ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal: a2pal@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Vectors Notation

 $x \in \mathbb{R}^d$

d-dimensional vector in Euclidean space. It may be deterministic or random. If it is random we describe it with a parametric distribution with parameters θ or w or equivalently with its probability density function p(x; w). **Example**: $x \sim \mathcal{N}(\mu, \Sigma)$ with pdf $\phi(x; \mu, \Sigma)$, where \mathcal{N} is the distribution, ϕ is the pdf, and $\{\mu, \Sigma\}$ are the deterministic vector and matrix parameters.

- $\begin{array}{ll} A \in \mathbb{R}^{n \times m} & \text{An } n \times m \text{ dimensional matrix. Its transpose is } A^T \in \\ \mathbb{R}^{m \times n} \text{ and its inverse (if it exists) is } A^{-1} \in \mathbb{R}^{n \times m} \text{ for } \\ n = m. \end{array}$
- $||x||_2 := x^T x$ vector Euclidean norm
- x(t) a vector that changes in continuous time $t \in \mathbb{R}_{>0}$
- x_t a vector that changes in discrete time $t \in \mathbb{N}$
- $\dot{x}(t) := rac{d}{dt} x(t)$ time derivative of x(t)

Random Vectors Notation

 $x \in \mathbb{R}^d$ d-dimensional random vector with CDF $F(\cdot)$ and pdf $p(\cdot)$ $\mathbb{E}[h(x)]$ expectation of a function h of the random vector x:

$$\mathbb{E}[h(x)] := \int h(x)p(x)dx$$

$$\mu := \mathbb{E}[x]$$

 $x^* := \arg \max p(x)$

mean of x, also called first moment of xmode of x

 $\mathbb{E}[xx^T]$ second moment of x $\Sigma := \mathbb{E}\left[(x-\mu)(x-\mu)^{T}\right]$ $= \mathbb{E}\left[\mathbf{x}\mathbf{x}^{\mathsf{T}}\right] - \mu\mu^{\mathsf{T}}$

(co)variance of x

Parameter Estimation Notation

 $p(\mathbf{x}_{i}, y_{i}; \omega)$ $p(y_{i} | \mathbf{x}_{i}; \omega)$ $\max_{\omega} \prod_{i=1}^{n} p(\mathbf{x}_{i}, y_{i}; \omega)$ $\max_{y} p(x, y; \omega)$

 $D := {\mathbf{x}_i, y_i}_{i=1}^n$

$$\sigma(z) := \frac{1}{1 + \exp(-z)} \in \mathbb{R}$$

 $\operatorname{softmax}(z) := \frac{e^z}{1^T e^z} \in \mathbb{R}^d$

training data of examples $\mathbf{x}_i \in \mathbb{R}^d$ and labels $y_i \in \{-1, 1\}$ (classification) or $y_i \in \mathbb{R}$ (regression). The elements (\mathbf{x}_i, y_i) are iid (over *i*) sampled from an unknown joint (over \mathbf{x}_i and y_i) pdf $p^*(\mathbf{x}_i, y_i)$

generative model using pdf parameters $\boldsymbol{\omega}$

discriminative model using parameters $\boldsymbol{\omega}$

training: parameter estimation via MLE

testing: label prediction for given new sample x and already trained parameters ω

sigmoid function: useful for modeling binary classification

softmax function: useful for modeling *K*-ary classification

Orientations Notation

 $a \in \mathbb{R}^3$ an axis-angle representation of orientation/rotation, also called rotation vector. The axis of rotation is $\xi := \frac{a}{\|a\|_2}$ and the angle is $\theta := \|a\|_2$ $\hat{a} \in \mathfrak{so}(3)$ a skew-symmetric matrix associated with cross products $\hat{a}b = a \times b$ for $b \in \mathbb{R}^3$. Skew-symmetric matrices define the Lie algebra (i.e., local linear approximation) of the Lie group of rotations. $R = \exp(\hat{a}) \in SO(3)$ rotation matrix representation of the rotation vector $a \in \mathbb{R}^3$. The matrix exponential function is $\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!}$ and for rotations can be computed in closed form via the Rodrigues formula. $q = \exp([0, \frac{1}{2}a]) \in \mathbb{S}^3$ quaternion representation of the rotation vector $a \in \mathbb{R}^3$. The quaternion exponential function is not the same as the matrix exponential function!

