
ECE276A: Sensing & Estimation in Robotics
Lecture 10: Gaussian Mixture and Particle Filtering

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:s9guo@eng.ucsd.edu
mailto:a2pal@eng.ucsd.edu

Vectors Notation

x ∈ Rd d-dimensional vector in Euclidean space. It may be de-
terministic or random. If it is random we describe it
with a parametric distribution with parameters θ or w or
equivalently with its probability density function p(x ;w).
Example: x ∼ N (µ,Σ) with pdf φ(x ;µ,Σ), where N is
the distribution, φ is the pdf, and {µ,Σ} are the deter-
ministic vector and matrix parameters.

A ∈ Rn×m An n × m dimensional matrix. Its transpose is AT ∈
Rm×n and its inverse (if it exists) is A−1 ∈ Rn×m for
n = m.

‖x‖2 := xT x vector Euclidean norm

x(t) a vector that changes in continuous time t ∈ R>0

xt a vector that changes in discrete time t ∈ N

ẋ(t) := d
dt x(t) time derivative of x(t)

2

Random Vectors Notation

x ∈ Rd d-dimensional random vector with CDF F (·)
and pdf p(·)

E[h(x)] expectation of a function h of the random
vector x :

E[h(x)] :=

∫
h(x)p(x)dx

µ := E[x] mean of x , also called first moment of x

x∗ := arg max
x

p(x) mode of x

E
[
xxT

]
second moment of x

Σ := E
[
(x − µ)(x − µ)T

]
= E

[
xxT

]
− µµT

(co)variance of x

3

Parameter Estimation Notation
D := {xi , yi}n

i=1 training data of examples xi ∈ Rd and la-
bels yi ∈ {−1, 1} (classification) or yi ∈ R
(regression). The elements (xi , yi) are iid
(over i) sampled from an unknown joint
(over xi and yi) pdf p∗(xi , yi)

p(xi , yi ;ω) generative model using pdf parameters ω

p(yi | xi ;ω) discriminative model using parameters ω

maxω
∏n

i=1 p(xi , yi ;ω) training: parameter estimation via MLE

maxy p(x , y ;ω) testing: label prediction for given new sam-
ple x and already trained parameters ω

σ(z) := 1
1+exp(−z) ∈ R sigmoid function: useful for modeling bi-

nary classification

softmax(z) := ez

1T ez ∈ Rd softmax function: useful for modeling K -
ary classification

4

Orientations Notation

a ∈ R3 an axis-angle representation of orientation/rota-
tion, also called rotation vector. The axis of ro-
tation is ξ := a

‖a‖2 and the angle is θ := ‖a‖2

â ∈ so(3) a skew-symmetric matrix associated with cross
products âb = a × b for b ∈ R3. Skew-symmetric
matrices define the Lie algebra (i.e., local linear
approximation) of the Lie group of rotations.

R = exp(â) ∈ SO(3) rotation matrix representation of the rotation vec-
tor a ∈ R3. The matrix exponential function is
exp(A) :=

∑∞
k=0

Ak

k! and for rotations can be com-
puted in closed form via the Rodrigues formula.

q = exp([0, 12a]) ∈ S3 quaternion representation of the rotation vector
a ∈ R3. The quaternion exponential function is
not the same as the matrix exponential function!

5

Transformations Notation
ω ∈ R3 Angular velocity – defines the rate of change of

orientation for rotation matrices Ṙ = ω̂R or equiv-
alently for quaternions q̇ =

[
0, ω2

]
◦ q

ζ := (ω, v) ∈ R6 Linear velocity v ∈ R3 and angular velocity ω ∈ R3

ζ̂ ∈ se(3) a twist matrix

ω̂ v

0 1

 ∈ R4×4 defining the Lie

algebra of the Lie group of rigid body transforma-
tions. A twist ζ̂ defines the rate of change of pose
of position ṗ = ω̂p + v and orientation Ṙ = ω̂R

g = exp(ζ̂) ∈ SE (3) a matrix g =

R p

0 1

 representing rigid body

transformations, where R ∈ SO(3) is the rota-
tion/orientation and p ∈ R3 is the translation/po-
sition

6

Transformations Notation

W gB ∈ SE (3) xt ∈ SE (3) Body frame to world frame
transformation defined by the
body pose W gB (or robot state
xt)

g1 ⊕ g2 := g1g2

=

R1 p1

0 1

R2 p2

0 1

 Transformation composition in
SE (3) (equivalent to addition
in Euclidean spaces)

g2 	 g1 := g−11 g2

=

RT
1 −RT

1 p1

0 1

R2 p2

0 1

 Transformation inverse com-
position in SE (3) (equivalent
to subtraction in Euclidean
spaces)

7

Filtering Notation
xt ∈ Rd system/robot state to be estimated (e.g., position, ori-

entation, etc.). Usually xt ∼ N
(
µt|t ,Σt|t

)
with pdf

φ(xt ;µt|t ,Σt|t)

ut ∈ Rdu known system/robot control input (e.g., rotational ve-
locity)

zt ∈ Rdz known system/robot measurement/observation (e.g.,
pixel coordinates)

wt ∼ N (0,W) Gaussian motion noise

vt ∼ N (0,V) Gaussian observation noise

pt|t(xt) pdf of the robot state xt given past measurements z0:t
and control inputs u0:t−1: pt|t(xt) := p(xt | z0:t , u0:t−1)

pt+1|t(xt+1) predicted pdf of the robot state xt+1 given past mea-
surements z0:t and control inputs u0:t : pt+1|t(xt+1) :=
p(xt+1 | z0:t , u0:t)

8

Bayes Filter
I Motion model:

xt+1 = a(xt , ut ,wt) ∼ pa(· | xt , ut)

I Observation model:
zt = h(xt , vt) ∼ ph(· | xt)

I Filtering: keeps track of
pt|t(xt) := p(xt | z0:t , u0:t−1)

pt+1|t(xt+1) := p(xt+1 | z0:t , u0:t)

I Bayes filter:

pt+1|t+1(xt+1) =

1
ηt+1︷ ︸︸ ︷
1

p(zt+1|z0:t , u0:t)
ph(zt+1 | xt+1)

Predict: pt+1|t(xt+1)︷ ︸︸ ︷∫
pa(xt+1 | xt , ut)pt|t(xt)dxt︸ ︷︷ ︸

Update

I Joint distribution:

p(x0:T , z0:T , u0:T−1) = p0|0(x0)︸ ︷︷ ︸
prior

T∏
t=0

ph(zt | xt)︸ ︷︷ ︸
observation model

T∏
t=0

pa(xt | xt−1, ut−1)︸ ︷︷ ︸
motion model

9

Gaussian Mixture Filter
I Prior: xt | z0:t , u0:t−1 ∼ pt|t(xx) :=

∑
k α

(k)
t|t φ

(
xt ;µ

(k)
t|t ,Σ

(k)
t|t

)
I Motion model: xt+1 = Axt + But + wt , wt ∼ N (0,W)
I Observation model: zt = Hxt + vt , vt ∼ N (0,V)
I Prediction:

pt+1|t(x) =

∫
pa(x | s, ut)pt|t(s)ds =

∑
k

α
(k)
t|t

∫
pa(x | s, ut)φ

(
s;µ

(k)
t|t ,Σ

(k)
t|t

)
ds

=
∑

k

α
(k)
t|t φ

(
x ;Aµ

(k)
t|t + But ,AΣ

(k)
t|t A

T + W
)

I Update:

pt+1|t+1(x) =
ph(zt+1 | x)pt+1|t(x)

p(zt+1 | z0:t , u0:t)
=

φ(zt+1;Hx ,V)
∑

k α
(k)
t+1|tφ

(
x ;µ

(k)
t+1|t ,Σ

(k)
t+1|t

)
∫
φ(zt+1;Hs,V)

∑
j α

(j)
t+1|tφ

(
s;µ

(j)
t+1|t ,Σ

(j)
t+1|t

)
ds

=
∑

k

 α
(k)
t+1|tφ(zt+1;Hx ,V)φ

(
x ;µ

(k)
t+1|t ,Σ

(k)
t+1|t

)
∑

j α
(j)
t+1|tφ

(
zt+1;Hµ

(j)
t+1|t ,HΣ

(j)
t+1|tH

T + V
) × φ

(
zt+1;Hµ

(k)
t+1|t ,HΣ

(k)
t+1|tH

T + V
)

