
for a control problem is like taking your car in the morning and trying to drive
to work with your eyes closed, assuming you have perfectly memorized the
itinerary. For most purpose, you’ll probably be better off designing a reasonable
even suboptimal closed-loop policy...
Remark. More generally, the choice of control can be randomized, that is, uk is
chosen according to a probability distribution depending on Ik and k, although
in this course we will usually not need this extra generality. It becomes neces-
sary to consider such randomized control laws when dealing with constrained
Markov decision processes for example [Alt99], or minimax control criteria.

The next example illustrates the ideas seen so far, and their equivalent for
continuous-time systems. Do not worry too much about the technical details
associated with continuous-time noise models, we won’t deal with them in the
course. It also shows one way of obtaining a discrete-time linear state space
model from a continuous-time one by sampling (the so-called step-invariant
transformation [CF96]).

Example 1.1.2 (discretization of a continuous-time stochastic linear
time-invariant system). A vehicle moves on a one-dimensional line, with its
position ξ ∈ R evolving in continuous time according the differential equation

ξ̈(t) = u(t) + w(t),

where w(t) is a zero mean white Gaussian noise with power spectral density
ŵ. Hence E[w(t)] = 0, and the autocorrelation of the process is E[w(t)w(τ)] =
ŵ δ(t − τ), where δ(·) is the Dirac delta function 2. The deterministic part
of the equation corresponds to Newton’s law. That is, there is a force u(t)
available for the controller to modify the acceleration of the vehicle. However,
the acceleration is also subject to a perturbation w(t) modeled as a random
noise. What is the state of this system? Ignoring the stochastic component w(t)
at least for the moment, and by analogy with our definition in the discrete-time
domain, elementary notions of differential equations tell us that the information
necessary at time t to characterize the future evolution of the system consists
of both the position and velocity of the vehicle, that is, the state is the two-
dimensional vector x = [ξ, ξ̇]T . We can rewrite the dynamics as

ẋ =
�
0 1
0 0

�
x +

�
0
1

�
u +

�
0
1

�
w. (1.3)

More generally, the state-space representation of a continuous-time linear Gaus-
sian time-invariant system can be written as

ẋ(t) = Ax(t) + Bu(t) + Qw(t), (1.4)
2we will not spend time in this course on building rigorous foundations in stochastic

calculus, because most of the time we will work directly with a discrete-time model. When
needed, we will use continuous-time “white noise” freely, as does most of the engineering
literature, even though it is usually more convenient from a mathematical point of view
to work with integrals of the noise. For a gentle introduction to some of the mathematics
involved in a more rigorous presentation, see for example [Oks07].
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where x is the state vector of dimension nx, u is the input vector of dimension
nu, w is a zero mean white Gaussian process noise vector of dimension nw and
power spectral density matrix E[w(t)w(τ)T ] = W δ(t− τ), and A, B, Q,W are
known matrices of appropriate dimensions. The matrix A is called the system
matrix, B is the input gain and Q is the noise gain. The output of the system
(i.e., the available measurements) is assumed to be a vector of dimension ny of
the form

y(t) = Cx(t) + Du(t) + Rv(t). (1.5)

Here v is a zero mean white Gaussian measurement noise vector of dimension
nv and power spectral density matrix E[v(tv(τ)] = V δ(t− τ), and C is called
the measurement matrix. We assume that RV 1/2 is invertible. The general
solution of (1.4) can be written explicitely as

x(t) = eA(t−t0)x(t0) +
� t

t0

eA(t−τ)[Bu(τ) + Qw(τ)]dτ. (1.6)

The fact that w(t) is a white noise translates into the fact that x(t) satisfies the
properties necessary to represent the state of the system. In this probabilistic
model, it means that the distribution of x(t) at some time t conditioned on its
values up to an earlier time t� depends only on the last value x(t�):

P (x(t)|x[−∞,t�], u[t�,t]) = P (x(t)|x(t�), u[t�,t]), for t� < t.

In probabilistic terms, x(t) is a Markov process when the system is driven by
white noise (this would not necessarily be the case if w were not white, because
states prior to t� could be used to predict w[t�,t] and x(t) in some way).

Now suppose that we sample the system (1.4) periodically with period T .
It is assumed that between samples, the input u(t) is kept constant

u(t) = u(kT ), ∀ kT ≤ t < (k + 1)T.

Let us write x(k) := x(kT ), and similarly for the other signals. Then from (1.6)
we deduce the following linear time invariant difference equation3 for x(k)

x(k + 1) = Ad x(k) + Bd u(k) + w̃(k), (1.7)

where

Ad := eAT , Bd := eAT

�� T

0

e−A sds

�
B,

w̃(k) =
� (k+1)T

kT

eA((k+1)T−τ)Qw(τ)dτ.

