ECE276A: Sensing \& Estimation in Robotics Lecture 12: Visual Features and Optical Flow

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

From Photometry to Geometry

- Suppose that instead of a lidar (which measures the positions of points in the world), we would like to use a camera to localize our robot and build a map of the environment
- Image: an array of positive numbers that measure the amount of light incident on the sensor
- How do we go from measurements of light (photometry) to measurements of positions of points in the world?

Correspondence

- Corresponding points in two views are image projections of the same geometric point in space
- Correspondence problem: establish which point in the second image corresponds to a given point $y_{1} \in \mathbb{R}^{2}$ in the first image in the sense of being the same point in physical space
- Idea: look for a pixel $y_{2} \in \mathbb{R}^{2}$ such that $I_{2}\left(y_{2}\right) \approx I_{1}\left(y_{1}\right)$

Correspondence

- Matching windows: a much more robust process of establishing correspondence is to compare not the brightness of individual pixels but that of small windows $W\left(y_{1}\right), W\left(y_{2}\right)$ around the points
- Aperture problem: the brightness profile within the selected windows is not rich enough to allow us to recover the transformation of the pixel y_{1} uniquely (e.g., blank wall)
- Features: points whose local regions are rich enough to allow solving the correspondence problem. Features establish a link between photometric measurements and geometric primitives.
- The window shape $W\left(y_{1}\right)$ and image values $I_{1}(z), z \in W\left(y_{1}\right)$, associated with a pixel y_{1} in the first image undergo a nonlinear transformation as a consequence of the change of viewpoint

Brightness constancy constraint

- Suppose we are imaging a point $x \in \mathbb{R}^{3}$ that emits light with the same energy in all directions (Lambertian) and radiance distribution $\mathcal{R}(x)$
- Suppose the camera is calibrated (ie., $K=I_{3 \times 3}$) and the two camera frames are related by the rigid-body transformation $(R, p) \in S E(3)$.
- Let I_{1} and I_{2} be two images and $y_{1}, y_{2} \in \mathbb{R}^{2}$ be the two pixels corresponding to x :

$$
I_{2}\left(y_{2}\right)=I_{1}\left(y_{1}\right) \sim \mathcal{R}(x)
$$

- From the projection equations, the point y_{1} in image I_{1} corresponds to the point y_{2} in image I_{2} if:

$$
y_{2}=h\left(y_{1}\right):=\frac{1}{\lambda_{2}}\left(\lambda_{1} R y_{1}+p\right)
$$

where λ_{1}, λ_{2} are the unknown scales/depths of the observed point x.

- Brightness constancy constraint: $I_{1}\left(y_{1}\right)=I_{2}\left(h\left(y_{1}\right)\right)$

Local Deformation Models

- The transformation h undergone by the entire image is determined by the scales λ_{1}, λ_{2} of the visible surface and hence estimating h is as difficult as estimating the shape of the visible objects!
- Instead, we model the transformation only locally in a region $W(y)$:
- Translational model: each point in the window undergoes the exact same translational motion $d \in \mathbb{R}^{2}$:

$$
h(z) \approx z+d, \quad \forall z \in W(y)
$$

This model is valid only in small windows and over short time durations but it is at the core of many feature matching and tracking algorithms.

- Affine model: each point in the window undergoes an affine transformation with parameters $A \in \mathbb{R}^{2 \times 2}$ and $d \in \mathbb{R}^{2}$:

$$
h(z) \approx A z+d, \quad \forall z \in W(y)
$$

Matching Point Features

- Requiring that $I_{1}\left(y_{1}\right)=I_{2}\left(h\left(y_{1}\right)\right)$ is too much to ask for due to the approximation of h and the presence of noise and occlusions
- Correspondence problem: an optimization problem that aims to determine the (translation or affine) parameters of the local transformation model of h :

$$
\min _{d} \sum_{z \in W(y)}\left\|I_{1}(z)-I_{2}(z+d)\right\|_{2}^{2} \quad \text { OR } \quad \min _{A, d} \sum_{z \in W(y)}\left\|I_{1}(z)-I_{2}(A z+d)\right\|_{2}^{2}
$$

