ECE276A: Sensing & Estimation in Robotics
Lecture 10: Gaussian Mixture and Particle Filtering

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:s9guo@eng.ucsd.edu
mailto:a2pal@eng.ucsd.edu

Vectors Notation
x € R

A E Rnxm

d-dimensional vector in Euclidean space. It may be de-
terministic or random. If it is random we describe it
with a parametric distribution with parameters 6 or w or
equivalently with its probability density function p(x; w).
Example: x ~ N (p, X) with pdf ¢(x; 1, L), where N is
the distribution, ¢ is the pdf, and {u, X} are the deter-
ministic vector and matrix parameters.

An n x m dimensional matrix. Its transpose is AT €
R™*" and its inverse (if it exists) is A™1 € R™™ for
n=m.

vector Euclidean norm
a vector that changes in continuous time t € R+
a vector that changes in discrete time t € N

time derivative of x(t)

Random Vectors Notation

x € R

E[h(x)]

p = E[x]

Xt = arg max p(x)
E[xxT]

L= E|(x— u)(x -

= E[XXT} — u,uT

1) T]

d-dimensional random vector with CDF F ()
and pdf p(+)

expectation of a function h of the random
vector x:

E[h(x)] := /h(x)p(x)dx

mean of x, also called first moment of x

mode of x

second moment of x

(co)variance of x

Parameter Estimation Notation

D= {thi}?:l
p(xi, yi; w)
p(yi | xi;w)

max,, H,Ll p(xi, yi;w)

max,, p(x, y;w)

training data of examples x; € R? and la-
bels y; € {—1,1} (classification) or y; € R
(regression). The elements (x;,y;) are iid
(over i) sampled from an unknown joint
(over x; and y;) pdf p*(x;, yi)

generative model using pdf parameters w
discriminative model using parameters w
training: parameter estimation via MLE

testing: label prediction for given new sam-
ple x and already trained parameters w

sigmoid function: useful for modeling bi-
nary classification

softmax function: useful for modeling K-
ary classification

Orientations Notation

aeR3

a € s0(3)

>

R = exp(4) € SO(3)

g =exp([0,33a]) € S

an axis-angle representation of orientation/rota-
tion, also called rotation vector. The axis of ro-
tation is £ := and the angle is 6 := ||a]|2

llall2
a skew-symmetric matrix associated with cross
products 4b = a x b for b € R3. Skew-symmetric
matrices define the Lie algebra (i.e., local linear
approximation) of the Lie group of rotations.

rotation matrix representation of the rotation vec-
tor a € R3. The matrix exponential function is
exp(A) ==, A—!k and for rotations can be com-
puted in closed form via the Rodrigues formula.

quaternion representation of the rotation vector
a € R3. The quaternion exponential function is
not the same as the matrix exponential function!

Transformations Notation

weR3

¢ = (w,v) €ERE

¢ € se(3)

g =exp(() € SE(3)

Angular velocity — defines the rate of change of
orientation for rotation matrices R = WR or equiv-

alently for quaternions g = [0, %] oq

Linear velocity v € R3 and angular velocity w € R3

A,

. . w V 4 4 .. .
a twist matrix € R*** defining the Lie

0 1
algebra of the Lie group of rigid body transforma-
tions. A twist C defines the rate of change of pose
of position p = &p + v and orientation R=G&R
R p
a matrix g = representing rigid body
0 1
transformations, where R € SO(3) is the rota-
tion /orientation and p € R3 is the translation /po-
sition

Transformations Notation

wggr € SE(3) x¢ € SE(3)

81D & = 8182
Ri pi| |R2 p2

Rl —Ripi| |R

P2

Body frame to world frame
transformation defined by the
body pose ywgg (or robot state

Xt)

Transformation composition in
SE(3) (equivalent to addition
in Euclidean spaces)

Transformation inverse com-
position in SE(3) (equivalent
to subtraction in Euclidean
spaces)

Filtering Notation

XteRd

ug € Rd”
Zy € Rdz

Wi NN(O, W)
Vi NN(O, V)

pt|t(Xt)

Pt+1|t(Xt+1)

system/robot state to be estimated (e.g., position, ori-
entation, etc.). Usually x; ~ N(Mm,zm) with pdf
¢(Xt;,ut\t7zt\t)

known system/robot control input (e.g., rotational ve-
locity)

known system/robot measurement/observation (e.g.,
pixel coordinates)

Gaussian motion noise
Gaussian observation noise

pdf of the robot state x; given past measurements zy.;
and control inputs uo:t—1: Pe|e(xt) := p(xt | 20:t, Uo:t—1)

predicted pdf of the robot state x;1; given past mea-
surements zg.; and control inputs wug.;: Pt+1\t(Xt+1) =
p(xt+1 | Zo:t, Uo:t)

Bayes Filter ® ®)
» Motion model: @ Q @

Xt+1 = a(xt, Ug, Wt) ~ pa(' | Xt, Ut)

» Observation model:

2e = h(xe, ve) ~ pa(- | xe)) () ®

Pt\t(Xt) = p(xt | 20:t, to:t—1)

> Filtering: keeps track of
Pt+1\t(Xt+1) = P(Xt+1 \ 20:t, UO:t)
» Bayes filter:
ﬁ Predict: p, 1j¢(xe+1)

—_——
1

p(zt+1 ‘ZO:ta uO:t)

Pt+1|t+1(Xt+1) = Ph(Zt+1 | Xt+1)/pa(xt+1 | Xt Ut)pt|t(Xt)dXt

Update
» Joint distribution:
T T
p(xo:7, 20.7, to:7-1) = pojo(x0) [[paze [xe)] pale | xe-1, ue-1)
—_—— T N——

0

= . t= .
prior observation model motion model

Gaussian Mixture Filter

P) (k)
> Prlor' Xt | 20:t, Uo:t—1 pt|t(XX) = Zk aflt ¢(Xtv Ht‘t } Zt|f
» Motion model: Xt+1 = /4X1_L + BUt + Wi, W ~ N(O, W)
» Observation model: z; = Hx; + v¢, v; ~N(0, V)
» Prediction:
k k k
Priafe(x) = / pa(x| s, ut)pm(s)dszzaﬁ,ﬁ Palix | 5, ue)o (5l £) ds
- Zam (x: Aulf) + Bu, Azﬁlkt)AT + W)
> Update:
k k k
Ph(Zes1 | X)Peyaje(x) (ze41i Hx, V) Do O"(H)md’(x “(H)uwz(w)l\t)
p(zt41 | 20:¢, Uo:t) J #(ze41; Hs, V) -(x&’ll‘tzﬁ(s “21# &Qm)ds
k
- Z) 0(zes1; Hx, V)(/)(x ,thl‘t,z(tjl‘t) (/)(zt+1 Hl, o HE, HT + v)
Y at+1‘t¢><zt+1 Hp0)y o M) HT 4+ V) o(zm Hidy oo HER), HT 4+ V)
k
r+1|t (ZHL Hu(t-i-)l\t H):(H—)l\tHT + V)
(zear; HY) HEY) HT 4 v
t+1\t 1 A gy H e

Pt+1\t+1(x) =

e

. (K) (k) (k) (k (k)
>:|‘D(X'“t+1t+Kt+1|t(zf+1_H“t+1t) (I_K+1\rH)):t+1\t)

» Kalman Gain: K% .= 5 HT(HZ(k)

T —
t+1|t : t+1|t t+1|tH + V)

Gaussian Mixture Filter

v

k k
pdf Xt ’ 20: ty up:t—1 ~~ pt‘t Zat‘t (Xt ’U/Elt)72£|t)>

v

mean: [i;; = E[Xt ’ Z20:t, UO:t—l] = /Xptt X)dX - Zat\t Mtlt

. . T T
> cov: z1:|t = E[tht | zo:t, UO't—l] = He|ely)e

k k
/XX Pt|t(X) #t|t#t\t Zat\t< t|t +N§‘t)(ﬂg|t)))‘Mt|t#t7\—t

v

The GMF is just a bank of Kalman filters; sometimes called Gaussian
Sum filter

11

Gaussian Mixture Filter

> If the motion or observation models are nonlinear, we can apply the EKF
or UKF tricks to get a nonlinear GMF

» Additional operations are needed when strong nonlinearities are present
in the motion or observation models:
» Refinement: introduces additional components to reduce the

linearization error
» Pruning: approximates the overall distribution with a smaller number of
components (e.g., using KL divergence as a measure of accuracy)

> More details:
> Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber
» Bayesian Filtering and Smoothing: Sarkka

12

Histogram Filter

> Represent the pdf via a histogram over a discrete set of possible
locations

» The accuracy is limited by the grid size

> A small grid becomes very computationally expensive in high
dimensional state spaces because the number of cells is exponential in
the number of dimensions

> ldea: represent the pdf via adaptive discretization, e.g., octrees

13

Histogram Filter

» Prediction step
» Assume bounded Gaussian noise in the motion model
» The prediction step can be realized by shifting the data in the grid
according to the control input and convolving the grid with a separable
Gaussian kernel:

1/16 1/8 1/16 1/4

IR
+

1/8 1/4 1/8

1/16 1/8 1/16 1/4

» This reduces the prediction step cost from O(n?) to O(n) where n is the
number of cells
» Update step
» To update and normalize the pdf upon sensory input, one has to iterate
over all cells
» lIs it possible to monitor which part of the state space is affected by the
observations and only update that?