3this discretization step is exact for linear systems with such piecewise constant inputs,
that is, x(k) represents exactly the value of the signal x(t) at the sampling times, with no
approximation involved so far. It is one of the basic techniques in digital control system
design, worth remembering.
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From the assumption that w(t) is Gaussian, zero mean white and stationary
(i.e., W independent of t), it follows that {w̃(k)}k≥0 is i.i.d. Gaussian with
mean E[w̃(k)] = 0 and covariance matrix E[w̃(j)w̃(k)T ] = Wd δjk where

Wd =
� (k+1)T

kT

eA((k+1)T−τ)QWQT eAT ((k+1)T−τ)dτ

=
� T

0

eA(T−u)QWQT eAT (T−u)du.

Hence after discretization the system at the sampling times is described by
(1.7), which is a discrete time controlled random walk (CRW) of the form
(1.1). The process x(k) is a Markov chain, evolving over the continuous state
space Rnx . The CRW is driven by a discrete time zero mean Gaussian white
noise w̃ with covariance matrix Qd. Note that a first order approximation (as
T → 0) of Wd is

Wd ≈ (QWQT ) T

Exercise 1. Rederive the expression of Wd in more details, starting from the
definition of the covariance E[w̃(j)w̃(k)T ]. You can proceed formally, using
properties of the Dirac delta, and not worry about the theory.

We now proceed to discretize the output of the sensor, i.e., the measurement
signal y(t) which can be used to design the control u(k). Here the mathematical
issues involved in dealing with continuous-time white observation noise appear
more clearly. We cannot usually work directly with the samples v(kT ) of the
observation noise, notably in the very important case of white Gaussian noise,
because this would not be well defined mathematically. Instead, we define the
discrete-time measurement equation to be

ỹ(k) = Cx(k) + Du(k) + ṽ(k), (1.8)

where ṽ is a discrete-time zero-mean white noise with covariance matrix

E[ṽ(j)ṽ(k)T ] =: Vdδjk.

This measurement equation is of the form (1.2) introduced earlier, except for
a time indexing convention for uk which is not important for the development
of the theory. It is possible to establish more formal relationships between
the continuous-time and discrete-time measurement equations (1.5) and (1.8),
however. Typically, we need to introduce an integration step, which we did not
have for the process noise because the system dynamics (1.4) already involve
a differential equation with w on the right hand side. It turns out that the
covariance of the corresponding discrete-time noise in (1.8) should be chosen
as

Vd :=
RV RT

T
. (1.9)
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In (1.8), we used the notation ỹ(k) instead of y(k) because ỹ(k) is not equal to
y(kT ). Instead, as in the derivation presented below, ỹ(k) can be thought of
as the time average of the signal y(t) over the period T

ỹ(k) =
1
T

� (k+1)T

kT

y(τ)dτ.

This is compatible with real-world measurement devices, which cannot sample
continuous-time values perfectly but perform a “short-term” integration. More-
over, in contrast to the discretization of the system dynamics, (1.8) involves
an approximation, namely, it assumes that the state x(t) is constant over the
interval kT ≤ t < (k + 1)T . The derivation of (1.8) below is only given for
completeness and can be skipped. It serves to justify the choice of the discrete-
time covariance matrix (1.9), which is useful to pass from continuous-time to
discrete-time filters for example. But for all practical purposes, in this course
equation (1.8) can simply be taken as the definition of the discrete-time values
returned by a digital sensor.

Derivation of the measurement equation (1.8): with the definition of ỹ(k) above,
and approximating x(t) by the constant x(k) over the interval kT ≤ t < (k + 1)T , we see
that

ṽ(k) =
1

T

Z (k+1)T

kT
R v(τ)dτ. (1.10)

Now by definition the Gaussian white noise v(t) is the formal derivative of a Brownian
motion Bt, with mean zero and covariance V . In stochastic calculus, equation (1.10) would
be written

ṽ(k) =
1

T

Z (k+1)T

kT
R dBτ .

The property E[ṽ(k))] = 0 is then a standard property of the stochastic integral, and the
discrete-time covariance matrix is

E[ṽ(j)ṽ(k)T ] = δjk
1

T 2
R E

2
4
 Z (k+1)T

kT
dBτ

! Z (k+1)T

kT
dBτ

!T
3
5RT

= δjk
R

T 2

 Z (k+1)T

kT
V dτ

!
RT

= δjk
RV RT

T
.

Here the first line (introduction of δjk) follows from basic properties of the Brownian motion
(the independence property of the increments and their zero-mean distribution), and the
second equality is called the Itô isometry, see e.g. [Oks07].

Objective to Optimize

So far we have discussed the dynamical systems of interest in this course, as
described in discrete-time by the state space equations (1.1) and (1.2). The
specification of a problem involves choosing an appropriate state, describing
the available measurements, the process and measurement disturbances, and
determining what the available controls or decisions are and how they influence
the dynamics of the system and the measurements. Control theory studies
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