ECE276A: Sensing & Estimation in Robotics Lecture 14: Robust Estimation

Lecturer:

Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal: a2pal@eng.ucsd.edu

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Ground Plane Detection

- Hyperplane: a set {x ∈ ℝⁿ | η^Tx = η^Tx₀}, where η ∈ ℝⁿ, η ≠ 0 is the normal vector and x₀ ∈ ℝⁿ is any point in the hyperplane so that b := η^Tx₀ ∈ ℝ determines the offset of the hyperplane from the origin.
- The ground plane in the world frame is $\{x \in \mathbb{R}^3 \mid \eta_g^T x = 0\}$ with $\eta_g = (0, 0, 1)^T$
- Consider a body frame with position p ∈ R³ and orientation R ∈ SO(3). The set of points in the body frame that belongs to a world-frame plane {x ∈ R³ | η^Tx = b} is {y ∈ R³ | η^T(Ry + p) = b}.
- ▶ Simple ground plane detection: $|\eta_g^T(Ry + p)| \le \epsilon$ for some small $\epsilon \in \mathbb{R}$.
- ▶ Plane fitting: to find planes in a point cloud {x_i ∈ ℝ³}, we need to find parameters η and b that fit many of the points x_i

Line Detection

- Use a similar idea to detect lines $\{y \in \mathbb{R}^2 \mid \eta^T y = b\}$ in an image
- Assume that we have performed edge detection:
 - Convolve I with Sobel/Gaussian filter to get I_u (horizontal edges) and I_v (vertical edges)
 - Gradient magnitude $g(u, v) := \sqrt{I_u(u, v)^2 + I_v(u, v)^2}$ and orientation $\alpha(u, v) := \arctan\left(\frac{I_v(u, v)}{I_u(u, v)}\right)$ (angle with respect to *u*-axis)
 - Threshold the image gradient magnitude g(u, v) to obtain n pixels y_i that may describe object boundaries
- To find lines in the image, we need to find parameters η and b that fit many of the points y_i

Image

Conv. with Sobel filter

Line features 3

Robust Estimation

- How should we:
 - Extract lines from 2-D points (e.g., walls from laser scan, line features in an image)
 - Extract planes from 3-D points (e.g., ground plane or walls from RGB-D images)
 - Match image features (e.g., Harris corners) across images

▶ Least squares: given $D := \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ determine parameters $\beta \in \mathbb{R}^d$:

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta^T x_i \right)^2$$

- ► Example: given D := {(u_i, v_i)}ⁿ_{i=1} determine line parameters a, b via: min_{a,b} ∑ⁿ_{i=1}(au_i + bv_i - 1)²₂
- > The least squares fit is sensitive to noise, outliers, missing data...
- Robotics philosophy: never trust a single point!

Outliers

- Inliers: points that fit the model
- > Outliers: points that do not fit the model

Problems due to Outliers

> a few outliers can greatly skew the results of least squares estimation

Least squares fit

Robust least squares

- Idea: robust estimation is a two-stage process:
 - 1. Classify data points as outliers or inliers
 - 2. Fit the model to the inliers only
- M. Fischler and R. Bolles "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381–395, 1981.

RANSAC line fitting:

- Pick two data points at random and generate corresponding line
- Count the number of inliers (points whose point-to-line distance is small)
- Repeat
- Pick the line with max number of inliers
- ▶ Point-to-line distance for point w ∈ ℝⁿ and the line between points a, b ∈ ℝⁿ:

$$d(w, a
ightarrow b) := rac{\|(b-a) imes (a-w)\|_2}{\|b-a\|_2}$$

- ▶ Numerator: twice the area of the triangle formed by *a*, *b*, and *w*
- Denominator: length of the triangle base

RANSAC plane fitting:

- Pick 3 data points at random and generate corresponding plane
- Count the number of inliers (points whose point-to-plane distance is small)
- Repeat
- Pick the plane with max number of inliers
- Point-to-plane distance for point w ∈ ℝⁿ and the plane v^T(x − a) = 0 through point a ∈ ℝⁿ with normal v ∈ ℝⁿ:

$$d(w, v^T(x-a) = 0) := \frac{|v^T(w-a)|}{\|v\|_2}$$

Termination criteria: how many times should we repeat the RANSAC procedure?

$$(1 - (1 - (1 - e)^{S})^{N} = p \quad \Rightarrow \quad \left| N = \frac{\log(1 - p)}{\log(1 - (1 - e)^{S})} \right|$$

- p = desired probability for a good sample
- N = number of RANSAC repetitions
- S = number of points in a sample (e.g., 2 for a line)
- e = probability that a point is an outlier
- (1-e) = probability of an inlier
- $(1-e)^S$ = probability of S inliers
- ► 1 (1 e)^S = probability that one or more points in the sample are outliers
- $(1 (1 e)^S)^N$ = probability that all N samples contain outliers
- ► 1 (1 (1 e)^S)^N probability that at least one sample does not contain outliers

Number of RANSAC Samples

Choose N so that with probability p = 0.99 at least one sample is outlier-free

	proportion of outliers <i>e</i>						
s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Example: line-fitting with 12 points of which 2 are outliers, i.e.,
 e = 2/12 = 20%, since S = 2 points are needed per sample, N = 5 gives a 99% chance of obtaining an outlier-free sample. This is in contrast to N = 66 samples needed to try every pair of points.

Hough Transform

- Voting scheme: each data point x_i votes for several parameters β that are consistent with it
- ▶ Used to find parametric curves, e.g., line, polynomial, circle, ellipse, etc.
- Handles missing and occluded data
- Idea: accumulate the consistent parameters β for each data sample (x_i, y_i) in parameter space B
 - ► The space *B* is discretized into a set *A* (accumulator)
 - Each training point (x_i, y_i) votes for the consistent cells in A, i.e., β_j that satisfy y_i = β_j^Tx_i
- The discretization of the accumulator makes the algorithm computationally demanding for high dimensional curves
- The lengths and positions of the curves cannot be determined

Hough Transform

- ▶ Line fitting for 2-D image features {*u_i*, *v_i*}
- Normal equation of line: $u \cos \theta + v \sin \theta = \rho$
 - θ angle of the line normal wrt the origin
 - ρ distance to the line along the normal

Accumulator:

- ▶ Discretize the (ρ, θ) space, e.g., $\theta \in [-90^\circ, 90^\circ]$ and $\rho \in [-N\sqrt{2}, N\sqrt{2}]$ for an $N \times N$ image.
- Given (u_i, v_i), add 1 to each consistent (ρ, θ) cell, e.g., for each θ_j increment all ρ such that ρ = u_i cos θ_j + v_i sin θ_j
- Repeat for every (u_i, v_i)
- The most likely line hypotheses correspond to the max locations in the accumulator A[ρ, θ]

Hough Transform

Line detection example: 20 most prominent lines in a natural scene, preprocessed by convolution with a Sobel kernel and thresholding:

Conv. with Sobel filter

Accumulator

Line features

- The same idea can be used for other curves but since more parameters are needed to describe them, the accumulator needs to be higher dimensional
- Ellipse: need 5D accumulator $\theta = \{a, b, c, u_0, v_0\}$

$$a(u-u_0)^2 + 2b(u-u_0)(v-v_0) + c(v-v_0)^2 = 1$$

Outlier Rejection for Least Squares

All least-squares problems correspond to Gaussian MLE inference:

$$\arg\max_{\beta} \prod_{i=1}^{n} \phi(y_i; \beta^T \mathbf{x}_i, \sigma^2) = \arg\max_{\beta} \sum_{i=1}^{n} \log \exp\left(-\frac{1}{2\sigma^2}(y_i - \beta^T \mathbf{x}_i)^2\right)$$

► To place less weight on outliers, choose a distribution with a heavy tail (slowly decaying), e.g., exp(-f(x)), where f(x) is the error measure:

$$\arg\max_{\beta} \sum_{i=1}^{n} \log \exp\left(-f(y_{i} - \beta^{T} \mathbf{x}_{i})\right) = \arg\min_{\beta} \sum_{i=1}^{n} f(y_{i} - \beta^{T} \mathbf{x}_{i})$$

Huber loss: frequently used in practice

$$f(x) = egin{cases} rac{x^2}{2} & ext{for } |x| \leq \epsilon \ \epsilon ig(|x| - rac{\epsilon}{2}ig) & ext{otherwise} \end{cases}$$

 Several others: Tukey, Cauchy, Blake-Zisserman, Corrupted Gaussian, etc.

Outlier Rejection for Least Squares

Iteratively Reweighted Least Squares (IRLS)

► Nonlinear least squares:
$$\min_{\beta} \sum_{i=1}^{n} f(y_i - \beta^T \mathbf{x}_i)$$

- If f(x) is below |x|, the problem is **not convex**
- Idea: construct a tight upper bound using a quadratic function
 E. update w_i to get a tight upper bound: f(y_i − β^Tx_i) ≤ w_i(y_i − β^Tx_i)²
 M. update β by min_β ∑_i w_i(y_i − β^Tx_i)²