- Our approximations of h are valid only locally in space and time so consider the continuous version of the brightness constancy constraint:

$$
I_{1}(y)=I(y(t), t) \underbrace{\approx}_{\text {brightness constancy }} I_{2}(h(y)) \underbrace{\approx}_{\text {translation model }} I(y(t)+\nu d t, t+d t)
$$

where $d t$ is small and $\nu \in \mathbb{R}^{2}$ is the velocity of y

Continuous-Time Brightness Constancy

- Brightness Constancy (for the affine model):

$$
I(y, t) \approx I(A y+\nu d t, t+d t)
$$

- Linearizing the right-hand side around (y, t) :

$$
I(A y+\nu d t, t+d t) \approx I(y, t)+\nabla_{y} I(y, t)^{T}(A y+\nu d t-y)+\frac{\partial I}{\partial t}(y, t) d t
$$

leads to:

- Translational: $\min _{\nu} \sum_{z \in W(y)}\left\|\nabla_{y} I(z, t)^{T} \nu+\frac{\partial I}{\partial t}(z, t)\right\|_{2}^{2}$
- Affine: $\min _{A, \nu} \sum_{z \in W(y)}\left\|\nabla_{y} I(z, t)^{T}\left(\frac{(A-I)}{d t} z+\nu\right)+\frac{\partial I}{\partial t}(z, t)\right\|_{2}^{2}$
- Aperture problem: The brightness constancy equation $\left(\frac{\partial I}{\partial y} \nu+\frac{\partial I}{\partial t}=0\right)$ provides only one constraint for the two unknowns $\nu \in \mathbb{R}^{2}$.
- There are enough constraints on ν only when the brightness constancy constraint is applied to each z in a region $W(y)$ that contains "sufficient texture" and the motion ν is assumed constant in the region 8

Feature Tracking and Optical Flow

- The brightness constancy equation $\left(\frac{\partial I}{\partial y} \nu+\frac{\partial I}{\partial t}=0\right)$ can be used to compute optical flow or track photometric features in a sequence of moving images
- Optical flow: the velocity ν of particle flowing through a given image location y
- Feature tracking: the computation of the velocity ν of a particle $y(t)$ moving through the image domain so that $y(t+d t)=y(t)+\nu d t$ (translational model)
- The only difference between optical flow and feature tracking is at the conceptual level, whether the vector ν is computed at fixed locations in the image or at moving points $y(t)$

Feature Tracking and Optical Flow

- To compute the velocity ν we need to solve:

$$
\min _{\nu} \sum_{z \in W(y)}\left\|\nabla_{y} l(z, t)^{T} \nu+\frac{\partial I}{\partial t}(z, t)\right\|_{2}^{2}
$$

- Letting $y=(u, v)$ and setting the gradient to zero results in:

$$
\begin{aligned}
0 & =2 \sum_{z \in W(y)}\left(\nabla_{y} I(z, t)^{T} \nu+\frac{\partial I}{\partial t}(z, t)\right) \nabla_{y} I(z, t) \\
& =2 \sum_{z \in W(y)}\left(\left[\begin{array}{cc}
I_{u}^{2}(z) & I_{u}(z) I_{v}(z) \\
I_{u}(z) I_{v}(z) & I_{v}(z)^{2}
\end{array}\right] \nu+\left[\begin{array}{l}
I_{u}(z) I_{t}(z) \\
I_{v}(z) I_{t}(z)
\end{array}\right]\right) \\
& =2(\underbrace{\left[\begin{array}{cc}
\sum_{z} I_{u}^{2}(z) & \sum_{z} I_{u}(z) I_{v}(z) \\
\sum_{z} I_{u}(z) I_{v}(z) & \sum_{z} I_{v}(z)^{2}
\end{array}\right]}_{G(y)} \nu+\underbrace{\left[\begin{array}{l}
\sum_{z} I_{u}(z) I_{t}(z) \\
\sum_{z} I_{v}(z) I_{t}(z)
\end{array}\right]}_{b(y)})
\end{aligned}
$$