14

Particle Filter
> A Gaussian mixture filter with ng(t) — 0 so that
¢<Xt:/i§‘kt),z(trt)) — 5(Xt ,U§|t)) =1{x = uif?}
> Prior: x; | z0.t, Uo:t—1 ~ Peje(Xx) == Zivtltl atf(t)é(xt,u(trt)>
» Motion model: x;y1 ~ pa(- | x¢, ut)
» Observation model: z; ~ py(- | x¢)

» Prediction:

:\t Nt+1\r
k) (k) (k)
pssi) = [pulx | 5.)3l (sinf) s - } jat‘tpxx 0,00 Y a5 (i)
k=1

> Update:
1)t (k k k k
phl(zer | X) S gt aggma(x;uﬁjm) Ml ez [l ()
s)

G F = F - VY
N, N, t+1|t
S pu(zesn | 8) 200" 't+1\t (5;“21“) ds k=1 j:r;m a&zmph (Zfﬂ ‘ /‘({/ll\t

Pt+1\t+1(x) =

15

Particle Filter Resampling
» How do we approximate the prediction step?

Ny)e +1

k k k
Pri1)e(x) = Za§|t)Pa(X | U£|t)7 Z t+1\t (X '“(t+)1|t>
k=1

» How do we avoid particle depletion - a situation in which most of the
particle weights are close to zero?

> Just like the GMF uses refinement and pruning, the particle filter uses a
procedure called resampling to:
1. approximate the prediction step
2. avoid particle depletion during the update step

» Resampling is applied at time t if the effective number of particles:

1
Neff := —=—————— | is less than a threshold

S (alf))?

16

Particle Filter Prediction
» How do we approximate the prediction step?

Nt|t Nt +1|t

(k)
Pei1fe(x Zatlt pa(x | 'ut|t’ Z O‘t+1\t (X 'ut+1|t>

> Since p;11|¢(x) is a mixture pdf, we can approximate it with particles by
drawing samples directly from it

> Let Ny q); be the number of particles in the approximation (usually,
Nt+1|t = Nt|t)

> Bootstrap approximation: repeat N; |, times and normalize the
weights at the end:

» Draw j € {1,..., Ny} with probability oztj‘)t
> DraW /’LE—Jll‘t ~ Pa (| ,LLt‘t’ ut)

» Add the weighted sample (u(tﬁllt,ptﬂu(ugl‘t)) to the new particle set

17

Particle Filter
i=1...n=10 particles

oe o e e oo e] {[l,(‘fjl,%}

D - ———

I
| : :|
| | [|
Update ' i ‘ ‘ ‘H : {,uf‘f),af‘f)}
Resampling : E f é ! {ﬁf(\f)’%}
| / : |'A| II
N AL
8! $

(et /)

Prediction & A

|
|
|
|
: (k) (k)
9 9
® {#t+l\t+l’at+l\t+l}

|
|
|
|
:
¥

L]

Al
Update °
18

Inverse Transform Sampling

» Target distribution: How do we sample from a distribution with pdf
p(x) and CDF F(x) = [*_ p(s)ds?

Inverse transforming sampling for normal distribution

— pdf flx) I ,

. | — ‘cdf Az)= : f(t) dt : ’
» Inverse Transform Sampling: f [

1. Draw u ~U(0,1)

2. Return inverse CDF value:
p=F"(u)

3. The CDF of F~1(u) is:

P(F Y () < x) = B(u < F(x)), Je=Fiw
= F(x)
15} ,// .'I
- |
// l
_20 1 |
-20 -15 -10 -05 00 05 10 15

Rejection Sampling

» Target distribution: How do we sample from a complicated pdf p(x)?

