
ECE276A: Sensing & Estimation in Robotics
Lecture 12: Visual Features and Optical Flow

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

1

mailto:natanasov@ucsd.edu
mailto:s9guo@eng.ucsd.edu
mailto:a2pal@eng.ucsd.edu

From Photometry to Geometry

I Suppose that instead of a lidar (which measures the positions of points
in the world), we would like to use a camera to localize our robot and
build a map of the environment

I Image: an array of positive numbers that measure the amount of light
incident on the sensor

I How do we go from measurements of light (photometry) to
measurements of positions of points in the world?

2

Correspondence

I Corresponding points in two views are image projections of the same
geometric point in space

I Correspondence problem: establish which point in the second image
corresponds to a given point y1 ∈ R2 in the first image in the sense of
being the same point in physical space

I Idea: look for a pixel y2 ∈ R2 such that I2(y2) ≈ I1(y1)

3

Correspondence

I Matching windows: a much more robust process of establishing
correspondence is to compare not the brightness of individual pixels but
that of small windows W (y1), W (y2) around the points

I Aperture problem: the brightness profile within the selected windows is
not rich enough to allow us to recover the transformation of the pixel y1
uniquely (e.g., blank wall)

I Features: points whose local regions are rich enough to allow solving
the correspondence problem. Features establish a link between
photometric measurements and geometric primitives.

I The window shape W (y1) and image values I1(z), z ∈W (y1),
associated with a pixel y1 in the first image undergo a nonlinear
transformation as a consequence of the change of viewpoint

4

Brightness constancy constraint
I Suppose we are imaging a point x ∈ R3 that emits light with the same

energy in all directions (Lambertian) and radiance distribution R(x)

I Suppose the camera is calibrated (i.e., K = I3×3) and the two camera
frames are related by the rigid-body transformation (R, p) ∈ SE (3).

I Let I1 and I2 be two images and y1, y2 ∈ R2 be the two pixels
corresponding to x :

I2(y2) = I1(y1) ∼ R(x)

I From the projection equations, the point y1 in image I1 corresponds to
the point y2 in image I2 if:

y2 = h(y1) :=
1

λ2
(λ1Ry1 + p)

where λ1, λ2 are the unknown scales/depths of the observed point x .

I Brightness constancy constraint: I1(y1) = I2(h(y1))

5

Local Deformation Models
I The transformation h undergone by the entire image is determined by

the scales λ1, λ2 of the visible surface and hence estimating h is as
difficult as estimating the shape of the visible objects!

I Instead, we model the transformation only locally in a region W (y):
I Translational model: each point in the window undergoes the exact

same translational motion d ∈ R2:

h(z) ≈ z + d , ∀z ∈W (y)

This model is valid only in small windows and over short time durations
but it is at the core of many feature matching and tracking algorithms.

I Affine model: each point in the window undergoes an affine
transformation with parameters A ∈ R2×2 and d ∈ R2:

h(z) ≈ Az + d , ∀z ∈W (y)

6

Matching Point Features

I Requiring that I1(y1) = I2(h(y1)) is too much to ask for due to the
approximation of h and the presence of noise and occlusions

I Correspondence problem: an optimization problem that aims to
determine the (translation or affine) parameters of the local
transformation model of h:

min
d

∑
z∈W (y)

‖I1(z)− I2(z + d)‖22 OR min
A,d

∑
z∈W (y)

‖I1(z)− I2(Az + d)‖22

I Our approximations of h are valid only locally in space and time so
consider the continuous version of the brightness constancy constraint:

I1(y) = I (y(t), t) ≈︸︷︷︸
brightness constancy

I2(h(y)) ≈︸︷︷︸
translation model

I (y(t) + νdt, t + dt)

where dt is small and ν ∈ R2 is the velocity of y

7

Continuous-Time Brightness Constancy
I Brightness Constancy (for the affine model):

I (y , t) ≈ I (Ay + νdt, t + dt)