- The optimal estimate of the image velocity at y is $\nu^{*}=-G(y)^{-1} b(y)$

Point Feature Selection

- For $G(y)$ to be invertible, the region $W(y)$ must have nontrivial gradients along independent directions, therefore resembling a "corner" structure.
- Corner feature: a pixel y such that the smallest singular value of $G(y)$ (equal to the eigenvalues for a symmetric matrix) is larger than some threshold τ
- Harris corner detector: A variation of the corner detector that thresholds the quantity: $\operatorname{det}(G)+k \operatorname{tr}^{2}(G)=\sigma_{1} \sigma_{2}+k\left(\sigma_{1}+\sigma_{2}\right)^{2}=(1+2 k) \sigma_{1} \sigma_{2}+k\left(\sigma_{1}+\sigma_{2}\right)^{2}$, where $k \in \mathbb{R}$ is a small scalar and σ_{1}, σ_{2} are the singular values of G. Since k is small, both singular values of G need to be sufficiently large to pass the threshold.
- More sophisticated techniques that utilize contours (or edges) and search for high curvature points in the detected contours are used in practice

Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow

1: Input: Image / at time t
2:
3: Compute the image gradient $\left(I_{u}, I_{v}\right)$
4: Compute $G(y):=\left[\begin{array}{cc}\sum_{z \in W(y)} I_{u}^{2}(z) & \sum_{z \in W(y)} I_{u}(z) I_{v}(z) \\ \sum_{z \in W(y)} I_{u}(z) I_{v}(z) & \sum_{z \in W(y)} I_{v}^{2}(z)\end{array}\right]$ at every pixel $y=(u, v)$ 5:
(Feature tracking) select point features y_{1}, y_{2}, \ldots such that $G\left(y_{i}\right)$ is invertible
7: (Optical flow) select y_{i} on a fixed grid
8:
9: Compute $b(y):=\left[\begin{array}{l}\sum_{z \in W(y)} I_{u}(z) I_{t}(z) \\ \sum_{z \in W(y)} I_{V}(z) I_{t}(z)\end{array}\right]$
10 :
11: If $G(y)$ is invertible (guaranteed for point features), compute $\nu(y)=-G(y)^{-1} b(y)$
12: Else $\nu(y)=0$.
13:
14: (Feature tracking) at time $t+1$, repeat the operation at $y+\nu(y)$
15: (Optical flow) at time $t+1$, repeat the operation at y

Feature Tracking and Optical Flow

- The feature tracking/optical flow algorithm is very efficient when we use the translational deformation model
- When features are tracked over extended periods of time, however, the estimation error accumulates
- Instead of matching image regions between adjacent frames, one could match image regions between an initial frame and the current frame
- The simple translational deformation model is no longer accurate and we should use the affine deformation model
- Further reading:
- J. Shi and C. Tomasi, "Good features to track," IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 593-600, 1994.

Image Gradient

- How do we compute the gradients $I_{u}(u, v, t), I_{v}(u, v, t)$, and $I_{t}(u, v, t)$ needed for feature tracking/optical flow?
- We could approximate the derivatives using finite differences, e.g.,:

$$
I_{t}(u, v, t)=I(u, v, t)-I_{t}(u, v, t-1) \quad \text { OR } \quad I_{t}(u, v, t)=\frac{1}{2}\left(I(u, v, t+1)-I_{t}(u, v, t-1)\right)
$$

