ECE276A: Sensing & Estimation in Robotics
Lecture 14: Robust Estimation

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

mailto:natanasov@ucsd.edu
mailto:s9guo@eng.ucsd.edu
mailto:a2pal@eng.ucsd.edu

Ground Plane Detection

» Hyperplane: a set {x € R" | n"x =nTxg}, where € R", np # 0 is the
normal vector and xp € R” is any point in the hyperplane so that
b:=1n"xg € R determines the offset of the hyperplane from the origin.

> The ground plane in the world frame is {x € R? | 5] x = 0} with
77g = (07 07 l)T

» Consider a body frame with position p € R3 and orientation R € SO(3).
The set of points in the body frame that belongs to a world-frame plane
{xeR*|n"x=b}is {y e R*|n"(Ry + p) = b}.

» Simple ground plane detection: \ngT(Ry + p)| < € for some small € € R.

» Plane fitting: to find planes in a point cloud {x; € R3}, we need to
find parameters 1 and b that fit many of the points x;

Line Detection
» Use a similar idea to detect lines {y € R? | nTy = b} in an image

> Assume that we have performed edge detection:
> Convolve | with Sobel/Gaussian filter to get /, (horizontal edges) and /,
(vertical edges)
» Gradient magnitude g(u, v) := \/I,(u, v)2 + I,(u, v)2 and orientation
I, (u,v
Iugu,vg
» Threshold the image gradient magnitude g(u, v) to obtain n pixels y; that

may describe object boundaries

a(u,v) = arctan() (angle with respect to u-axis)

» To find lines in the image, we need to find parameters 1 and b that fit
many of the points y;

Conv. with Sobel filter Line features 3

Robust Estimation)

> How should we: .

» Extract lines from 2-D points (e.g., walls from .
laser scan, line features in an image)

» Extract planes from 3-D points (e.g., ground
plane or walls from RGB-D images)

» Match image features (e.g., Harris corners) R T B
across images E

v

Least squares: given D := {(x;,y;)}"_; determine parameters 3 € RY:

S)

i=1

v

Example: given D := {(uj, v;)}?_; determine line parameters a, b via:
minap > (au; + bv; — 1)3

v

The least squares fit is sensitive to noise, outliers, missing data...

v

Robotics philosophy: never trust a single point!

Outliers

> Inliers: points that fit the model

» Qutliers: points

that do not fit the model

20

30

40t

S0+

B0

70+

80

Inliers

Outlier

. \ I , , .
u/zn’ 40 80 80 100
S|

Problems due to Outliers

> a few outliers can greatly skew the results of least squares estimation

[20 40 60 80 100 [] 20 40 60 80 100

Least squares fit Robust least squares

» lIdea: robust estimation is a two-stage process:
1. Classify data points as outliers or inliers
2. Fit the model to the inliers only

» M. Fischler and R. Bolles “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated
Cartography”. Comm. of the ACM 24: 381-395, 1981. 6

Random Sample Consensus (RANSAC)

» RANSALC line fitting:

Pick two data points at random and generate corresponding line

Count the number of inliers (points whose point-to-line distance is small)
Repeat

Pick the line with max number of inliers

v

v vy

» Point-to-line distance for point w € R"” and
the line between points a, b € R™:

I(b—a) x (a = w)|2

d(w,a— b) = Tb—all

» Numerator: twice the area of the triangle formed by a, b, and w
» Denominator: length of the triangle base

Random Sample Consensus (RANSAC)

» RANSAC plane fitting:

» Pick 3 data points at random and generate corresponding plane

» Count the number of inliers (points whose point-to-plane distance is
small)

» Repeat

» Pick the plane with max number of inliers

» Point-to-plane distance for point w € R” and) :H
the plane v (x — a) = 0 through point a € R”
with normal v € R™:

(X0 Yo Z0)

w

vi(w—
d(w, VT(X —a)=0):= W

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

10

Random Sample Consensus (RANSAC)

Count=4 00

11

Random Sample Consensus (RANSAC)

12

Random Sample Consensus (RANSAC)

Count=26

13

Random Sample Consensus (RANSAC)

14

Random Sample Consensus (RANSAC)

15

Random Sample Consensus (RANSAC)

16

Random Sample Consensus (RANSAC)

17

Random Sample Consensus (RANSAC)

Count =4
Count=16
Count=19
Count =13

18

Random Sample Consensus (RANSAC)

» Termination criteria: how many times should we repeat the RANSAC
procedure?