I Linearizing the right-hand side around (y , t):

I (Ay + νdt, t + dt) ≈ I (y , t) +∇y I (y , t)T (Ay + νdt − y) +
∂I

∂t
(y , t)dt

leads to:

I Translational: min
ν

∑
z∈W (y)

∥∥∥∥∇y I (z , t)Tν +
∂I

∂t
(z , t)

∥∥∥∥2
2

I Affine: min
A,ν

∑
z∈W (y)

∥∥∥∥∇y I (z , t)T
(

(A− I)

dt
z + ν

)
+
∂I

∂t
(z , t)

∥∥∥∥2
2

I Aperture problem: The brightness constancy equation (∂I∂y ν + ∂I
∂t = 0)

provides only one constraint for the two unknowns ν ∈ R2.

I There are enough constraints on ν only when the brightness constancy
constraint is applied to each z in a region W (y) that contains
“sufficient texture” and the motion ν is assumed constant in the region.8

Feature Tracking and Optical Flow

I The brightness constancy equation (∂I∂y ν + ∂I
∂t = 0) can be used to

compute optical flow or track photometric features in a sequence of
moving images

I Optical flow: the velocity ν of particle flowing through a given image
location y

I Feature tracking: the computation of the velocity ν of a particle y(t)
moving through the image domain so that y(t + dt) = y(t) + νdt
(translational model)

I The only difference between optical flow and feature tracking is at the
conceptual level, whether the vector ν is computed at fixed locations in
the image or at moving points y(t)

9

Feature Tracking and Optical Flow
I To compute the velocity ν we need to solve:

min
ν

∑
z∈W (y)

∥∥∥∥∇y I (z , t)Tν +
∂I

∂t
(z , t)

∥∥∥∥2
2

I Letting y = (u, v) and setting the gradient to zero results in:

0 = 2
∑

z∈W (y)

(
∇y I (z , t)Tν +

∂I

∂t
(z , t)

)
∇y I (z , t)

= 2
∑

z∈W (y)

([
I 2u (z) Iu(z)Iv (z)

Iu(z)Iv (z) Iv (z)2

]
ν +

[
Iu(z)It(z)
Iv (z)It(z)

])

= 2

[∑

z I
2
u (z)

∑
z Iu(z)Iv (z)∑

z Iu(z)Iv (z)
∑

z Iv (z)2

]
︸ ︷︷ ︸

G(y)

ν +

[∑
z Iu(z)It(z)∑
z Iv (z)It(z)

]
︸ ︷︷ ︸

b(y)

I The optimal estimate of the image velocity at y is ν∗ = −G (y)−1b(y)

10

Point Feature Selection
I For G (y) to be invertible, the region W (y) must have nontrivial

gradients along independent directions, therefore resembling a “corner”
structure.

I Corner feature: a pixel y such that the smallest singular value of G (y)
(equal to the eigenvalues for a symmetric matrix) is larger than some
threshold τ

I Harris corner detector: A variation of the corner detector that
thresholds the quantity:

det(G) + k tr2(G) = σ1σ2 + k(σ1 + σ2)2 = (1 + 2k)σ1σ2 + k(σ1 + σ2)2,

where k ∈ R is a small scalar and σ1, σ2 are the singular values of G .
Since k is small, both singular values of G need to be sufficiently large
to pass the threshold.

I More sophisticated techniques that utilize contours (or edges) and search
for high curvature points in the detected contours are used in practice

11

Feature Tracking and Optical Flow

Algorithm 1 Basic Feature Tracking and Optical Flow
1: Input: Image I at time t
2:
3: Compute the image gradient (Iu, Iv)

4: Compute G(y) :=

[∑
z∈W (y) I

2
u (z)

∑
z∈W (y) Iu(z)Iv (z)∑

z∈W (y) Iu(z)Iv (z)
∑

z∈W (y) I
2
v (z)

]
at every pixel y = (u, v)

