus convergence speed occurs in both FastSLAM 1.0 and
FastSLAM 2.0. However, FastSLAM 2.0 can operate without maintaining any cross-correlations be-
tween landmarks, so the relationship effect of throwing away correlation data on convergence speed
is easier to study. In particular, this effect is most prominent when closing a large loop. Revisiting a
known landmark should refine the positions of all landmarks around the loop. If correlation informa-
tion is thrown away, convergence to the true map will be slower, and more trips around the loop will be
necessary to achieve the same level of accuracy.

Figure 26b shows the results of an experiment comparing the convergence speed of FastSLAM 2.0
and the EKF. FastSLAM 2.0 (with 1, 10, and 100 particles) and the EKF were each run 10 times around
a large simulated loop of landmarks, similar to the ones shown in Figure 26a&b. Different random seeds
were used for each run, causing different controls and observations to be generated for each loop. The
RMS position error in the map at every time step was averaged over the 10 runs for each algorithm.

As the vehicle goes around the loop, error should gradually build up in the map. When the vehicle
closes the loop at iteration 150, revisiting old landmarks should affect the positions of landmarks all
around the loop, causing the overall error in the map to decrease. This clearly happens in the EKF.
FastSLAM 2.0 with a single particle has no way to affect the positions of past landmarks so there is no
drop in the landmark error. As more particles are added to FastSLAM 2.0, the filter is able to apply
observations to landmark positions further back in time, gradually approaching the convergence speed of
the EKF. Clearly, the number of particles necessary to achieve convergence time close to the EKF will
increase with the size of the loop. It is unknown at this time whether the number of particles necessary
to achieve a given accuracy is polynomial or exponential in the size of the loop. The lack of long-range
correlations in the FastSLAM representation is arguably the most important weakness of FastSLAM
algorithm over previous EKF-style techniques.

11 Discussions

This article described FastSLAM, a new family of algorithms for the simultaneous localization and map-
ping (SLAM) problem. Like many previously published SLAM algorithms, FastSLAM calculates pos-
terior probability distributions over featured maps and robot locations. It does so recursively, that is, the
current estimate is calculated from the estimate one time step earlier, using the data accrued in between.
FastSLAM is based on a key property of the SLAM problem: the conditional independence of feature
estimates given the vehicle path. This conditional independence gives rise to a factored representation of
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Figure 26: (a) Accuracy as a function of loop size: FastSLAM 2.0 can close larger loops than FastSLAM 1.0 given a fixed
number of particles. (b) Comparison of the convergence speed of FastSLAM 2.0 and the EKF.

the posterior that can be updated more efficiently than unstructured, monolithic posteriors. FastSLAM
represents this factored posterior using a combination of particle filters for estimating the robot path and
Kalman filters for estimating the map. The use of particle filters enables FastSLAM to sample over data
association hypotheses in SLAM problems with unknown data associations. This article described two
instantiations of this idea: The original FastSLAM algorithm, coined here FastSLAM 1.0, is a straight-
forward implementation of this idea. The more recent version FastSLAM 2.0, also described in this
article, offers an improved proposal distribution that yields superior practical results; however, it is more
difficult to implement than FastSLAM 1.0, and the improvement pays out only in somewhat extreme
circumstances.

The article presented several results, in addition to stating and deriving the basic algorithm. Con-
vergence of the FastSLAM 2.0 algorithm was proven for a restrictive family of linear-Gaussian SLAM
problems. The theoretical results were complemented with extensive empirical evaluations using real
world data. One of the experiments compared FastSLAM to the extended Kalman filter (EKF), using
a sequence of problems with increasingly hard data association problems. While FastSLAM 1.0 per-
formed equally well in all these problems, EKFs failed to generate consistent maps in an increasing
number of problems. Among other things, we attribute this finding to FastSLAM’s ability to sample over
data associations. Further experiments characterized the superior performance of FastSLAM 2.0 over
1.0 in regimes with low sensor noise and high motion noise. Finally, the article provided a tree-based
implementation that makes it possible to update the filter in time logarithmic in the map, which makes
FastSLAM more efficient than most other SLAM algorithms that are capable of maintaining globally
consistent maps.

The research presented here raises many open questions that warrant future research. While con-
vergence has been established for a relatively simple class of problems, no formal results are presently
available for more realistic SLAM problems. Furthermore, little is known regarding the convergence
speed of FastSLAM, both in absolute terms and in comparison to the EKF approach.