1-(1-(1-e=p = N:log('fg_(l(l__pl)s)

p = desired probability for a good sample

N = number of RANSAC repetitions

S = number of points in a sample (e.g., 2 for a line)

e = probability that a point is an outlier

(1 — e) = probability of an inlier

(1 — e)° = probability of S inliers

1 — (1 — e)° = probability that one or more points in the sample are
outliers

(1 — (1 — €)°)N = probability that all N samples contain outliers
» 1 — (1 —(1—e)®)N probability that at least one sample does not
contain outliers

vV vV V.V V. VY

v

19

Number of RANSAC Samples

» Choose N so that with probability p = 0.99 at least one sample is
outlier-free

proportion of outliers e

5% 10% 20% 25% 30% 40% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293

20 33 54 163 588

26 44 78 272 1177

[eBEN B e NNV I SRS I S R 7]
O N I SNV)
O 03N L A

» Example: line-fitting with 12 points of which 2 are outliers, i.e.,
e =2/12 = 20%, since S = 2 points are needed per sample, N =5
gives a 99% chance of obtaining an outlier-free sample. This is in
contrast to N = 66 samples needed to try every pair of points.

Hough Transform

» Voting scheme: each data point x; votes for several parameters 3 that
are consistent with it

v

Used to find parametric curves, e.g., line, polynomial, circle, ellipse, etc.

v

Handles missing and occluded data

v

Idea: accumulate the consistent parameters [for each data sample
(xi,yi) in parameter space B
» The space B is discretized into a set .4 (accumulator)
> Each training point (x;, y;) votes for the consistent cells in A, i.e., §; that
satisfy y; = BJ-TX,-

v

The discretization of the accumulator makes the algorithm
computationally demanding for high dimensional curves

v

The lengths and positions of the curves cannot be determined

21

Hough Transform

» Line fitting for 2-D image features {u;, v;}

Line 1 Image

» Normal equation of line: ucosf +vsinf=p
ine2” ¢

» 6 — angle of the line normal wrt the origin v
» p — distance to the line along the normal

» Accumulator:
> Discretize the (p, 6) space, e.g., 8 € [-90°,90°]
and p € [—Nﬁ, N\@] for an N x N image.

» Given (uj, v;), add 1 to each consistent (p, 0) cell,
e.g., for each ¢; increment all p such that
p = ujcosl; + v;sin0;

> Repeat for every (u;, v;)

» The most likely line hypotheses correspond to the
max locations in the accumulator Alp, 6]

22

Hough Transform

> Line detection example: 20 most prominent lines in a natural scene,
preprocessed by convolution with a Sobel kernel and thresholding:

0]

| o 350

|

i 1w
w0

10
10

| ol e e e ww W@

Conv. with Sobel filter Accumulator Line features

T =

The same idea can be used for other curves but since more parameters

are needed to describe them, the accumulator needs to be higher
dimensional

» Ellipse: need 5D accumulator 6={a, b, c, up, v}

a(u — up)? +2b(u — up)(v — vp) + c(v —w)? =1
23

Qutlier Rejection for Least Squares

> All least-squares problems correspond to Gaussian MLE inference:

argmafoﬁy:,ﬂ Xj, O)_argmabegeXp(212(~B7x)>

B i

i=1 i=1

> To place less weight on outliers, choose a distribution with a heavy tail
(slowly decaying), e.g., exp(—f(x)), where f(x) is the error measure:

arg maxznjlogexp(flyi—B87x)) = argﬁminzn: flyi — B7x)
i=1

i=1

B

» Huber loss: frequently used in practice

{X; for |x| <e
f(x) =

e(|x|] — §) otherwise

heavy-tailed

» Several others: Tukey, Cauchy,
Blake-Zisserman, Corrupted Gaussian, - ~ !
etc. , L

Qutlier Rejection for Least Squares

3

015

0.0%

L1 norm Huber Tukey
Cauchy Blake-Zisserman Corrupted G.

25

lteratively Reweighted Least Squares (IRLS)

n
» Nonlinear least squares: mﬁin Z flyi — BTX;)
i=1

» If f(x) is below |x|, the problem is not convex

» ldea: construct a tight upper bound using a quadratic function
E. update w; to get a tight upper bound: f(y; — 87 x;) < wi(y; — B7x;)?
M. update 8 by min wi(y; — 87 x;)?
pdate 3 by m; Z (vi = BTx)

Example: mﬁin Z lyi — %/ BIP
Initialize: w® =1

M-step: B = arg min Z W,'(t)‘)/i —x/ B
B i

WD = lys <] 502

E-step:

