ECE276A: Sensing \& Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Markov Localization

- Robot Localization Problem: Given a map m, a sequence of control inputs $u_{0: t-1}$, and a sequence of measurements $z_{0: t}$, infer the state (e.g., pose) of the robot x_{t}
- Approach: use a Bayes filter with a multi-modal distribution in order to cature multiple hypotheses about the robot state, e.g.:
- Gaussian mixture filter
- Particle filter
- Histogram filter
- Pruning: need to keep the number of hypotheses/components under control
- Important considerations: What are the motion and observation models and how is the map represented?

Histogram Filter Localization (1-D)

Prior:

Histogram Filter Localization (1-D)

Histogram Filter Localization (1-D)

Histogram Filter Localization (2-D)

Particle Filter Localization (1-D)

Prior:

Particle Filter Localization (1-D)

Particle Filter Localization (1-D)

Particle Filter Localization (1-D)

Prior:
4
p(s)

Particle Filter Localization (1-D)

Prior:

Update:

Predict:

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Particle Filter Localization (2-D)

Map Representations

- Landmark-based: a collection of objects, each having a position, orientation, and object class
- Polygonal mesh: a collection of points and connectivity information among them, forming polygons
- Surfels: a collection of oriented discs containing photometric information
- Occupancy grid: a discretization of space into cells with a binary occupancy model

Occupancy Grid

- An occupancy grid is a collection $m \in\{0,1\}^{d}$ of independent Bernoulli random variables m_{i} for $i=1, \ldots, d$
- Given occupancy measurements $z_{0: t}$, the distribution of m_{i} is:

$$
m_{i} \left\lvert\, z_{0: t}= \begin{cases}\operatorname{Occupied}(1) & \text { with prob. } \gamma_{i, t}:=p\left(m_{i}=1 \mid z_{0: t}\right) \\ \operatorname{Free}(0) & \text { with prob. } 1-\gamma_{i . t}\end{cases}\right.
$$

- How do we update the map distribution over time?

- Estimate the occupancy probability $\gamma_{i, t}$ using the measurements $z_{0: t}$ and the robot state to transform them to the world frame
- Keep track of the cell log-odds: $\lambda_{i, t+1}=\lambda_{i, t}+\Delta \lambda_{i, t} \quad \leftarrow$ Measurement "trust"
- Usually constrain $\lambda_{M I N} \leq \lambda_{i, t} \leq \lambda_{M A X}$
- May put a decay on $\lambda_{i, t}$ to handle changing maps

Bayes Rule using Log-Odds

- The odds ratio of a binary random variable m_{i} updated over time via Bayes rule and measurements z is:
$\left.\begin{array}{l}p\left(m_{i}=1 \mid z\right)=\frac{1}{\eta} p_{h}\left(z \mid m_{i}=1\right) p\left(m_{i}=1\right) \\ p\left(m_{i}=0 \mid z\right)=\frac{1}{\eta} p_{h}\left(z \mid m_{i}=0\right) p\left(m_{i}=0\right)\end{array}\right\} \Rightarrow \underbrace{\frac{p\left(m_{i}=1 \mid z\right)}{\frac{p\left(m_{i}=0 \mid z\right)}{}}=\underbrace{\frac{p_{h}\left(z \mid m_{i}=1\right)}{p_{h}\left(z \mid m_{i}=0\right)}}_{g(z)} \underbrace{\frac{p\left(m_{i}=1\right)}{p\left(m_{i}=0\right)}}_{o\left(m_{i}\right)},{ }_{o}}_{o\left(m_{i} \mid z\right)}$
- A simple observation model, specifying how much we trust occupancy measurements (e.g., from a Laser scanner), can be used. Example:

$$
g(1)=\frac{p_{h}\left(z \mid m_{i}=1\right)}{p_{h}\left(z \mid m_{i}=0\right)}=\frac{80 \%}{20 \%}=4 \quad g(0)=\frac{1}{4}
$$