- To derive a more accurate approach we need to understand the relationship between a continuous signal $f(x)$ and its sampled version with period T :

$$
f[x]=f(x T), \quad x \in \mathbb{Z}
$$

$f(x)$
$f[x]$

Nyquist-Shannon Sampling Theorem

- If $f(x)$ is band limited, i.e., its Fourier transform satisfies $|F(\omega)|=0$ for all $\omega>\omega_{n}$ (Nyquist frequency), it can be reconstructed exactly from a set of discrete samples at sampling frequency $\omega_{s}:=\frac{2 \pi}{T}>2 \omega_{n}$.
- The continuous signal $f(x)$ can be reconstructed by multiplying its sampled version $f[x]$ in the frequency domain with an ideal reconstruction filter $h(x)$ with Fourier transform:

$$
H(\omega)=\left\{\begin{array}{ll}
1, & \omega \in\left[-\frac{\pi}{T}, \frac{\pi}{T}\right] \\
0, & \text { else }
\end{array} \quad h(x)=\operatorname{sinc}\left(\frac{\pi x}{T}\right), \quad x \in \mathbb{R}\right.
$$

- Multiplication in the frequency domain corresponds to convolution in the spatial domain, thus as long as $\omega_{n}(f)<\frac{\pi}{T}$:

$$
f(x)=f[x] * h(x), \quad x \in \mathbb{R}
$$

Derivative of a Sampled Signal

- Differentiating $f(x)=f[x] * h(x)$:

$$
\frac{d}{d x} f(x)=\sum_{k=-\infty}^{\infty} f[k] \frac{d}{d x} h(x-k)=f[x] * \frac{d h}{d x}(x)
$$

- Sampling the above result shows that the derivative of the sampled function $f^{\prime}[x]$ can be computed as a convolution of the sampled signal $f[x]$ with the sampled derivative of the sync function $h^{\prime}[x]$:

$$
\begin{aligned}
f^{\prime}[x] & =f[x] * h^{\prime}[x] \\
h^{\prime}(x) & =\frac{\left(\pi^{2} x / T^{2}\right) \cos (\pi x / T)-\pi / T \sin (\pi x / T)}{(\pi x / T)^{2}}, \quad x \in \mathbb{R}
\end{aligned}
$$

Five-tap Gaussian Filter

- The sync function has infinite support and falls off very slowly away from the origin. Hence, the sync convolution is not practically feasible and simple truncation yields undesirable artifacts.
- The derivative computation can be approximated by convolving with a Gaussian since it drops to zero much faster than the sync:

$$
g(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-x^{2}}{2 \sigma^{2}}}
$$

$$
g[x]=\left[\begin{array}{lllll}
0.1353 & 0.6065 & 1.0000 & 0.6065 & 0.1353
\end{array}\right]
$$

$$
g^{\prime}[x]=\left[\begin{array}{llll}
0.2707 & 0.6065 & 0 & -0.6065
\end{array}\right.
$$

Image Gradient

- In the case of images (2-D functions) the result is the same:

$$
I(u, v)=I[u, v] * h(u, v) \quad h(u, v)=h(u) h(v)=\frac{\sin (\pi u / T) \sin (\pi v / T)}{\pi^{2} u v / T^{2}}
$$

- Note that $h(u, v)=h(u) h(v)$ is separable which leads to:

$$
I_{u}[u, v]=I[u, v] * h^{\prime}[u] * h[v] \quad I_{v}(u, v)=I[u, v] * h[u] * h^{\prime}[v]
$$

- The computation of the image derivatives is then accomplished as a pair of 1-D convolutions with filters obtained by sampling a continuous Gaussian function and its derivative:

$$
\begin{aligned}
& I_{u}[u, v]=I[u, v] * g^{\prime}[u] * g[v]=\sum_{k=-\omega / 2}^{\omega / 2} \sum_{I=-\omega / 2}^{\omega / 2} I[k, I] g^{\prime}[u-k] g[v-I] \\
& I_{v}[u, v]=I[u, v] * g[u] * g^{\prime}[v]=\sum_{k=-\omega / 2}^{\omega / 2} \sum_{I=-\omega / 2}^{\omega / 2} I[k, I] g[u-k] g^{\prime}[v-I]
\end{aligned}
$$

- The number of samples is typically chosen as $\omega=5 \sigma$, imposing the fact that the window subtends 98.76% of the area under the Gaussian curve8

