ECE276A: Sensing \& Estimation in Robotics

 Lecture 10: Gaussian Mixture and Particle FilteringLecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Vectors Notation

$x \in \mathbb{R}^{d}$
$A \in \mathbb{R}^{n \times m}$
An $n \times m$ dimensional matrix. Its transpose is $A^{T} \in$ $\mathbb{R}^{m \times n}$ and its inverse (if it exists) is $A^{-1} \in \mathbb{R}^{n \times m}$ for $n=m$.
$\|x\|_{2}:=x^{T} x \quad$ vector Euclidean norm
$x(t)$
x_{t}
$\dot{x}(t):=\frac{d}{d t} x(t) \quad$ time derivative of $x(t)$

Random Vectors Notation

$x \in \mathbb{R}^{d}$
$\mathbb{E}[h(x)]$
d-dimensional random vector with CDF $F(\cdot)$ and pdf $p(\cdot)$
expectation of a function h of the random vector x :

$$
\mathbb{E}[h(x)]:=\int h(x) p(x) d x
$$

$$
\mu:=\mathbb{E}[x]
$$

$$
x^{*}:=\arg \max p(x)
$$

$$
\mathbb{E}\left[x x^{T}\right]
$$

$$
\Sigma:=\mathbb{E}\left[(x-\mu)(x-\mu)^{T}\right]
$$

$$
=\mathbb{E}\left[x x^{T}\right]-\mu \mu^{T}
$$

mean of x, also called first moment of x mode of x
second moment of x
(co) variance of x

Parameter Estimation Notation

$D:=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{n}$
$p\left(\mathbf{x}_{i}, y_{i} ; \omega\right)$
$p\left(y_{i} \mid \mathbf{x}_{i} ; \omega\right)$
$\max _{\omega} \prod_{i=1}^{n} p\left(\mathrm{x}_{i}, y_{i} ; \omega\right)$
$\max _{y} p(x, y ; \omega)$
$\sigma(z):=\frac{1}{1+\exp (-z)} \in \mathbb{R}$
$\operatorname{softmax}(z):=\frac{e^{z}}{1^{T} e^{z}} \in \mathbb{R}^{d}$
training data of examples $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and labels $y_{i} \in\{-1,1\}$ (classification) or $y_{i} \in \mathbb{R}$ (regression). The elements (\mathbf{x}_{i}, y_{i}) are id (over i) sampled from an unknown joint (over \mathbf{x}_{i} and y_{i}) pdf $p^{*}\left(\mathbf{x}_{i}, y_{i}\right)$
generative model using pdf parameters ω discriminative model using parameters ω
training: parameter estimation via MLE
testing: label prediction for given new sample x and already trained parameters ω
sigmoid function: useful for modeling binary classification
softmax function: useful for modeling K ary classification

Orientations Notation

$a \in \mathbb{R}^{3}$
$\hat{a} \in \mathfrak{s o}(3)$
an axis-angle representation of orientation/rotaton, also called rotation vector. The axis of notation is $\xi:=\frac{a}{\|a\|_{2}}$ and the angle is $\theta:=\|a\|_{2}$
a skew-symmetric matrix associated with cross products $\hat{a} b=a \times b$ for $b \in \mathbb{R}^{3}$. Skew-symmetric matrices define the Lie algebra (i.e., local linear approximation) of the Lie group of rotations.
$R=\exp (\hat{a}) \in S O(3) \quad$ rotation matrix representation of the rotation vector $a \in \mathbb{R}^{3}$. The matrix exponential function is $\exp (A):=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$ and for rotations can be compouted in closed form via the Rodrigues formula.
$q=\exp \left(\left[0, \frac{1}{2} a\right]\right) \in \mathbb{S}^{3}$
quaternion representation of the rotation vector $a \in \mathbb{R}^{3}$. The quaternion exponential function is not the same as the matrix exponential function!

