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Markov Localization

I Robot Localization Problem: Given a map m, a sequence of control
inputs u0:t−1, and a sequence of measurements z0:t , infer the state (e.g.,
pose) of the robot xt

I Approach: use a Bayes filter with a multi-modal distribution in order to
cature multiple hypotheses about the robot state, e.g.:

I Gaussian mixture filter
I Particle filter
I Histogram filter

I Pruning: need to keep the number of hypotheses/components under
control

I Important considerations: What are the motion and observation
models and how is the map represented?
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Histogram Filter Localization (2-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (1-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)

16



Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)
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Particle Filter Localization (2-D)

23



Map Representations

I Landmark-based: a collection of objects,
each having a position, orientation, and
object class

I Polygonal mesh: a collection of points
and connectivity information among them,
forming polygons

I Surfels: a collection of oriented discs
containing photometric information

I Occupancy grid: a discretization of space
into cells with a binary occupancy model
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Occupancy Grid

I An occupancy grid is a collection m ∈ {0, 1}d
of independent Bernoulli random variables mi

for i = 1, . . . , d

I Given occupancy measurements z0:t , the
distribution of mi is:

mi | z0:t =

{
Occupied (1) with prob. γi ,t := p(mi = 1 | z0:t)
Free (0) with prob. 1− γi .t

I How do we update the map distribution over time?

I Estimate the occupancy probability γi ,t using the
measurements z0:t and the robot state to
transform them to the world frame

I Keep track of the cell log-odds:
λi ,t+1 = λi ,t + ∆λi ,t ← Measurement “trust”

I Usually constrain λMIN ≤ λi ,t ≤ λMAX

I May put a decay on λi ,t to handle changing maps25



Bayes Rule using Log-Odds
I The odds ratio of a binary random variable mi updated over time via

Bayes rule and measurements z is:

p(mi = 1 | z) =
1

η
ph(z | mi = 1)p(mi = 1)

p(mi = 0 | z) =
1

η
ph(z | mi = 0)p(mi = 0)

⇒
p(mi = 1 | z)

p(mi = 0 | z)︸ ︷︷ ︸
o(mi |z)

=
ph(z | mi = 1)

ph(z | mi = 0)︸ ︷︷ ︸
g(z)

p(mi = 1)

p(mi = 0)︸ ︷︷ ︸
o(mi )

I A simple observation model, specifying how much we trust occupancy
measurements (e.g., from a Laser scanner), can be used. Example:

g(1) =
ph(z | mi = 1)

ph(z | mi = 0)
=

80%

20%
= 4 g(0) =

1

4

I Estimating the pdf of mi conditioned on z0:t is equivalent to
accumulating the log-odds ratio:

λ(mi | z0:t) := log o(mi | z0:t) = log(g(zt | mi )o(mi | z0:t−1)) = λ(mi ) +
t∑

s=0

log g(zs | mi )

I Recover pdf from log-odds: p(mi = 1 | z0:t) = 1− 1
1+exp(λ(mi |z0:t))
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Scan Matching Observation Model
I An observation model for a laser scan z obtained from sensor pose x in

an occupancy map m can be obtained by modeling the correlation
between z and m as follows:

1. Transform the scan z to the world frame using x and find all points (or
only hit points) y in the grid that correspond to the scan

2. Let the observation model be proportional to the similarty corr(y ,m)
between the transformed scan y and the grid m

I The correlation is large if y and m agree:

corr(y ,m) :=
∑
i

1{mi = yi}

I The weights can be converted to
probabilities via the softmax function:

ph(z | x ,m) =
ecorr(y ,m)∑
v e

corr(v ,m)
∝ ecorr(y ,m)
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Simultaneous Localization & Mapping (SLAM)
I Chicken-and-egg problem:

I Given the pose – it is easy to build a map (accumulate log-odds!)
I Given the map – it is easy to localize (particle filter + scan matching)

I EM: suppose xt is a hidden variable and m are the parameters. Given an
inital map m(0), e.g., obtained from the first scan, iterate:

E: Estimate the distribution of xt given m(i)

M: Update m(i+1) by maximizing (over m) the log-likelihood of the
measurements conditioned on xt and m

I Filtering: maintain a joint pdf over the robot state xt and map m via
KF, EKF, UKF: p(xt ,m | z0:t , u0:t−1)

I Smoothing: maintain a pdf over the robot trajectory x0:t and map m:
I Occupancy grid: Fast SLAM exploits that the occupancy grid cells are

independent conditioned on the robot trajectory:

p(x0:t ,m | z0:t , u0:t−1) = p(x0:t | z0:t , u0:t−1)
∏
i

p(mi | z0:t , x0:t)

I Landmark-based: Rao-Blackwellized Particle Filter uses particles for
x0:t and Gaussian distributions for the landmark poses

I Landmark-based: Kalman smoothing and Factor graphs are the
state-of-the-art 28



Project 3: Humanoid THOR

I RGBD camera

I 2D Lidar

I IMU

I Odometry

I Transforms
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Project 3: Localization and Textured Map

30



Project 3: Overview

I Initial particle set µ
(k)
0|0 = (0, 0, 0)T ∈ SE (2) with weights α

(k)
0|0 = 1

N

I Use first laser scan to initialize the map:

1. use head angle to remove the ground plane from the scan
2. convert the scan to Cartesian coordinates
3. convert the scan to cells and update the map log-odds (via

bresenham2D or cv2.drawContours)

I Use an odometry motion model to predict motion for each particle

I Use the laser scan from each particle to compute map correlation (via
getMapCorrelation) and update the particle weights

I Choose the best particle, project the laser scan, and update the map
log-odds (in general, each particle should maintain its own map)

I Textured map: use RGBD images from the best particle pose to assign
colors to the occupancy grid cells
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