Transformations Notation

 $\omega \in \mathbb{R}^3$ Angular velocity – defines the rate of change of orientation for rotation matrices $\dot{R} = \hat{\omega}R$ or equivalently for quaternions $\dot{q} = \left[0, \frac{\omega}{2}\right] \circ q$ $\zeta := (\omega, v) \in \mathbb{R}^6$ Linear velocity $v \in \mathbb{R}^3$ and angular velocity $\omega \in \mathbb{R}^3$ a twist matrix $\begin{vmatrix} \hat{\omega} & v \\ 0 & 1 \end{vmatrix} \in \mathbb{R}^{4 \times 4}$ defining the Lie $\hat{\zeta} \in \mathfrak{se}(3)$ algebra of the Lie group of rigid body transformations. A twist $\hat{\zeta}$ defines the rate of change of pose of position $\dot{p} = \hat{\omega}p + v$ and orientation $\dot{R} = \hat{\omega}R$ $g = \exp(\hat{\zeta}) \in SE(3)$ a matrix $g = \begin{vmatrix} R & p \\ 0 & 1 \end{vmatrix}$ representing rigid body transformations, where $R \in SO(3)$ is the rotation/orientation and $p \in \mathbb{R}^3$ is the translation/position

Transformations Notation

$$Wg_B \in SE(3)$$
 $x_t \in SE(3)$

$$g_1 \oplus g_2 := g_1 g_2$$

$$= \begin{bmatrix} R_1 & p_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & p_2 \\ 0 & 1 \end{bmatrix}$$

$$g_2 \ominus g_1 := g_1^{-1} g_2$$

$$= \begin{bmatrix} R_1^T & -R_1^T p_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_2 & p_2 \\ 0 & 1 \end{bmatrix}$$

Body frame to world frame transformation defined by the body pose $_{W}g_{B}$ (or robot state x_{t})

Transformation composition in SE(3) (equivalent to addition in Euclidean spaces)

Transformation inverse composition in SE(3) (equivalent to subtraction in Euclidean spaces)

Filtering Notation

- $\begin{array}{ll} x_t \in \mathbb{R}^d & \qquad \text{system/robot state to be estimated (e.g., position, orientation, etc.). Usually } x_t \sim \mathcal{N}(\mu_{t|t}, \Sigma_{t|t}) & \qquad \text{with pdf} \\ \phi(x_t; \mu_{t|t}, \Sigma_{t|t}) & \qquad \end{array}$
- $u_t \in \mathbb{R}^{d_u}$ known system/robot control input (e.g., rotational velocity)
- $z_t \in \mathbb{R}^{d_z}$ known system/robot measurement/observation (e.g., pixel coordinates)
- $w_t \sim \mathcal{N}(0, W)$ Gaussian motion noise
- $v_t \sim \mathcal{N}(0, V)$ Gaussian observation noise
- $p_{t|t}(x_t)$ pdf of the robot state x_t given past measurements $z_{0:t}$ and control inputs $u_{0:t-1}$: $p_{t|t}(x_t) := p(x_t \mid z_{0:t}, u_{0:t-1})$
- $\begin{array}{ll} p_{t+1|t}(x_{t+1}) & \text{predicted pdf of the robot state } x_{t+1} \text{ given past measurements } z_{0:t} \text{ and control inputs } u_{0:t}: p_{t+1|t}(x_{t+1}) := \\ p(x_{t+1} \mid z_{0:t}, u_{0:t}) \end{array}$

Bayes Filter

Motion model:

 $x_{t+1} = a(x_t, u_t, w_t) \sim p_a(\cdot \mid x_t, u_t)$

• **Observation model**: $z_t = h(x_t, v_t) \sim p_h(\cdot \mid x_t)$

• Filtering: keeps track of

$$p_{t|t}(x_t) := p(x_t \mid z_{0:t}, u_{0:t-1})$$
$$p_{t+1|t}(x_{t+1}) := p(x_{t+1} \mid z_{0:t}, u_{0:t})$$

Bayes filter:

 $p_{t+1|t+1}(x_{t+1}) = \underbrace{\frac{1}{p(z_{t+1}|z_{0:t}, u_{0:t})}^{\frac{1}{\eta_{t+1}}}}_{p(z_{t+1}|z_{0:t}, u_{0:t})} p_h(z_{t+1} \mid x_{t+1}) \underbrace{\int p_a(x_{t+1} \mid x_t, u_t) p_{t|t}(x_t) dx_t}_{p(z_{t+1}|z_{0:t}, u_{0:t})}$