Transformations Notation

$\omega \in \mathbb{R}^{3}$
$\zeta:=(\omega, v) \in \mathbb{R}^{6}$
$\hat{\zeta} \in \mathfrak{s e}(3)$
Angular velocity - defines the rate of change of orientation for rotation matrices $\dot{R}=\hat{\omega} R$ or equivalently for quaternions $\dot{q}=\left[0, \frac{\omega}{2}\right] \circ q$
Linear velocity $v \in \mathbb{R}^{3}$ and angular velocity $\omega \in \mathbb{R}^{3}$
a twist matrix $\left[\begin{array}{cc}\hat{\omega} & v \\ 0 & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ defining the Lie
algebra of the Lie group of rigid body transformtons. A twist $\hat{\zeta}$ defines the rate of change of pose of position $\dot{p}=\hat{\omega} p+v$ and orientation $\dot{R}=\hat{\omega} R$
$g=\exp (\hat{\zeta}) \in S E(3) \quad$ a matrix $g=\left[\begin{array}{ll}R & p \\ 0 & 1\end{array}\right]$ representing rigid body transformations, where $R \in S O(3)$ is the rotation/orientation and $p \in \mathbb{R}^{3}$ is the translation/position

Transformations Notation

$$
w g_{B} \in S E(3) \quad x_{t} \in S E(3)
$$

Body frame to world frame transformation defined by the body pose $w g_{B}$ (or robot state x_{t})
$g_{1} \oplus g_{2}:=g_{1} g_{2}$

$$
=\left[\begin{array}{cc}
R_{1} & p_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2} & p_{2} \\
0 & 1
\end{array}\right]
$$

Transformation composition in SE (3) (equivalent to addition in Euclidean spaces)

$$
\begin{aligned}
g_{2} \ominus g_{1} & :=g_{1}^{-1} g_{2} \\
& =\left[\begin{array}{cc}
R_{1}^{T} & -R_{1}^{T} p_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{2} & p_{2} \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Transformation inverse composition in $S E(3)$ (equivalent to subtraction in Euclidean spaces)

Filtering Notation

$x_{t} \in \mathbb{R}^{d}$
system/robot state to be estimated (e.g., position, orientation, etc.). Usually $x_{t} \sim \mathcal{N}\left(\mu_{t \mid t}, \Sigma_{t \mid t}\right)$ with pdf $\phi\left(x_{t} ; \mu_{t \mid t}, \Sigma_{t \mid t}\right)$
$u_{t} \in \mathbb{R}^{d_{u}}$
known system/robot control input (e.g., rotational welocity)
$z_{t} \in \mathbb{R}^{d_{z}}$
known system/robot measurement/observation (e.g., pixel coordinates)
$w_{t} \sim \mathcal{N}(0, W) \quad$ Gaussian motion noise
$v_{t} \sim \mathcal{N}(0, V) \quad$ Gaussian observation noise
$p_{t \mid t}\left(x_{t}\right)$
pdf of the robot state x_{t} given past measurements $z_{0: t}$ and control inputs $u_{0: t-1}: p_{t \mid t}\left(x_{t}\right):=p\left(x_{t} \mid z_{0: t}, u_{0: t-1}\right)$
$p_{t+1 \mid t}\left(x_{t+1}\right)$
predicted pdf of the robot state x_{t+1} given past meassurements $z_{0: t}$ and control inputs $u_{0: t}: p_{t+1 \mid t}\left(x_{t+1}\right):=$ $p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)$

Bayes Filter

- Motion model:

$$
x_{t+1}=a\left(x_{t}, u_{t}, w_{t}\right) \sim p_{a}\left(\cdot \mid x_{t}, u_{t}\right)
$$

- Observation model:

$$
z_{t}=h\left(x_{t}, v_{t}\right) \sim p_{h}\left(\cdot \mid x_{t}\right)
$$

- Filtering: keeps track of

$$
\begin{aligned}
p_{t \mid t}\left(x_{t}\right) & :=p\left(x_{t} \mid z_{0: t}, u_{0: t-1}\right) \\
p_{t+1 \mid t}\left(x_{t+1}\right) & :=p\left(x_{t+1} \mid z_{0: t}, u_{0: t}\right)
\end{aligned}
$$