Image Gradient

I_{u}

I_{V}

Other Derivative Filters, Features, and Descriptors

- Other commonly used derivative filters:
- Interpolation filter: $h[x]=\frac{1}{2}[1,1]$ with derivative $h^{\prime}[x]=\frac{1}{2}[1,-1]$
- Sobel filter: $h[x]=\frac{1}{2+\sqrt{2}}[1, \sqrt{2}, 1]$ with derivative $h^{\prime}[x]=\frac{1}{3}[1,0,-1]$
- Gabor filter: used for texture analysis
- Other features and descriptors (describe feature shape, color, texture):
- SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David Lowe, is one of the most successful local image features/descriptors in the past decade. It makes the Harris corner scale invariant by using scale-space filtering via a Laplacian of Gaussian kernel (blob detector)
- SURF: the Speeded-Up Robust Feature is a speeded-up version of SIFT which applies an approximate $2^{\text {nd }}$ derivative Gaussian filter at many scales along the axes and at 45° (more robust to rotation than Harris corners)
- FAST: a Feature from Accelerated Segment Test detects corners by considering 16 pixels around the pixel y being tested and is several times faster than other corner detectors
- BRIEF: a Binary Robust Independent Elementary Features speed up descriptor calculation and matching
- ORB: Oriented FAST and Rotated BRIEF

Epipolar Geometry

- Let $x \in \mathbb{R}^{3}$ (world frame) be observed by two calibrated cameras
- Without loss of generality assume that the first camera frame coincides with the world frame. Let the position and orientation of the second camera be $p \in \mathbb{R}^{3}$ and $R \in S O$ (3)
- The images of x in the two camera frames are:

$$
\begin{array}{ll}
\lambda_{1} y_{1}=x, & \lambda_{1}=\text { unknown scale } \\
\lambda_{2} y_{2}=R^{T}(x-p), & \lambda_{2}=\text { unknown scale }
\end{array}
$$

- We obtain the following relationship between the image points:

$$
\lambda_{1} y_{1}=R \lambda_{2} y_{2}+p
$$

- To eliminate the unknown depths λ_{i} :
- pre-multiply with \hat{p}
- note that $\hat{p} y_{1}$ is perpendicular to y_{1}

$$
\underbrace{\lambda_{1} y_{1}^{\top} \hat{p} y_{1}}_{0}=\lambda_{2} y_{1}^{\top} \hat{p} R y_{2}+\underbrace{y_{1}^{T} \hat{p} p}_{0}
$$

Essential Matrix

- Thus, $\lambda_{2} y_{1}^{\top} \hat{p} R y_{2}=0$ and since $\lambda_{2}>0$, we arrive at the following result
- Epipolar constraint: Consider two images y_{1}, y_{2} of the same point x from two calibrated cameras with relative pose (R, p). Then:

$$
0=y_{1}^{T} \hat{p} R y_{2}=y_{1}^{T} E y_{2}
$$

where $E:=\hat{p} R \in \mathbb{R}^{3 \times 3}$ is the essential matrix.

- Essential matrix characterization: a non-zero $E \in \mathbb{R}^{3 \times 3}$ is an essential matrix iff its singular value decomposition is $E=U \operatorname{diag}(\sigma, \sigma, 0) V^{T}$ for some $\sigma \geq 0$ and $U, V \in S O$ (3)
- Pose recovery from the Essential matrix: There are exactly two relative poses corresponding to a non-zero essential matrix E :

$$
\begin{aligned}
& (\hat{p}, R)=\left(U R_{z}\left(\frac{\pi}{2}\right) \operatorname{diag}(\sigma, \sigma, 0) U^{T}, U R_{z}^{T}\left(\frac{\pi}{2}\right) V^{T}\right) \\
& (\hat{p}, R)=\left(U R_{z}\left(-\frac{\pi}{2}\right) \operatorname{diag}(\sigma, \sigma, 0) U^{T}, U R_{z}^{T}\left(-\frac{\pi}{2}\right) V^{T}\right)
\end{aligned}
$$