Update

Joint distribution:

$$p(x_{0:T}, z_{0:T}, u_{0:T-1}) = \underbrace{p_{0|0}(x_0)}_{\text{prior}} \prod_{t=0}^{T} \underbrace{p_h(z_t \mid x_t)}_{\text{observation model}} \prod_{t=0}^{T} \underbrace{p_a(x_t \mid x_{t-1}, u_{t-1})}_{\text{motion model}}$$

Gaussian Mixture Filter

- Prior: $x_t \mid z_{0:t}, u_{0:t-1} \sim p_{t|t}(x_x) := \sum_k \alpha_{t|t}^{(k)} \phi\left(x_t; \mu_{t|t}^{(k)}, \Sigma_{t|t}^{(k)}\right)$
- Motion model: $x_{t+1} = Ax_t + Bu_t + w_t$, $w_t \sim \mathcal{N}(0, W)$
- Observation model: $z_t = Hx_t + v_t$, $v_t \sim \mathcal{N}(0, V)$
- Prediction:

$$p_{t+1|t}(x) = \int p_{a}(x \mid s, u_{t})p_{t|t}(s)ds = \sum_{k} \alpha_{t|t}^{(k)} \int p_{a}(x \mid s, u_{t})\phi(s; \mu_{t|t}^{(k)}, \Sigma_{t|t}^{(k)})ds$$
$$= \sum_{k} \alpha_{t|t}^{(k)} \phi(x; A\mu_{t|t}^{(k)} + Bu_{t}, A\Sigma_{t|t}^{(k)}A^{T} + W)$$

Update:

$$p_{t+1|t+1}(x) = \frac{p_{h}(z_{t+1} \mid x)p_{t+1|t}(x)}{p(z_{t+1} \mid z_{0:t}, u_{0:t})} = \frac{\phi(z_{t+1}; Hx, V)\sum_{k} \alpha_{t+1|t}^{(k)} \phi(x; \mu_{t+1|t}^{(k)}, \Sigma_{t+1|t}^{(k)})}{\int \phi(z_{t+1}; Hs, V)\sum_{j} \alpha_{t+1|t}^{(j)} \phi(s; \mu_{t+1|t}^{(j)}, \Sigma_{t+1|t}^{(j)}) ds}$$

$$= \sum_{k} \left(\frac{\alpha_{t+1|t}^{(k)} \phi(z_{t+1}; Hx, V) \phi(x; \mu_{t+1|t}^{(k)}, \Sigma_{t+1|t}^{(k)})}{\sum_{j} \alpha_{t+1|t}^{(j)} \phi(z_{t+1}; H\mu_{t+1|t}^{(j)}, H\Sigma_{t+1|t}^{(j)})} \times \frac{\phi(z_{t+1}; H\mu_{t+1|t}^{(k)}, H\Sigma_{t+1|t}^{(k)}, H^{T} + V)}{\phi(z_{t+1}; H\mu_{t+1|t}^{(k)}, H\Sigma_{t+1|t}^{(k)}, H^{T} + V)} \right)$$

$$= \sum_{k} \left[\frac{\alpha_{t+1|t}^{(k)} \phi(z_{t+1}; H\mu_{t+1|t}^{(k)}, H\Sigma_{t+1|t}^{(k)}, H^{T} + V)}{\sum_{j} \alpha_{t+1|t}^{(j)} \phi(z_{t+1}; H\mu_{t+1|t}^{(k)}, H\Sigma_{t+1|t}^{(k)}, H^{T} + V)} \right] \phi(x; \mu_{t+1|t}^{(k)} + K_{t+1|t}^{(k)} (z_{t+1} - H\mu_{t+1|t}^{(k)}), (I - K_{t+1|t}^{(k)}, H)\Sigma_{t+1|t}^{(k)})$$

$$\models \text{ Kalman Gain: } K^{(k)} := \Sigma^{(k)} : H^{T} (H\Sigma_{t+1}^{(k)} + H^{T} + V) - 1$$

• Kalman Gain:
$$K_{t+1|t}^{(k)} := \sum_{t+1|t}^{(k)} H^T \Big(H \sum_{t+1|t}^{(k)} H^T + V \Big)^{-1}$$