Clearly, the idea of sampling over data associations is more general than the specific setting here,
and it is highly related to previous techniques for tracking multiple objects [5, 60]. Maintaining multi-
ple hypotheses is currently poorly explored in the SLAM field, despite an important early contribution
to SLAM with known robot poses [12], and a recent approach to apply mixtures of Gaussians to the
SLAM problem [20]. We conjecture that the sampling technique over data associations is not specific to
FastSLAM, but can be applied to a wide range of SLAM algorithms.

FastSLAM, as presented in this paper, applies to feature-based maps only. Much of the recent
research in the field has focused on developing feature-less, volumetric maps. Recently, Hähnel and
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colleagues developed a highly efficient implementation of FastSLAM [27] that uses raw laser range
measurements to represent maps, instead of isolated landmarks. By doing so, the approach makes the
data association problem much easier. Similar techniques have been reported in [21, 67], with similarly
encouraging results. Results in [27] show excellent results when closing loops in such dense maps, pre-
viously postulated as one of the hardest problems in SLAM [9, 26]. A precursor to this work, which
can be thought of as an instantiation of the same idea [65], has extended FastSLAM to a multi-robot
SLAM technique. To date, this work is one of a handful of techniques capable of generating maps with
teams of robots. Initial results in [55] illustrate high promise for FastSLAM in multi-robot SLAM prob-
lems. Murphy’s paper applied a technique similar to FastSLAM to idealized versions of occupancy grid
maps [52]. Finally, FastSLAM might also yield improved results in tracking moving features, a do-
main in which similar decompositions have recently been developed using somewhat different posterior
representations [2, 47, 52].

Possibly the biggest limitation of FastSLAM is the fact that maintains dependencies in the estimates
of feature locations only implicitly, through the diversity of its particle set. This disadvantage is also the
source of FastSLAM’s efficiency—a key advantage of FastSLAM over previous techniques. However,
as the experiments in Section 10.5 suggests, in certain environments this can negatively affect the con-
vergence speed when compared to the mathematically more cumbersome EKF. Since FastSLAM was
invented, several variants of EKFs have been proposed that maintain some of these long-range depen-
dencies without sacrificing computational efficiency by more than a constant factor [9, 70]. It should be
straightforward to combine FastSLAM’s particle-approach to data association with these new techniques
for efficient Gaussian estimation.

Despite these open research topics, the algorithm FastSLAM has been shown unprecedented scal-
ability to SLAM problems with hard data association problems and large number of features. Further,
FastSLAM 1.0 tends to be easier to implement than most, if not all, published SLAM algorithms. We
believe the insights and techniques presented in this paper transcend to a large number of existing SLAM
techniques, and will ultimately deepen our understanding as to how to build detailed, accurate maps in
situations with high degrees of ambiguity,
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Appendix A: Derivation of the EKF Update Equations

The derivation of measurement update equations (53) through (55) will be essential for our proof of
convergence. We begin by noting that the exponent of (52) is a function quadratic in the target variable
θnt

. Denoting the (negative) exponent by Jt, we obtain the following derivatives:
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To show that this is equivalent to (54), all we have to show is that the K
[m]
t = Σ

[m]
nt,t

GT
θ R−1

t is equivalent
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This establishes the correctness of (54). To show (55), we restate the covariance (83) in its incremental
form. In particular, we apply the matrix inversion lemma

(C−1 + BABT )−1 = C − CB
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A−1 + BT CB
)−1

BT C (89)

to the expression (83)
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This shows the correctness of (55).

Appendix B: Convergence

The proof of convergence is carried out through a series of lemmas. For that, it will be convenient to
formulate elements of the FastSLAM 2.0 algorithm for LG-SLAM, exploiting the specific definitions of
the functions g and h in Equations (77) and (78). In particular, we have
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g(θnt

, st)
∣
∣
∣
st=ŝ

[m]
t

;θnt
=µ

[m]
nt,t−1

= I (93)

Gs = ∇st
g(θnt

, st)|st=ŝ
[m]
t

;θnt
=µ

[m]
nt,t−1

= −I (94)

Q
[m]
t = Rt + GθΣ

[m]
nt,t−1G

T
θ = Rt + Σ

[m]
nt,t−1 (95)

These equations follow directly from the more general definitions in the algorithm FastSLAM 2.0 (Equa-
tions (36) through (39) and (42)). FastSLAM 2.0’s sampling rule for the t-th pose, stated in its general
form in (40) and (41), is now conveniently written as follows:

µ[m]
st

= Σ[m]
st

GT
s Q

[m]−1
t (zt − ẑ

[m]
t ) + ŝ

[m]
t

= −Σ[m]
st

(Rt + Σ
[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut) + s

[m]
t−1 + ut (96)

Σ[m]
st

=
[

GT
s Q

[m]−1
t Gs + P−1

t

]−1
=

[

(Rt + Σ
[m]
nt,t−1)

−1 + P−1
t

]−1
(97)

Similarly, the mean update for the observed feature, which in FastSLAM 2.0 is attained via Equations
(53) and (54), can be written as follows for LG-SLAM:

µ
[m]
nt,t

= µ
[m]
nt,t−1 + Σ

[m]
nt,t−1(Rt + Σ

[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut) (98)

For our proof of the Theorem, it will be useful to introduce error variables for the estimates of the robot
pose, and the feature locations, respectively.

α
[m]
t = s

[m]
t − st (99)

β
[m]
n,t = µ

[m]
n,t − θn (100)
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There variables measure the absolute error of a particle’s estimates of the robot’s pose and the features in
the map. We will refer to the known feature as anchoring feature. The first result characterizes the effect
of map errors β on the pose the pose error α:

Lemma 1. If the error β
[m]
nt,t

of the observed feature zt at time t is smaller in magnitude than the robot

pose error α
[m]
t , α

[m]
t shrinks in expectation as a result of this measurement. Conversely, if β

[m]
nt,t

is larger

than the pose error α
[m]
t , the latter may increase, but in expectation will not exceed β

[m]
nt,t

.

Proof of Lemma 1. The expected error of the robot pose sample at time t is given by

E[α
[m]
t ] = E[s

[m]
t − st] = E[s

[m]
t ] − E[st] (101)

The first term obtained via the sampling distribution (96), and the second term is obtained from linear
motion model (78):

E[α
[m]
t ] = E

[

−Σ[m]
st

(Rt + Σ
[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut) + s

[m]
t−1 + ut

]

− E[ut + st−1]

= −Σ[m]
st

(Rt + Σ
[m]
nt,t−1)

−1(E[zt] − µ
[m]
nt,t−1 + s

[m]
t−1 + ut) + s

[m]
t−1 − st−1

︸ ︷︷ ︸

α
[m]
t−1

(102)

The last transformation exploited the linearity of the expectation. We note that in LG-SLAM (77) and
(78), the expectation E[zt] = θnt

− E[st] = θnt
− ut − st−1. With that, the expression in the brackets

becomes

E[zt] − µ
[m]
nt,t−1 + s

[m]
t−1 + ut = θnt

− ut − st−1 − µ
[m]
nt,t−1 + s

[m]
t−1 + ut

= s
[m]
t−1 − st−1 + θnt

− µ
[m]
nt,t−1

= α
[m]
t−1 − β

[m]
nt,t−1 (103)

Plugging this back into (102) and subsequently substituting Σ
[m]
st according to (97) gives us:

E[α
[m]
t ] = α

[m]
t−1 + Σ[m]

st
(Rt + Σ

[m]
nt,t−1)

−1(β
[m]
nt,t−1 − α

[m]
t−1)

= α
[m]
t−1 +

[

(Rt + Σ
[m]
nt,t−1)

−1 + P−1
t

]−1
(Rt + Σ

[m]
nt,t−1)

−1(β
[m]
nt,t−1 − α

[m]
t−1)

= α
[m]
t−1 +

[

I + (Rt + Σ
[m]
nt,t−1)P

−1
t

]−1
(β

[m]
nt,t−1 − α

[m]
t−1) (104)

Since Rt, Σ
[m]
nt,t−1, and P−1

t are all positive semidefinite, the inverse of I + (Rt + Σ
[m]
nt,t−1)P

−1
t is a

contraction matrix. This observation effectively proves Lemma 1. In particular, the expected pose error
α

[m]
t−1 shrinks in magnitude if β

[m]
nt,t

is smaller in magnitude than α
[m]
t−1. Conversely, if α

[m]
t−1 is smaller

in magnitude than β
[m]
nt,t

, Equation (104) then suggests that α
[m]
t−1 will increase in expectation, but by a

value that is proportional to this difference. This ensures that α
[m]
t−1 will not exceed the error β

[m]
nt,t

in
expectation. qed.

Of particular interest is the result of observing the anchoring feature. Without loss of generality, we
assume that this feature is θ1.

Lemma 2. If the robot observes the anchoring feature, its pose error will shrink in expectation.
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Proof of Lemma 2. For the anchoring feature θ1, we can exploit the fact that Σ
[m]
1,t = β

[m]
1,t = 0. The

lemma now follows directly from Equation (104),

E[α
[m]
t ] = α

[m]
t−1 +

[

I + (Rt + 0)P−1
t

]−1
(0 − α

[m]
t−1)

= α
[m]
t−1 −

[

I + RtP
−1
t

]−1
α

[m]
t−1 (105)

Thus, whenever the robot sees its anchoring feature its position error α
[m]
t−1 is expected to shrink. The

only exception arises when the error is already zero, in which case it remains zero in expectation. qed.

Finally, a lemma similar to Lemma 1 can be stated on the effect of pose errors α on map errors β:

Lemma 3. If the pose error α
[m]
t−1 is smaller than the error β

[m]
nt,t

of the observed feature zt in mag-

nitude, observing zt shrinks the feature error β
[m]
nt,t

in expectation. Conversely, if α
[m]
t−1 is larger than the

feature error β
[m]
nt,t

, the latter may increase, but in expectation will not exceed α
[m]
t−1.

Proof of Lemma 3. This proof is analogous to that of Lemma 1. From (98) it follows that the ex-
pected feature error after updating is:

E[β
[m]
n,t ] = E[µ

[m]
n,t − θn] = E[µ

[m]
n,t ] − θn

= E
[

µ
[m]
nt,t−1 + Σ

[m]
nt,t−1(Rt + Σ

[m]
nt,t−1)

−1(zt − µ
[m]
nt,t−1 + s

[m]
t−1 + ut)

]

− θn

= µ
[m]
nt,t−1 + Σ

[m]
nt,t−1(Rt + Σ

[m]
nt,t−1)

−1(E[zt] − µ
[m]
nt,t−1 + s

[m]
t−1 + ut) − θn (106)

Equation (103) enables us to rewrite this as follows:

E[β
[m]
n,t ] = µ

[m]
nt,t−1 + Σ

[m]
nt,t−1(Rt + Σ

[m]
nt,t−1)

−1(α
[m]
t−1 − β

[m]
nt,t−1) − θn

= β
[m]
n,t−1 + Σ

[m]
nt,t−1(Rt + Σ

[m]
nt,t−1)

−1(α
[m]
t−1 − β

[m]
nt,t−1)

= β
[m]
n,t−1 + (Σ

[m]−1
nt,t−1Rt)

−1(α
[m]
t−1 − β

[m]
nt,t−1) (107)

As in the proof of Lemma 1, Σ
[m]−1
nt,t−1 and Rt are both positive semidefinite, the inverse of Σ

[m]−1
nt,t−1Rt is a

contraction matrix, which immediately proves the lemma. qed.

The Theorem now follows from our three lemmas and the specific equations regarding the evolution
of expected errors over time.

Proof of Theorem. Let β̂
[m]
t denote feature error that is largest in magnitude among all feature errors

at time t.

β̂
[m]
t = argmax

β
[m]
n,t

|β
[m]
n,t | (108)

Lemma 3 suggests that this error may increase in expectation, but only if the absolute robot pose error
α

[m]
t−1 exceeds this error in magnitude. However, in expectation this will only be the case for a limited

number of iterations. In particular, Lemma 1 guarantees that α
[m]
t−1 may only shrink in expectation.

Furthermore, Lemma 2 states that every time the anchoring feature is observed, this error will shrink
by a finite amount, regardless of the magnitude of β̂[m]

t . Hence, α
[m]
t−1 will ultimately become smaller in

magnitude (and in expectation) than the largest feature error. Once this has happened, Lemma 3 states
that the latter will shrink in expectation every time the feature is observed whose error is largest. It is
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now easy to see that both β̂
[m]
t and α

[m]
t−1 converge to zero: Observing the anchoring feature induces a

finite reduction as stated in Equation (105). To increase α
[m]
t−1 to its old value in expectation, the total

feature error must shrink in expectation, according to Equation (107). This leads to an eternal shrinkage
of the total feature error down to zero. Since this error is an upper bound for the expected pose error (see
Lemma 1), we also have convergence in expectation for the robot pose error. qed.

Theorem 1 trivially implies following corollary, which characterizes the convergence for more than
one particle.

Corollary 1. FastSLAM 2.0 converges in expectation for LG-SLAM with if all features are observed
infinitely often and if the location of one feature is known in advance.
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