- Bayes filter:

$$
p_{t+1 \mid t+1}\left(x_{t+1}\right)=\underbrace{\overbrace{\frac{1}{p\left(z_{t+1} \mid z_{0: t}, u_{0: t}\right)}}^{\frac{1}{\eta_{t+1}}} p_{h}\left(z_{t+1} \mid x_{t+1}\right) \overbrace{\int p_{a}\left(x_{t+1} \mid x_{t}, u_{t}\right) p_{t \mid t}\left(x_{t}\right) d x_{t}}^{\text {Predict: } p_{t+1 \mid t}\left(x_{t+1}\right)}}_{\text {Update }}
$$

- Joint distribution:

$$
p\left(x_{0: T}, z_{0: T}, u_{0: T-1}\right)=\underbrace{p_{0 \mid 0}\left(x_{0}\right)}_{\text {prior }} \prod_{t=0}^{T} \underbrace{p_{h}\left(z_{t} \mid x_{t}\right)}_{\text {observation model }} \prod_{t=0}^{T} \underbrace{p_{a}\left(x_{t} \mid x_{t-1}, u_{t-1}\right)}_{\text {motion model }}
$$

Gaussian Mixture Filter

- Prior: $x_{t} \mid z_{0: t}, u_{0: t-1} \sim p_{t \mid t}\left(x_{x}\right):=\sum_{k} \alpha_{t \mid t}^{(k)} \phi\left(x_{t} ; \mu_{t \mid t}^{(k)}, \Sigma_{t \mid t}^{(k)}\right)$
- Motion model: $x_{t+1}=A x_{t}+B u_{t}+w_{t}, \quad w_{t} \sim \mathcal{N}(0, W)$
- Observation model: $z_{t}=H x_{t}+v_{t}, \quad v_{t} \sim \mathcal{N}(0, V)$
- Prediction:

$$
\begin{aligned}
p_{t+1 \mid t}(x) & =\int p_{a}\left(x \mid s, u_{t}\right) p_{t \mid t}(s) d s=\sum_{k} \alpha_{t \mid t}^{(k)} \int p_{a}\left(x \mid s, u_{t}\right) \phi\left(s ; \mu_{t \mid t}^{(k)}, \Sigma_{t \mid t}^{(k)}\right) d s \\
& =\sum_{k} \alpha_{t \mid t}^{(k)} \phi\left(x ; A \mu_{t \mid t}^{(k)}+B u_{t}, A \Sigma_{t \mid t}^{(k)} A^{T}+W\right)
\end{aligned}
$$

- Update:

$$
\begin{aligned}
& p_{t+1 \mid t+1}(x)=\frac{p_{h}\left(z_{t+1} \mid x\right) p_{t+1 \mid t}(x)}{p\left(z_{t+1} \mid z_{0: t}, u_{0: t}\right)}=\frac{\phi\left(z_{t+1} ; H x, V\right) \sum_{k} \alpha_{t+1 \mid t}^{(k)} \phi\left(x ; \mu_{t+1 \mid t}^{(k)}, \sum_{t+1 \mid t}^{(k)}\right)}{\int \phi\left(z_{t+1} ; H s, V\right) \sum_{j} \alpha_{t+1 \mid t}^{(j)} \phi\left(s ; \mu_{t+1 \mid t}^{(j)}, \sum_{t+1 \mid t}^{(j)}\right) d s} \\
& =\sum_{k}\left(\frac{\alpha_{t+1 \mid t}^{(k)} \phi\left(z_{t+1} ; H x, V\right) \phi\left(x ; \mu_{t+1 \mid t}^{(k)}, \Sigma_{t+1 \mid t}^{(k)}\right)}{\sum_{j} \alpha_{t+1 \mid t}^{(j)} \phi\left(z_{t+1} ; H \mu_{t+1 \mid t}^{(j)}, H \Sigma_{t+1 \mid t}^{(j)} H^{\top}+V\right)} \times \frac{\phi\left(z_{t+1} ; H \mu_{t+1 \mid t}^{(k)}, H \Sigma_{t+1 \mid t}^{(k)} H^{\top}+V\right)}{\phi\left(z_{t+1} ; H \mu_{t+1 \mid t}^{(k)}, H \Sigma_{t+1 \mid t}^{(k)} H^{\top}+V\right)}\right) \\
& =\sum_{k}\left[\frac{\alpha_{t+1 \mid t}^{(k)} t\left(z_{t+1} ; H \mu_{t+1 \mid t}^{(k)}, H \Sigma_{t+1 \mid t}^{(k)} H^{\top}+V\right)}{\sum_{j} \alpha_{t+1 \mid t}^{(j)} \phi\left(z_{t+1} ; H \mu_{t+1 \mid t}^{(j)}, H \Sigma_{t+1 \mid t}^{(j)} H^{\top}+V\right)}\right] \phi\left(x ; \mu_{t+1 \mid t}^{(k)}+K_{t+1 \mid t}^{(k)}\left(z_{t+1}-H \mu_{t+1 \mid t}^{(k)}\right),\left(I-K_{t+1 \mid t}^{(k)} H\right) \Sigma_{t+1 \mid t}^{(k)}\right)
\end{aligned}
$$

- Kalman Gain: $K_{t+1 \mid t}^{(k)}:=\Sigma_{t+1 \mid t}^{(k)} H^{T}\left(H \Sigma_{t+1 \mid t}^{(k)} H^{T}+V\right)^{-1}$

Gaussian Mixture Filter

- pdf: $x_{t} \mid z_{0: t}, u_{0: t-1} \sim p_{t \mid t}(x):=\sum_{k} \alpha_{t \mid t}^{(k)} \phi\left(x_{t} ; \mu_{t \mid t}^{(k)}, \Sigma_{t \mid t}^{(k)}\right)$
- mean: $\mu_{t \mid t}:=\mathbb{E}\left[x_{t} \mid z_{0: t}, u_{0: t-1}\right]=\int x p_{t \mid t}(x) d x=\sum_{k} \alpha_{t \mid t}^{(k)} \mu_{t \mid t}^{(k)}$
- cov: $\Sigma_{t \mid t}:=\mathbb{E}\left[x_{t} x_{t}^{T} \mid z_{0: t}, u_{0: t-1}\right]-\mu_{t \mid t} \mu_{t \mid t}^{T}$

$$
=\int x x^{T} p_{t \mid t}(x) d x-\mu_{t \mid t} \mu_{t \mid t}^{T}=\sum_{k} \alpha_{t \mid t}^{(k)}\left(\Sigma_{t \mid t}^{(k)}+\mu_{t \mid t}^{(k)}\left(\mu_{t \mid t}^{(k)}\right)^{T}\right)-\mu_{t \mid t} \mu_{t \mid t}^{T}
$$

- The GMF is just a bank of Kalman filters; sometimes called Gaussian Sum filter

Gaussian Mixture Filter

- If the motion or observation models are nonlinear, we can apply the EKF or UKF tricks to get a nonlinear GMF
- Additional operations are needed when strong nonlinearities are present in the motion or observation models:
- Refinement: introduces additional components to reduce the linearization error
- Pruning: approximates the overall distribution with a smaller number of components (e.g., using KL divergence as a measure of accuracy)
- More details:
- Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber
- Bayesian Filtering and Smoothing: Särkkä

Histogram Filter

- Represent the pdf via a histogram over a discrete set of possible locations
- The accuracy is limited by the grid size
- A small grid becomes very computationally expensive in high dimensional state spaces because the number of cells is exponential in the number of dimensions
- Idea: represent the pdf via adaptive discretization, e.g., octrees

Histogram Filter

- Prediction step
- Assume bounded Gaussian noise in the motion model
- The prediction step can be realized by shifting the data in the grid according to the control input and convolving the grid with a separable Gaussian kernel:

- This reduces the prediction step cost from $O\left(n^{2}\right)$ to $O(n)$ where n is the number of cells
- Update step
- To update and normalize the pdf upon sensory input, one has to iterate over all cells
- Is it possible to monitor which part of the state space is affected by the observations and only update that?

Particle Filter

- A Gaussian mixture filter with $\Sigma_{t \mid t}^{(k)} \rightarrow 0$ so that

$$
\phi\left(x_{t} ; \mu_{t \mid t}^{(k)}, \Sigma_{t \mid t}^{(k)}\right) \rightarrow \delta\left(x_{t} ; \mu_{t \mid t}^{(k)}\right):=\mathbb{1}\left\{x_{t}=\mu_{t \mid t}^{(k)}\right\}
$$

- Prior: $x_{t} \mid z_{0: t}, u_{0: t-1} \sim p_{t \mid t}\left(x_{x}\right):=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(x_{t} ; \mu_{t \mid t}^{(k)}\right)$
- Motion model: $x_{t+1} \sim p_{a}\left(\cdot \mid x_{t}, u_{t}\right)$
- Observation model: $z_{t} \sim p_{h}\left(\cdot \mid x_{t}\right)$
- Prediction:
$p_{t+1 \mid t}(x)=\int p_{a}\left(x \mid s, u_{t}\right) \sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(s ; \mu_{t \mid t}^{(k)}\right) d s=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} p_{a}\left(x \mid \mu_{t \mid t}^{(k)}, u_{t}\right) \stackrel{? ?}{\approx} \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)$
- Update:
$p_{t+1 \mid t+1}(x)=\frac{p_{h}\left(z_{t+1} \mid x\right) \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)}{\int p_{h}\left(z_{t+1} \mid s\right) \sum_{j=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(j)} \delta\left(s ; \mu_{t+1 \mid t}^{(j)}\right) d s}=\sum_{k=1}^{N_{t+1 \mid t}}\left[\frac{\alpha_{t+1 \mid t}^{(k)} p_{h}\left(z_{t+1} \mid \mu_{t+1 \mid t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(j)} p_{h}\left(z_{t+1} \mid \mu_{t+1 \mid t}^{(j)}\right)}\right] \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)$

Particle Filter Resampling

- How do we approximate the prediction step?

$$
p_{t+1 \mid t}(x)=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} p_{a}\left(x \mid \mu_{t \mid t}^{(k)}, u_{t} \stackrel{? ?}{\sim} \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)\right.
$$

- How do we avoid particle depletion - a situation in which most of the particle weights are close to zero?
- Just like the GMF uses refinement and pruning, the particle filter uses a procedure called resampling to:

1. approximate the prediction step
2. avoid particle depletion during the update step

- Resampling is applied at time t if the effective number of particles:

$$
N_{\text {eff }}:=\frac{1}{\sum_{k=1}^{N_{t \mid t}}\left(\alpha_{t \mid t}^{(k)}\right)^{2}} \text { is less than a threshold }
$$

Particle Filter Prediction

- How do we approximate the prediction step?

$$
p_{t+1 \mid t}(x)=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} p_{a}\left(x \mid \mu_{t \mid t}^{(k)}, u_{t} \stackrel{? ?}{\sim} \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)\right.
$$

- Since $p_{t+1 \mid t}(x)$ is a mixture pdf, we can approximate it with particles by drawing samples directly from it
- Let $N_{t+1 \mid t}$ be the number of particles in the approximation (usually, $\left.N_{t+1 \mid t}=N_{t \mid t}\right)$
- Bootstrap approximation: repeat $N_{t+1 \mid t}$ times and normalize the weights at the end:
- Draw $j \in\left\{1, \ldots, N_{t \mid t}\right\}$ with probability $\alpha_{t \mid t}^{(j)}$
- Draw $\mu_{t+1 \mid t}^{(j)} \sim p_{a}\left(\cdot \mid \mu_{t \mid t}^{(j)}, u_{t}\right)$
- Add the weighted sample $\left(\mu_{t+1 \mid t}^{(j)}, p_{t+1 \mid t}\left(\mu_{t+1 \mid t}^{(j)}\right)\right)$ to the new particle set

Particle Filter

Inverse Transform Sampling

- Target distribution: How do we sample from a distribution with pdf $p(x)$ and CDF $F(x)=\int_{-\infty}^{x} p(s) d s ?$
- Inverse Transform Sampling:

1. Draw $u \sim \mathcal{U}(0,1)$
2. Return inverse CDF value: $\mu=F^{-1}(u)$
3. The CDF of $F^{-1}(u)$ is:

$$
\begin{aligned}
\mathbb{P}\left(F^{-1}(u) \leq x\right) & =\mathbb{P}(u \leq F(x))_{-1} \\
& =F(x)
\end{aligned}
$$

Rejection Sampling

- Target distribution: How do we sample from a complicated pdf $p(x)$?
- Proposal distribution: use another $\operatorname{pdf} q(x)$ that is easy to sample from (e.g., Uniform, Gaussian) and: $\lambda p(x) \leq q(x)$ with $\lambda \in(0,1)$
- Rejection Sampling:

1. Draw $u \sim \mathcal{U}(0,1)$ and $\mu \sim q(\cdot)$
2. Return μ only if $u \leq \frac{\lambda p(\mu)}{q(\mu)}$. If λ is small, many rejections are necessary

- Good $q(x)$ and λ are hard to choose in practice

Sample Importance Resampling (SIR)

- How about rejection sampling without λ ?
- Sample Importance Resampling for a target distribution $p(\cdot)$ with proposal distribution $q(\cdot)$

1. Draw $\mu^{(1)}, \ldots, \mu^{(N)} \sim q(\cdot)$
2. Compute importance weights $\alpha^{(k)}=\frac{p\left(\mu^{(k)}\right)}{q\left(\mu^{(k)}\right)}$ and normalize: $\alpha^{(k)}=\frac{\alpha^{(k)}}{\sum_{j} \alpha^{(j)}}$
3. Draw $\mu^{(k)}$ independently with replacement from $\left\{\mu^{(1)}, \ldots, \mu^{(N)}\right\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$

- If $q(\cdot)$ is a poor approximation of $p(\cdot)$, then the best samples from q are not necessarily good samples for resampling
- Markov Chain Monte Carlo methods (e.g., Metropolis-Hastings and Gibbs sampling):
- The main drawback of rejection sampling and SIR is that choosing a good proposal distribution $q(\cdot)$ is hard
- Idea: let the proposed samples μ depend on the last accepted sample μ^{\prime}, i.e., obtain correlated samples from a conditional proposal distribution $\mu^{(k)} \sim q\left(\cdot \mid \mu^{(k-1)}\right)$
- Under certain conditions, the samples generated from $q\left(\cdot \mid \mu^{\prime}\right)$ form an ergodic Markov chain with $p(\cdot)$ as its stationary distribution

Stratified Resampling

- In the last step of SIR, the weighted sample set $\left\{\mu^{(k)}, \alpha^{(k)}\right\}$ is resampled independently with replacement
- This might result in high variance resampling, i.e., sometimes some samples with large weights might not be selected or samples with very small weights may be selected multiple times
- Stratified resampling: guarantees that samples with large weights appear at least once and those with small weights - at most once. Stratified resampling is optimal in terms of variance (Thrun et al. 2005)
- Instead of selecting samples independently, use a sequential process:
- Add the weights along the circumference of a circle
- Divide the circle into N equal pieces and sample a uniform on each piece
- Samples with large weights are chosen at least once and those with small weights - at most once

Stratified Resampling

Stratified (low variance) resampling

1: Input: particle set $\left\{\mu^{(k)}, \alpha^{(k)}\right\}_{k=1}^{N}$
2: Output: resampled particle set
3: $j \leftarrow 1, c \leftarrow \alpha^{(1)}$
4: for $k=1, \ldots, N$ do
5: $\quad u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$
6: $\quad \beta=u+\frac{k-1}{N}$
7: \quad while $\beta>c$ do
8: $\quad j=j+1, c=c+\alpha^{(j)}$
9: \quad add $\left(\mu^{(j)}, \frac{1}{N}\right)$ to the new set

- Systematic resampling: the same as stratified resampling except that the same uniform is used for each piece, i.e., $u \sim \mathcal{U}\left(0, \frac{1}{N}\right)$ is sampled only once before the for loop above.
- Sample importance resampling (SIR): draw $\mu^{(k)}$ independently with replacement from $\left\{\mu^{(1)}, \ldots, \mu^{(N)}\right\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$