Gaussian Mixture Filter

• **pdf**:
$$x_t \mid z_{0:t}, u_{0:t-1} \sim p_{t|t}(x) := \sum_k \alpha_{t|t}^{(k)} \phi\left(x_t; \mu_{t|t}^{(k)}, \Sigma_{t|t}^{(k)}\right)$$

• mean:
$$\mu_{t|t} := \mathbb{E}[x_t \mid z_{0:t}, u_{0:t-1}] = \int x p_{t|t}(x) dx = \sum_k \alpha_{t|t}^{(k)} \mu_{t|t}^{(k)}$$

• **cov**:
$$\Sigma_{t|t} := \mathbb{E} \Big[x_t x_t^T \mid z_{0:t}, u_{0:t-1} \Big] - \mu_{t|t} \mu_{t|t}^T$$

= $\int x x^T p_{t|t}(x) dx - \mu_{t|t} \mu_{t|t}^T = \sum_k \alpha_{t|t}^{(k)} \Big(\Sigma_{t|t}^{(k)} + \mu_{t|t}^{(k)} (\mu_{t|t}^{(k)})^T \Big) - \mu_{t|t} \mu_{t|t}^T$

The GMF is just a bank of Kalman filters; sometimes called Gaussian Sum filter

Gaussian Mixture Filter

- If the motion or observation models are nonlinear, we can apply the EKF or UKF tricks to get a nonlinear GMF
- Additional operations are needed when strong nonlinearities are present in the motion or observation models:
 - Refinement: introduces additional components to reduce the linearization error
 - Pruning: approximates the overall distribution with a smaller number of components (e.g., using KL divergence as a measure of accuracy)
- More details:
 - Nonlinear Gaussian Filtering: Theory, Algorithms, and Applications: Huber
 - Bayesian Filtering and Smoothing: Särkkä

Histogram Filter

- Represent the pdf via a histogram over a discrete set of possible locations
- The accuracy is limited by the grid size
- A small grid becomes very computationally expensive in high dimensional state spaces because the number of cells is exponential in the number of dimensions
- ▶ Idea: represent the pdf via adaptive discretization, e.g., octrees

Histogram Filter

Prediction step

- Assume bounded Gaussian noise in the motion model
- The prediction step can be realized by shifting the data in the grid according to the control input and convolving the grid with a separable Gaussian_kernel:

► This reduces the prediction step cost from O(n²) to O(n) where n is the number of cells

Update step

- To update and normalize the pdf upon sensory input, one has to iterate over all cells
- Is it possible to monitor which part of the state space is affected by the observations and only update that?

Particle Filter

• A Gaussian mixture filter with $\Sigma_{t|t}^{(k)} \to 0$ so that $\phi\left(x_t; \mu_{t|t}^{(k)}, \Sigma_{t|t}^{(k)}\right) \to \delta\left(x_t; \mu_{t|t}^{(k)}\right) := \mathbb{1}\left\{x_t = \mu_{t|t}^{(k)}\right\}$

• **Prior**:
$$x_t \mid z_{0:t}, u_{0:t-1} \sim p_{t|t}(x_x) := \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(x_t; \mu_{t|t}^{(k)}\right)$$

• Motion model:
$$x_{t+1} \sim p_a(\cdot \mid x_t, u_t)$$

• Observation model:
$$z_t \sim p_h(\cdot \mid x_t)$$

Prediction:

$$p_{t+1|t}(x) = \int p_{a}(x \mid s, u_{t}) \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(s; \mu_{t|t}^{(k)}\right) ds = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \stackrel{??}{\approx} \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right) ds = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \stackrel{??}{\approx} \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right) ds = \sum_{k=1}^{N_{t|t}} \alpha_{t+1|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \stackrel{??}{\approx} \sum_{k=1}^{N_{t|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right) ds$$

Update:

$$p_{t+1|t+1}(x) = \frac{p_h(z_{t+1} \mid x) \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right)}{\int p_h(z_{t+1} \mid s) \sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} \delta\left(s; \mu_{t+1|t}^{(j)}\right) ds} = \sum_{k=1}^{N_{t+1|t}} \left[\frac{\alpha_{t+1|t}^{(k)} p_h\left(z_{t+1} \mid \mu_{t+1|t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} p_h\left(z_{t+1} \mid \mu_{t+1|t}^{(k)}\right)} \right] \delta\left(x; \mu_{t+1|t}^{(k)}\right) ds$$