» Proposal distribution: use another pdf g(x) that is easy to sample
from (e.g., Uniform, Gaussian) and: Ap(x) < q(x) with A € (0,1)
» Rejection Sampling:
1. Draw u ~U(0,1) and p ~ ¢(:)
%}%l. If X is small, many rejections are necessary

» Good g(x) and A are hard to choose in practice

2. Return ponly if u <

%q(x)

reject reg

H~q(x)

20

Sample Importance Resampling (SIR)

>
>

How about rejection sampling without A?
Sample Importance Resampling for a target distribution p(-) with
proposal distribution g(-)

1. Draw p® ... u™M ~ g()

. . (k) . (k)
2. Compute importance weights a(k) = ZEZ‘“; and normalize: a(k) = %

3. Draw p(k) independently with replacement from {M(l), e 7M(N)} with
probability alk) and add to the final sample set with weight %
If q(-) is a poor approximation of p(-), then the best samples from q are
not necessarily good samples for resampling
Markov Chain Monte Carlo methods (e.g., Metropolis-Hastings and
Gibbs sampling):
» The main drawback of rejection sampling and SIR is that choosing a good
proposal distribution g(-) is hard
> lIdea: let the proposed samples ;1 depend on the last accepted sample p/,
i.e., obtain correlated samples from a conditional proposal distribution
p9 ~ g (-] D)
> Under certain conditions, the samples generated from g(- | /) form an
ergodic Markov chain with p(-) as its stationary distribution
21

Stratified Resampling

> In the last step of SIR, the weighted sample set {M(k), a(k)} is resampled
independently with replacement

> This might result in high variance resampling, i.e., sometimes some
samples with large weights might not be selected or samples with very
small weights may be selected multiple times

» Stratified resampling: guarantees that samples with large weights
appear at least once and those with small weights — at most once.
Stratified resampling is optimal in terms of variance (Thrun et al.
2005)

> Instead of selecting samples independently, use a sequential process:
» Add the weights along the circumference of a circle
» Divide the circle into N equal pieces and sample a uniform on each piece
» Samples with large weights are chosen at least once and those with small
weights — at most once

22

Stratified Resampling

Stratified (low variance) resampling

1: Input: particle set {u(k),a(k)}ﬁlzl
2: Output: resampled particle set

3 /1 c+al

4. for k=1,...,N do

5 unr Z/{(O, L) “
6: B=u-+ k—Nl
7 while 5> ¢ do
8
9

Random

=|

\Z \

/
/ Random \
[4] I“ 5]

«

j=j+1 c=c+al)
add (u(f), %) to the new set

» Systematic resampling: the same as stratified resampling except that
the same uniform is used for each piece, i.e., u ~ (0, 1) is sampled
only once before the for loop above.

» Sample importance resampling (SIR): draw p%) independently with
replacement from {u(l), . ,,LL(N)} with probability a(k) and add to the
final sample set with weight % 23

Particle Filter Summary

> Prior: x; | 20t Uo:e—1 ~ Pre(Xx) == ZLle at|t (xt u&f?)
» Motion model: x;11 ~ pa(- | X, ut)
» Observation model: z; ~ py(- | x¢)
» Prediction: approximate the mixture by sampling:
Ny Nt Nepaje

pt+1‘t X) / a(X | S, ut)zatrt)6<s /’l’t|t)ds - Zat‘t pa(X | :u(t‘kt)7 Z at-f—l‘t (X 'ut-f—)l‘t)

> Update: rescale the particles based on the observation likelihood:

Ner1je (k k k
i) E ol () Z{ I CEen R
>)

Nesaie Nesae () U) e
S pu(zesnis) 350 t+1\t (s “rﬂ\t)ds k=1 =1 CetyePrlZern | iy,

Pt+1\t+1(x)

> If Negr = < Nipreshold, Yesample the particle set

1
N K =~

Zkﬂf <0‘E\t))2

{ugfmﬂ,agﬁ'tﬂ} via stratified or sample importance resampling

24

Rao-Blackwellized Particle Filter

» The Rao-Blackwellized (marginalized)
particle filter is applicable to :
conditionally linear-Gaussian models: :

1

(A%)d

)iy = F00) + ALCOXE + GR(wy T
Xt = () + AE)X + G wy o

H . n

2 = he(x) + Ct(Xt”)XtI + v N.onllnear statesl. X{

Linear states: x

t
> ldea: exploit linear-Gaussian sub-structure to handle high dim. problems

| _n / n n
P(XuXo;t \ 20:t, UO:t—l) = P(Xt | 20:t, uO:t—17XO:t) P(Xo;t ! 20:t, UO:t—l)

Kalman Filter Particle Filter
Nt|t
= () s5(s . k) 1K) (k)
- Z e (5<X0:t' L >¢(Xt, Feje s Zt‘t)
k=1

» The RBPF is a combination of the particle filter and the Kalman filter,
in which each particle has a Kalman filter associated to it -