Particle Filter Summary

- Prior: $x_{t} \mid z_{0: t}, u_{0: t-1} \sim p_{t \mid t}\left(x_{x}\right):=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(x_{t} ; \mu_{t \mid t}^{(k)}\right)$
- Motion model: $x_{t+1} \sim p_{a}\left(\cdot \mid x_{t}, u_{t}\right)$
- Observation model: $z_{t} \sim p_{h}\left(\cdot \mid x_{t}\right)$
- Prediction: approximate the mixture by sampling:
$p_{t+1 \mid t}(x)=\int p_{a}\left(x \mid s, u_{t}\right) \sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(s ; \mu_{t \mid t}^{(k)}\right) d s=\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} p_{a}\left(x \mid \mu_{t \mid t}^{(k)}, u_{t}\right) \approx \sum_{k=1}^{N_{t+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)$
- Update: rescale the particles based on the observation likelihood:
$p_{t+1 \mid t+1}(x)=\frac{p_{h}\left(z_{t+1} ; x\right) \sum_{k=1}^{N_{k+1 \mid t}} \alpha_{t+1 \mid t}^{(k)} \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)}{\int p_{h}\left(z_{t+1 ;} ; s\right) \sum_{j=1}^{v_{t+1}} \alpha_{t+1 \mid t}^{j(j)} \delta\left(s ; \mu_{t+1 \mid t}^{(j)}\right) d s}=\sum_{k=1}^{N_{t+1 \mid t}}\left[\frac{\alpha_{t+1 \mid}^{(k)} p_{h}\left(z_{t+1} \mid \mu_{t+1 \mid t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1}} \alpha_{t+1 \mid t}^{(j)} p_{h}\left(z_{t+1} \mid \mu_{t+1 \mid t}^{(j)}\right)}\right] \delta\left(x ; \mu_{t+1 \mid t}^{(k)}\right)$
- If $N_{\text {eff }}:=\frac{1}{\sum_{k=1}^{N_{t \mid t}}\left(\alpha_{t \mid t}^{(k)}\right)^{2}} \leq N_{\text {threshold, }}$, resample the particle set $\left\{\mu_{t+1 \mid t+1}^{(k)}, \alpha_{t+1 \mid t+1}^{(k)}\right\}$ via stratified or sample importance resampling

Rao-Blackwellized Particle Filter

- The Rao-Blackwellized (marginalized) particle filter is applicable to conditionally linear-Gaussian models:

$$
\begin{aligned}
x_{t+1}^{n} & =f_{t}^{n}\left(x_{t}^{n}\right)+A_{t}^{n}\left(x_{t}^{n}\right) x_{t}^{\prime}+G_{t}^{n}\left(x_{t}^{n}\right) w_{t}^{n} \\
x_{t+1}^{\prime} & =f_{t}^{\prime}\left(x_{t}^{n}\right)+A_{t}^{\prime}\left(x_{t}^{n}\right) x_{t}^{\prime}+G_{t}^{\prime}\left(x_{t}^{n}\right) w_{t}^{\prime} \\
z_{t} & =h_{t}\left(x_{t}^{n}\right)+C_{t}\left(x_{t}^{n}\right) x_{t}^{\prime}+v_{t}
\end{aligned}
$$

Nonlinear states: x_{t}^{n} Linear states: x_{t}^{\prime}

- Idea: exploit linear-Gaussian sub-structure to handle high dim. problems

$$
\begin{aligned}
p\left(x_{t}^{\prime}, x_{0: t}^{n} \mid z_{0: t}, u_{0: t-1}\right) & =\underbrace{p\left(x_{t}^{\prime} \mid z_{0: t}, u_{0: t-1}, x_{0: t}^{n}\right)}_{\text {Kalman Filter }} \underbrace{p\left(x_{0: t}^{n} \mid z_{0: t}, u_{0: t-1}\right)}_{\text {Particle Filter }} \\
& =\sum_{k=1}^{N_{t \mid t}} \alpha_{t \mid t}^{(k)} \delta\left(x_{0: t}^{n} ; m_{t \mid t}^{(k)}\right) \phi\left(x_{t}^{\prime} ; \mu_{t \mid t}^{(k)}, \Sigma_{t \mid t}^{(k)}\right)
\end{aligned}
$$

- The RBPF is a combination of the particle filter and the Kalman filter, in which each particle has a Kalman filter associated to it