Particle Filter Resampling

How do we approximate the prediction step?

$$p_{t+1|t}(x) = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \stackrel{??}{\approx} \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right)$$

- How do we avoid particle depletion a situation in which most of the particle weights are close to zero?
- Just like the GMF uses refinement and pruning, the particle filter uses a procedure called resampling to:
 - $1. \ \mbox{approximate the prediction step}$
 - 2. avoid particle depletion during the update step
- Resampling is applied at time *t* if the **effective number of particles**:

 $N_{eff} := rac{1}{\sum_{k=1}^{N_{t|t}} \left(lpha_{r|t}^{(k)}
ight)^2}
ight|$ is less than a threshold

Particle Filter Prediction

How do we approximate the prediction step?

$$p_{t+1|t}(x) = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \stackrel{??}{\approx} \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right)$$

- ► Since p_{t+1|t}(x) is a mixture pdf, we can approximate it with particles by drawing samples directly from it
- ▶ Let $N_{t+1|t}$ be the number of particles in the approximation (usually, $N_{t+1|t} = N_{t|t}$)
- Bootstrap approximation: repeat N_{t+1|t} times and <u>normalize</u> the weights at the end:
 - Draw $j \in \{1, \dots, N_{t|t}\}$ with probability $\alpha_{t|t}^{(j)}$
 - Draw $\mu_{t+1|t}^{(j)} \sim p_a\left(\cdot \mid \mu_{t|t}^{(j)}, u_t\right)$
 - Add the weighted sample $\left(\mu_{t+1|t}^{(j)}, p_{t+1|t}\left(\mu_{t+1|t}^{(j)}\right)\right)$ to the new particle set

Particle Filter

Inverse Transform Sampling

▶ **Target distribution**: How do we sample from a distribution with pdf p(x) and CDF $F(x) = \int_{-\infty}^{x} p(s) ds$?

Rejection Sampling

- **Target distribution**: How do we sample from a complicated pdf p(x)?
- ▶ **Proposal distribution**: use another pdf q(x) that is easy to sample from (e.g., Uniform, Gaussian) and: $\lambda p(x) \leq q(x)$ with $\lambda \in (0, 1)$
- Rejection Sampling:
 - 1. Draw $u \sim \mathcal{U}(0,1)$ and $\mu \sim q(\cdot)$
 - 2. Return μ only if $u \leq \frac{\lambda p(\mu)}{q(\mu)}$. If λ is small, many rejections are necessary
- Good q(x) and λ are hard to choose in practice

Sample Importance Resampling (SIR)

- How about rejection sampling without λ?
- Sample Importance Resampling for a target distribution $p(\cdot)$ with proposal distribution $q(\cdot)$

1. Draw
$$\mu^{(1)}, \ldots, \mu^{(N)} \sim q(\cdot)$$

- 2. Compute importance weights $\alpha^{(k)} = \frac{p(\mu^{(k)})}{q(\mu^{(k)})}$ and normalize: $\alpha^{(k)} = \frac{\alpha^{(k)}}{\sum \alpha^{(j)}}$
- 3. Draw $\mu^{(k)}$ independently with replacement from $\{\mu^{(1)}, \ldots, \mu^{(N)}\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$
- ► If q(·) is a poor approximation of p(·), then the best samples from q are not necessarily good samples for resampling
- Markov Chain Monte Carlo methods (e.g., Metropolis-Hastings and Gibbs sampling):
 - ► The main drawback of rejection sampling and SIR is that choosing a good proposal distribution q(·) is hard
 - ▶ Idea: let the proposed samples μ depend on the last accepted sample μ' , i.e., obtain correlated samples from a conditional proposal distribution $\mu^{(k)} \sim q(\cdot \mid \mu^{(k-1)})$
 - Under certain conditions, the samples generated from $q(\cdot | \mu')$ form an ergodic Markov chain with $p(\cdot)$ as its stationary distribution

Stratified Resampling

- In the last step of SIR, the weighted sample set {μ^(k), α^(k)} is resampled independently with replacement
- This might result in high variance resampling, i.e., sometimes some samples with large weights might not be selected or samples with very small weights may be selected multiple times
- Stratified resampling: guarantees that samples with large weights appear at least once and those with small weights – at most once. Stratified resampling is optimal in terms of variance (Thrun et al. 2005)
- Instead of selecting samples independently, use a sequential process:
 - Add the weights along the circumference of a circle
 - Divide the circle into N equal pieces and sample a uniform on each piece
 - Samples with large weights are chosen at least once and those with small weights – at most once

Stratified Resampling

- ► Systematic resampling: the same as stratified resampling except that the same uniform is used for each piece, i.e., u ~ U(0, 1/N) is sampled only once before the for loop above.
- ▶ Sample importance resampling (SIR): draw $\mu^{(k)}$ independently with replacement from $\{\mu^{(1)}, \ldots, \mu^{(N)}\}$ with probability $\alpha^{(k)}$ and add to the final sample set with weight $\frac{1}{N}$ 23

Particle Filter Summary

- **Prior**: $x_t \mid z_{0:t}, u_{0:t-1} \sim p_{t|t}(x_x) := \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(x_t; \mu_{t|t}^{(k)}\right)$
- Motion model: $x_{t+1} \sim p_a(\cdot \mid x_t, u_t)$
- Observation model: $z_t \sim p_h(\cdot \mid x_t)$
- Prediction: approximate the mixture by sampling:

$$p_{t+1|t}(x) = \int p_{a}(x \mid s, u_{t}) \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta\left(s; \mu_{t|t}^{(k)}\right) ds = \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} p_{a}(x \mid \mu_{t|t}^{(k)}, u_{t}) \approx \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right) ds$$

Update: rescale the particles based on the observation likelihood:

$$p_{t+1|t+1}(x) = \frac{p_h(z_{t+1}; x) \sum_{k=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(k)} \delta\left(x; \mu_{t+1|t}^{(k)}\right)}{\int p_h(z_{t+1}; s) \sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} \delta\left(s; \mu_{t+1|t}^{(j)}\right) ds} = \sum_{k=1}^{N_{t+1|t}} \left[\frac{\alpha_{t+1|t}^{(k)} p_h\left(z_{t+1} \mid \mu_{t+1|t}^{(k)}\right)}{\sum_{j=1}^{N_{t+1|t}} \alpha_{t+1|t}^{(j)} p_h\left(z_{t+1} \mid \mu_{t+1|t}^{(k)}\right)} \right] \delta\left(x; \mu_{t+1|t}^{(k)}\right)$$

► If
$$N_{eff} := \frac{1}{\sum_{k=1}^{N_{t|t}} (\alpha_{t|t}^{(k)})^2} \le N_{threshold}$$
, resample the particle set $\left\{\mu_{t+1|t+1}^{(k)}, \alpha_{t+1|t+1}^{(k)}\right\}$ via stratified or sample importance resampling

Rao-Blackwellized Particle Filter

The Rao-Blackwellized (marginalized) particle filter is applicable to conditionally linear-Gaussian models:

$$\begin{aligned} x_{t+1}^{n} &= f_{t}^{n}(x_{t}^{n}) + A_{t}^{n}(x_{t}^{n})x_{t}^{\prime} + G_{t}^{n}(x_{t}^{n})w_{t}^{n} \\ x_{t+1}^{\prime} &= f_{t}^{\prime}(x_{t}^{n}) + A_{t}^{\prime}(x_{t}^{n})x_{t}^{\prime} + G_{t}^{\prime}(x_{t}^{n})w_{t}^{\prime} \\ z_{t} &= h_{t}(x_{t}^{n}) + C_{t}(x_{t}^{n})x_{t}^{\prime} + v_{t} \end{aligned}$$

Nonlinear states: x_t^n Linear states: x_t^l

Idea: exploit linear-Gaussian sub-structure to handle high dim. problems

$$p(x_{t}^{l}, x_{0:t}^{n} \mid z_{0:t}, u_{0:t-1}) = \underbrace{p(x_{t}^{l} \mid z_{0:t}, u_{0:t-1}, x_{0:t}^{n})}_{\text{Kalman Filter}} \underbrace{p(x_{0:t}^{n} \mid z_{0:t}, u_{0:t-1})}_{\text{Particle Filter}}$$
$$= \sum_{k=1}^{N_{t|t}} \alpha_{t|t}^{(k)} \delta(x_{0:t}^{n}; m_{t|t}^{(k)}) \phi(x_{t}^{l}; \mu_{t|t}^{(k)}, \Sigma_{t|t}^{(k)})$$

The RBPF is a combination of the particle filter and the Kalman filter, in which each particle has a Kalman filter associated to it