5:
6: (Feature tracking) select point features y1, y2, . . . such that G(yi) is invertible
7: (Optical flow) select yi on a fixed grid
8:

9: Compute b(y) :=

[∑
z∈W (y) Iu(z)It(z)∑
z∈W (y) Iv (z)It(z)

]
10:
11: If G(y) is invertible (guaranteed for point features), compute ν(y) = −G(y)−1b(y)
12: Else ν(y) = 0.
13:
14: (Feature tracking) at time t + 1, repeat the operation at y + ν(y)
15: (Optical flow) at time t + 1, repeat the operation at y

12

Feature Tracking and Optical Flow

I The feature tracking/optical flow algorithm is very efficient when we use
the translational deformation model

I When features are tracked over extended periods of time, however, the
estimation error accumulates

I Instead of matching image regions between adjacent frames, one could
match image regions between an initial frame and the current frame

I The simple translational deformation model is no longer accurate and we
should use the affine deformation model

I Further reading:
I J. Shi and C. Tomasi, “Good features to track,” IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR), pp. 593-600, 1994.

13

Image Gradient
I How do we compute the gradients Iu(u, v , t), Iv (u, v , t), and It(u, v , t)

needed for feature tracking/optical flow?

I We could approximate the derivatives using finite differences, e.g.,:

It(u, v , t) = I (u, v , t)− It(u, v , t − 1) OR It(u, v , t) =
1

2
(I (u, v , t + 1)− It(u, v , t − 1))

I To derive a more accurate approach we need to understand the
relationship between a continuous signal f (x) and its sampled version
with period T :

f [x] = f (xT), x ∈ Z

14

Nyquist-Shannon Sampling Theorem

I If f (x) is band limited, i.e., its Fourier transform satisfies |F (ω)| = 0 for
all ω > ωn (Nyquist frequency), it can be reconstructed exactly from a
set of discrete samples at sampling frequency ωs := 2π

T > 2ωn.

I The continuous signal f (x) can be reconstructed by multiplying its
sampled version f [x] in the frequency domain with an ideal
reconstruction filter h(x) with Fourier transform:

H(ω) =

{
1, ω ∈

[
− π

T ,
π
T

]
0, else

h(x) = sinc
(πx
T

)
, x ∈ R

I Multiplication in the frequency domain corresponds to convolution in the
spatial domain, thus as long as ωn(f) < π

T :

f (x) = f [x] ∗ h(x), x ∈ R

15

Derivative of a Sampled Signal
I Differentiating f (x) = f [x] ∗ h(x):

d

dx
f (x) =

∞∑
k=−∞

f [k]
d

dx
h(x − k) = f [x] ∗ dh

dx
(x)

I Sampling the above result shows that the derivative of the sampled
function f ′[x] can be computed as a convolution of the sampled signal
f [x] with the sampled derivative of the sync function h′[x]:

f ′[x] = f [x] ∗ h′[x]

h′(x) =
(π2x/T 2) cos(πx/T)− π/T sin(πx/T)

(πx/T)2
, x ∈ R

16

Five-tap Gaussian Filter
I The sync function has infinite support and falls off very slowly away

from the origin. Hence, the sync convolution is not practically feasible
and simple truncation yields undesirable artifacts.

I The derivative computation can be approximated by convolving with a
Gaussian since it drops to zero much faster than the sync:

g(x) =
1√

2πσ2
e
−x2

2σ2 g ′(x) = − x

σ2
√

2πσ2
e
−x2

2σ2

g [x] =
[
0.1353 0.6065 1.0000 0.6065 0.1353

]
g ′[x] =

[
0.2707 0.6065 0 −0.6065 −0.2707

]
17

Image Gradient
I In the case of images (2-D functions) the result is the same:

I (u, v) = I [u, v]∗h(u, v) h(u, v) = h(u)h(v) =
sin(πu/T) sin(πv/T)

π2uv/T 2
, u, v ∈ R

I Note that h(u, v) = h(u)h(v) is separable which leads to:

Iu[u, v] = I [u, v] ∗ h′[u] ∗ h[v] Iv (u, v) = I [u, v] ∗ h[u] ∗ h′[v]

I The computation of the image derivatives is then accomplished as a pair
of 1-D convolutions with filters obtained by sampling a continuous
Gaussian function and its derivative:

Iu[u, v] = I [u, v] ∗ g ′[u] ∗ g [v] =

ω/2∑
k=−ω/2

ω/2∑
l=−ω/2

I [k, l]g ′[u − k]g [v − l]

Iv [u, v] = I [u, v] ∗ g [u] ∗ g ′[v] =

ω/2∑
k=−ω/2

ω/2∑
l=−ω/2

I [k, l]g [u − k]g ′[v − l]

I The number of samples is typically chosen as ω = 5σ, imposing the fact
that the window subtends 98.76% of the area under the Gaussian curve18

Image Gradient

I Iu Iv

19

Other Derivative Filters, Features, and Descriptors
I Other commonly used derivative filters:

I Interpolation filter: h[x] = 1
2 [1, 1] with derivative h′[x] = 1

2 [1,−1]
I Sobel filter: h[x] = 1

2+
√
2

[1,
√

2, 1] with derivative h′[x] = 1
3 [1, 0,−1]

I Gabor filter: used for texture analysis
I Other features and descriptors (describe feature shape, color, texture):

I SIFT: the Scale-Invariant Feature Transform (SIFT), introduced by David
Lowe, is one of the most successful local image features/descriptors in the
past decade. It makes the Harris corner scale invariant by using
scale-space filtering via a Laplacian of Gaussian kernel (blob detector)

I SURF: the Speeded-Up Robust Feature is a speeded-up version of SIFT
which applies an approximate 2nd derivative Gaussian filter at many scales
along the axes and at 45◦ (more robust to rotation than Harris corners)

I FAST: a Feature from Accelerated Segment Test detects corners by
considering 16 pixels around the pixel y being tested and is several times
faster than other corner detectors

I BRIEF: a Binary Robust Independent Elementary Features speed up
descriptor calculation and matching

I ORB: Oriented FAST and Rotated BRIEF 20

Epipolar Geometry
I Let x ∈ R3 (world frame) be observed by two calibrated cameras

I Without loss of generality assume that the first camera frame coincides
with the world frame. Let the position and orientation of the second
camera be p ∈ R3 and R ∈ SO(3)

I The images of x in the two camera frames are:

λ1y1 = x , λ1 = unknown scale

λ2y2 = RT (x − p), λ2 = unknown scale

I We obtain the following relationship between the image points:

λ1y1 = Rλ2y2 + p

I To eliminate the unknown depths λi :
I pre-multiply with p̂
I note that p̂y1 is perpendicular to y1

λ1y
T
1 p̂y1︸ ︷︷ ︸
0

= λ2y
T
1 p̂Ry2 + yT1 p̂p︸ ︷︷ ︸

0

21

Essential Matrix
I Thus, λ2y

T
1 p̂Ry2 = 0 and since λ2 > 0, we arrive at the following result

I Epipolar constraint: Consider two images y1, y2 of the same point x
from two calibrated cameras with relative pose (R, p). Then:

0 = yT1 p̂Ry2 = yT1 Ey2

where E := p̂R ∈ R3×3 is the essential matrix.

I Essential matrix characterization: a non-zero E ∈ R3×3 is an
essential matrix iff its singular value decomposition is
E = Udiag(σ, σ, 0)V T for some σ ≥ 0 and U,V ∈ SO(3)

I Pose recovery from the Essential matrix: There are exactly two
relative poses corresponding to a non-zero essential matrix E :

(p̂,R) =
(
URz

(π
2

)
diag(σ, σ, 0)UT ,URT

z

(π
2

)
V T
)

(p̂,R) =
(
URz

(
−π

2

)
diag(σ, σ, 0)UT ,URT

z

(
−π

2

)
V T
)

22