φ
(
zt+1;Hµ

(k)
t+1|t ,HΣ

(k)
t+1|tH

T + V
)

=
∑

k

 α
(k)
t+1|tφ

(
zt+1;Hµ

(k)
t+1|t ,HΣ

(k)
t+1|tH

T + V
)

∑
j α

(j)
t+1|tφ

(
zt+1;Hµ

(j)
t+1|t ,HΣ

(j)
t+1|tH

T + V
)
φ(x ;µ

(k)
t+1|t +K

(k)
t+1|t(zt+1−Hµ(k)t+1|t), (I−K (k)

t+1|tH)Σ
(k)
t+1|t

)

I Kalman Gain: K
(k)
t+1|t := Σ

(k)
t+1|tH

T
(
HΣ

(k)
t+1|tH

T + V
)
−1

10

Gaussian Mixture Filter

I pdf: xt | z0:t , u0:t−1 ∼ pt|t(x) :=
∑

k

α
(k)
t|t φ

(
xt ;µ

(k)
t|t ,Σ

(k)
t|t

)

I mean: µt|t := E[xt | z0:t , u0:t−1] =

∫
xpt|t(x)dx =

∑
k

α
(k)
t|t µ

(k)
t|t

I cov: Σt|t := E
[
xtx

T
t | z0:t , u0:t−1

]
− µt|tµ

T
t|t

=

∫
xxTpt|t(x)dx − µt|tµ

T
t|t =

∑
k

α
(k)
t|t

(
Σ
(k)
t|t + µ

(k)
t|t (µ

(k)
t|t)T

)
− µt|tµ

T
t|t

I The GMF is just a bank of Kalman filters; sometimes called Gaussian
Sum filter

11

Gaussian Mixture Filter

I If the motion or observation models are nonlinear, we can apply the EKF
or UKF tricks to get a nonlinear GMF

I Additional operations are needed when strong nonlinearities are present
in the motion or observation models:

I Refinement: introduces additional components to reduce the
linearization error

I Pruning: approximates the overall distribution with a smaller number of
components (e.g., using KL divergence as a measure of accuracy)

I More details:
I Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber
I Bayesian Filtering and Smoothing: Särkkä

12

Histogram Filter
I Represent the pdf via a histogram over a discrete set of possible

locations
I The accuracy is limited by the grid size
I A small grid becomes very computationally expensive in high

dimensional state spaces because the number of cells is exponential in
the number of dimensions

I Idea: represent the pdf via adaptive discretization, e.g., octrees

13

Histogram Filter

I Prediction step
I Assume bounded Gaussian noise in the motion model
I The prediction step can be realized by shifting the data in the grid

according to the control input and convolving the grid with a separable
Gaussian kernel:

I This reduces the prediction step cost from O(n2) to O(n) where n is the
number of cells

I Update step
I To update and normalize the pdf upon sensory input, one has to iterate

over all cells
I Is it possible to monitor which part of the state space is affected by the

observations and only update that?

14

Particle Filter

I A Gaussian mixture filter with Σ
(k)
t|t → 0 so that

φ
(
xt ;µ

(k)
t|t ,Σ

(k)
t|t

)
→ δ

(
xt ;µ

(k)
t|t

)
:= 1{xt = µ

(k)
t|t }

I Prior: xt | z0:t , u0:t−1 ∼ pt|t(xx) :=
∑Nt|t

k=1 α
(k)
t|t δ
(
xt ;µ

(k)
t|t

)
I Motion model: xt+1 ∼ pa(· | xt , ut)

I Observation model: zt ∼ ph(· | xt)

I Prediction:

pt+1|t(x) =

∫
pa(x | s, ut)

Nt|t∑
k=1

α
(k)
t|t δ
(
s;µ

(k)
t|t

)
ds =

Nt|t∑
k=1

α
(k)
t|t pa(x | µ(k)t|t , ut)

??
≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)

I Update:

pt+1|t+1(x) =
ph(zt+1 | x)

∑Nt+1|t
k=1 α

(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
∫
ph(zt+1 | s)