- Estimating the pdf of m_{i} conditioned on $z_{0: t}$ is equivalent to accumulating the log-odds ratio:
$\lambda\left(m_{i} \mid z_{0: t}\right):=\log o\left(m_{i} \mid z_{0: t}\right)=\log \left(g\left(z_{t} \mid m_{i}\right) o\left(m_{i} \mid z_{0: t-1}\right)\right)=\lambda\left(m_{i}\right)+\sum_{s=0}^{t} \log g\left(z_{s} \mid m_{i}\right)$
- Recover pdf from log-odds: $p\left(m_{i}=1 \mid z_{0: t}\right)=1-\frac{1}{1+\exp \left(\lambda\left(m_{i} \mid z_{0: t}\right)\right)}$

Scan Matching Observation Model

- An observation model for a laser scan z obtained from sensor pose x in an occupancy map m can be obtained by modeling the correlation between z and m as follows:

1. Transform the scan z to the world frame using x and find all points (or only hit points) y in the grid that correspond to the scan
2. Let the observation model be proportional to the similarty $\operatorname{corr}(y, m)$ between the transformed scan y and the grid m

- The correlation is large if y and m agree:

$$
\operatorname{corr}(y, m):=\sum_{i} \mathbb{1}\left\{m_{i}=y_{i}\right\}
$$

- The weights can be converted to probabilities via the softmax function:

$$
p_{h}(z \mid x, m)=\frac{e^{\operatorname{corr}(y, m)}}{\sum_{V} e^{\operatorname{corr}(v, m)}} \propto e^{\operatorname{corr}(y, m)}
$$

Simultaneous Localization \& Mapping (SLAM)

- Chicken-and-egg problem:
- Given the pose - it is easy to build a map (accumulate log-odds!)
- Given the map - it is easy to localize (particle filter + scan matching)
- EM: suppose x_{t} is a hidden variable and m are the parameters. Given an inital map $m^{(0)}$, e.g., obtained from the first scan, iterate:
E : Estimate the distribution of x_{t} given $m^{(i)}$
M : Update $m^{(i+1)}$ by maximizing (over m) the log-likelihood of the measurements conditioned on x_{t} and m
- Filtering: maintain a joint pdf over the robot state x_{t} and map m via KF, EKF, UKF: $p\left(x_{t}, m \mid z_{0: t}, u_{0: t-1}\right)$
- Smoothing: maintain a pdf over the robot trajectory $x_{0: t}$ and map m :
- Occupancy grid: Fast SLAM exploits that the occupancy grid cells are independent conditioned on the robot trajectory:

$$
p\left(x_{0: t}, m \mid z_{0: t}, u_{0: t-1}\right)=p\left(x_{0: t} \mid z_{0: t}, u_{0: t-1}\right) \prod_{i} p\left(m_{i} \mid z_{0: t}, x_{0: t}\right)
$$

- Landmark-based: Rao-Blackwellized Particle Filter uses particles for $x_{0: t}$ and Gaussian distributions for the landmark poses
- Landmark-based: Kalman smoothing and Factor graphs are the state-of-the-art

Project 3: Humanoid THOR

- RGBD camera
- 2D Lidar
- IMU
- Odometry
- Transforms

Project 3: Localization and Textured Map

time index $=23201$

Project 3: Overview

- Initial particle set $\mu_{0 \mid 0}^{(k)}=(0,0,0)^{T} \in S E(2)$ with weights $\alpha_{0 \mid 0}^{(k)}=\frac{1}{N}$
- Use first laser scan to initialize the map:

1. use head angle to remove the ground plane from the scan
2. convert the scan to Cartesian coordinates
3. convert the scan to cells and update the map log-odds (via bresenham2D or cv2.drawContours)

- Use an odometry motion model to predict motion for each particle
- Use the laser scan from each particle to compute map correlation (via getMapCorrelation) and update the particle weights
- Choose the best particle, project the laser scan, and update the map log-odds (in general, each particle should maintain its own map)
- Textured map: use RGBD images from the best particle pose to assign colors to the occupancy grid cells