∑Nt+1|t
j=1 α

(j)
t+1|tδ

(
s;µ

(j)
t+1|t

)
ds

=

Nt+1|t∑
k=1

 α
(k)
t+1|tph

(
zt+1 | µ(k)t+1|t

)
∑Nt+1|t

j=1 α
(j)
t+1|tph

(
zt+1 | µ(j)t+1|t

)
δ(x ;µ

(k)
t+1|t

)

15

Particle Filter Resampling

I How do we approximate the prediction step?

pt+1|t(x) =

Nt|t∑
k=1

α
(k)
t|t pa(x | µ(k)t|t , ut)

??
≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
I How do we avoid particle depletion - a situation in which most of the

particle weights are close to zero?

I Just like the GMF uses refinement and pruning, the particle filter uses a
procedure called resampling to:

1. approximate the prediction step
2. avoid particle depletion during the update step

I Resampling is applied at time t if the effective number of particles:

Neff :=
1∑Nt|t

k=1

(
α
(k)
t|t

)
2

is less than a threshold

16

Particle Filter Prediction

I How do we approximate the prediction step?

pt+1|t(x) =

Nt|t∑
k=1

α
(k)
t|t pa(x | µ(k)t|t , ut)

??
≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
I Since pt+1|t(x) is a mixture pdf, we can approximate it with particles by

drawing samples directly from it

I Let Nt+1|t be the number of particles in the approximation (usually,
Nt+1|t = Nt|t)

I Bootstrap approximation: repeat Nt+1|t times and normalize the
weights at the end:

I Draw j ∈ {1, . . . ,Nt|t} with probability α
(j)
t|t

I Draw µ
(j)
t+1|t ∼ pa

(
· | µ(j)

t|t , ut

)
I Add the weighted sample

(
µ
(j)
t+1|t , pt+1|t

(
µ
(j)
t+1|t

))
to the new particle set

17

Particle Filter

18

Inverse Transform Sampling

I Target distribution: How do we sample from a distribution with pdf
p(x) and CDF F (x) =

∫ x
−∞ p(s)ds?

I Inverse Transform Sampling:

1. Draw u ∼ U(0, 1)

2. Return inverse CDF value:
µ = F−1(u)

3. The CDF of F−1(u) is:

P(F−1(u) ≤ x) = P(u ≤ F (x))

= F (x)

19

Rejection Sampling

I Target distribution: How do we sample from a complicated pdf p(x)?

I Proposal distribution: use another pdf q(x) that is easy to sample
from (e.g., Uniform, Gaussian) and: λp(x) ≤ q(x) with λ ∈ (0, 1)

I Rejection Sampling:
1. Draw u ∼ U(0, 1) and µ ∼ q(·)
2. Return µ only if u ≤ λp(µ)

q(µ) . If λ is small, many rejections are necessary

I Good q(x) and λ are hard to choose in practice

20

Sample Importance Resampling (SIR)
I How about rejection sampling without λ?
I Sample Importance Resampling for a target distribution p(·) with

proposal distribution q(·)
1. Draw µ(1), . . . , µ(N) ∼ q(·)
2. Compute importance weights α(k) = p(µ(k))

q(µ(k))
and normalize: α(k) = α(k)∑

j α
(j)

3. Draw µ(k) independently with replacement from
{
µ(1), . . . , µ(N)

}
with

probability α(k) and add to the final sample set with weight 1
N

I If q(·) is a poor approximation of p(·), then the best samples from q are
not necessarily good samples for resampling

I Markov Chain Monte Carlo methods (e.g., Metropolis-Hastings and
Gibbs sampling):

I The main drawback of rejection sampling and SIR is that choosing a good
proposal distribution q(·) is hard

I Idea: let the proposed samples µ depend on the last accepted sample µ′,
i.e., obtain correlated samples from a conditional proposal distribution
µ(k) ∼ q

(
· | µ(k−1))

I Under certain conditions, the samples generated from q(· | µ′) form an
ergodic Markov chain with p(·) as its stationary distribution

21

Stratified Resampling

I In the last step of SIR, the weighted sample set {µ(k), α(k)} is resampled
independently with replacement

I This might result in high variance resampling, i.e., sometimes some
samples with large weights might not be selected or samples with very
small weights may be selected multiple times

I Stratified resampling: guarantees that samples with large weights
appear at least once and those with small weights – at most once.
Stratified resampling is optimal in terms of variance (Thrun et al.
2005)

I Instead of selecting samples independently, use a sequential process:
I Add the weights along the circumference of a circle
I Divide the circle into N equal pieces and sample a uniform on each piece
I Samples with large weights are chosen at least once and those with small

weights – at most once

22

Stratified Resampling

Stratified (low variance) resampling

1: Input: particle set
{
µ(k), α(k)

}
N
k=1

2: Output: resampled particle set
3: j ← 1, c ← α(1)

4: for k = 1, . . . ,N do
5: u ∼ U

(
0, 1

N

)
6: β = u + k−1

N
7: while β > c do
8: j = j + 1, c = c + α(j)

9: add
(
µ(j), 1

N

)
to the new set

I Systematic resampling: the same as stratified resampling except that
the same uniform is used for each piece, i.e., u ∼ U

(
0, 1

N

)
is sampled

only once before the for loop above.
I Sample importance resampling (SIR): draw µ(k) independently with

replacement from
{
µ(1), . . . , µ(N)

}
with probability α(k) and add to the

final sample set with weight 1
N 23

Particle Filter Summary

I Prior: xt | z0:t , u0:t−1 ∼ pt|t(xx) :=
∑Nt|t

k=1 α
(k)
t|t δ
(
xt ;µ

(k)
t|t

)
I Motion model: xt+1 ∼ pa(· | xt , ut)

I Observation model: zt ∼ ph(· | xt)

I Prediction: approximate the mixture by sampling:

pt+1|t(x) =

∫
pa(x | s, ut)

Nt|t∑
k=1

α
(k)
t|t δ
(
s;µ

(k)
t|t

)
ds =

Nt|t∑
k=1

α
(k)
t|t pa(x | µ(k)t|t , ut)≈

Nt+1|t∑
k=1

α
(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)

I Update: rescale the particles based on the observation likelihood:

pt+1|t+1(x) =
ph(zt+1; x)

∑Nt+1|t
k=1 α

(k)
t+1|tδ

(
x ;µ

(k)
t+1|t

)
∫
ph(zt+1; s)

∑Nt+1|t
j=1 α

(j)
t+1|tδ

(
s;µ

(j)
t+1|t

)
ds

=

Nt+1|t∑
k=1

 α
(k)
t+1|tph

(
zt+1 | µ(k)t+1|t

)
∑Nt+1|t

j=1 α
(j)
t+1|tph

(
zt+1 | µ(j)t+1|t

)
δ(x ;µ

(k)
t+1|t

)

I If Neff := 1∑Nt|t
k=1

(
α
(k)
t|t

)
2
≤ Nthreshold , resample the particle set{

µ
(k)
t+1|t+1, α

(k)
t+1|t+1

}
via stratified or sample importance resampling

24

Rao-Blackwellized Particle Filter
I The Rao-Blackwellized (marginalized)

particle filter is applicable to
conditionally linear-Gaussian models:

xn
t+1 = f n

t (xn
t) + An

t (xn
t)x l

t + Gn
t (xn

t)wn
t

x l
t+1 = f l

t (xn
t) + Al

t(xn
t)x l

t + G l
t (xn

t)w l
t

zt = ht(xn
t) + Ct(xn

t)x l
t + vt

Nonlinear states: xn
t

Linear states: x l
t

I Idea: exploit linear-Gaussian sub-structure to handle high dim. problems

p
(
x l

t , x
n
0:t | z0:t , u0:t−1

)
= p

(
x l

t | z0:t , u0:t−1, xn
0:t

)
︸ ︷︷ ︸

Kalman Filter

p(xn
0:t | z0:t , u0:t−1)︸ ︷︷ ︸
Particle Filter

=

Nt|t∑
k=1

α
(k)
t|t δ
(
xn
0:t ;m

(k)
t|t

)
φ
(
x l

t ;µ
(k)
t|t ,Σ

(k)
t|t

)
I The RBPF is a combination of the particle filter and the Kalman filter,

in which each particle has a Kalman filter associated to it
25

