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Ground Plane Detection

I Hyperplane: a set {x ∈ Rn | ηT x = ηT x0}, where η ∈ Rn, η 6= 0 is the
normal vector and x0 ∈ Rn is any point in the hyperplane so that
b := ηT x0 ∈ R determines the offset of the hyperplane from the origin.

I The ground plane in the world frame is {x ∈ R3 | ηTg x = 0} with

ηg = (0, 0, 1)T

I Consider a body frame with position p ∈ R3 and orientation R ∈ SO(3).
The set of points in the body frame that belongs to a world-frame plane
{x ∈ R3 | ηT x = b} is {y ∈ R3 | ηT (Ry + p) = b}.

I Simple ground plane detection: |ηTg (Ry + p)| ≤ ε for some small ε ∈ R.

I Plane fitting: to find planes in a point cloud {xi ∈ R3}, we need to
find parameters η and b that fit many of the points xi
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Line Detection
I Use a similar idea to detect lines {y ∈ R2 | ηT y = b} in an image

I Assume that we have performed edge detection:
I Convolve I with Sobel/Gaussian filter to get Iu (horizontal edges) and Iv

(vertical edges)
I Gradient magnitude g(u, v) :=

√
Iu(u, v)2 + Iv (u, v)2 and orientation

α(u, v) := arctan
(

Iv (u,v)
Iu(u,v)

)
(angle with respect to u-axis)

I Threshold the image gradient magnitude g(u, v) to obtain n pixels yi that
may describe object boundaries

I To find lines in the image, we need to find parameters η and b that fit
many of the points yi

Image Conv. with Sobel filter Line features 3



Robust Estimation
I How should we:

I Extract lines from 2-D points (e.g., walls from
laser scan, line features in an image)

I Extract planes from 3-D points (e.g., ground
plane or walls from RGB-D images)

I Match image features (e.g., Harris corners)
across images

I Least squares: given D := {(xi , yi )}ni=1 determine parameters β ∈ Rd :

min
β

n∑
i=1

(
yi − βT xi

)
2

I Example: given D := {(ui , vi )}ni=1 determine line parameters a, b via:
mina,b

∑n
i=1(aui + bvi − 1)22

I The least squares fit is sensitive to noise, outliers, missing data...

I Robotics philosophy: never trust a single point!
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Outliers

I Inliers: points that fit the model

I Outliers: points that do not fit the model
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Problems due to Outliers
I a few outliers can greatly skew the results of least squares estimation

Least squares fit Robust least squares
I Idea: robust estimation is a two-stage process:

1. Classify data points as outliers or inliers
2. Fit the model to the inliers only

I M. Fischler and R. Bolles “Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated
Cartography”. Comm. of the ACM 24: 381–395, 1981. 6



Random Sample Consensus (RANSAC)

I RANSAC line fitting:
I Pick two data points at random and generate corresponding line
I Count the number of inliers (points whose point-to-line distance is small)
I Repeat
I Pick the line with max number of inliers

I Point-to-line distance for point w ∈ Rn and
the line between points a, b ∈ Rn:

d(w , a→ b) :=
‖(b − a)× (a− w)‖2

‖b − a‖2
I Numerator: twice the area of the triangle formed by a, b, and w
I Denominator: length of the triangle base
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Random Sample Consensus (RANSAC)

I RANSAC plane fitting:
I Pick 3 data points at random and generate corresponding plane
I Count the number of inliers (points whose point-to-plane distance is

small)
I Repeat
I Pick the plane with max number of inliers

I Point-to-plane distance for point w ∈ Rn and
the plane vT (x − a) = 0 through point a ∈ Rn

with normal v ∈ Rn:

d(w , vT (x − a) = 0) :=
|vT (w − a)|
‖v‖2
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)

15



Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
I Termination criteria: how many times should we repeat the RANSAC

procedure?

1− (1− (1− e)S)N = p ⇒ N =
log(1− p)

log(1− (1− e)S)

I p = desired probability for a good sample
I N = number of RANSAC repetitions
I S = number of points in a sample (e.g., 2 for a line)
I e = probability that a point is an outlier
I (1− e) = probability of an inlier
I (1− e)S = probability of S inliers
I 1− (1− e)S = probability that one or more points in the sample are

outliers
I (1− (1− e)S)N = probability that all N samples contain outliers
I 1− (1− (1− e)S)N probability that at least one sample does not

contain outliers
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Number of RANSAC Samples

I Choose N so that with probability p = 0.99 at least one sample is
outlier-free

I Example: line-fitting with 12 points of which 2 are outliers, i.e.,
e = 2/12 = 20%, since S = 2 points are needed per sample, N = 5
gives a 99% chance of obtaining an outlier-free sample. This is in
contrast to N = 66 samples needed to try every pair of points.
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Hough Transform

I Voting scheme: each data point xi votes for several parameters β that
are consistent with it

I Used to find parametric curves, e.g., line, polynomial, circle, ellipse, etc.

I Handles missing and occluded data

I Idea: accumulate the consistent parameters β for each data sample
(xi , yi ) in parameter space B

I The space B is discretized into a set A (accumulator)
I Each training point (xi , yi ) votes for the consistent cells in A, i.e., βj that

satisfy yi = βT
j xi

I The discretization of the accumulator makes the algorithm
computationally demanding for high dimensional curves

I The lengths and positions of the curves cannot be determined
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Hough Transform

I Line fitting for 2-D image features {ui , vi}

I Normal equation of line: u cos θ + v sin θ = ρ
I θ – angle of the line normal wrt the origin
I ρ – distance to the line along the normal

I Accumulator:
I Discretize the (ρ, θ) space, e.g., θ ∈ [−90◦, 90◦]

and ρ ∈ [−N
√

2,N
√

2] for an N × N image.

I Given (ui , vi ), add 1 to each consistent (ρ, θ) cell,
e.g., for each θj increment all ρ such that
ρ = ui cos θj + vi sin θj

I Repeat for every (ui , vi )

I The most likely line hypotheses correspond to the
max locations in the accumulator A[ρ, θ]
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Hough Transform
I Line detection example: 20 most prominent lines in a natural scene,

preprocessed by convolution with a Sobel kernel and thresholding:

Conv. with Sobel filter Accumulator Line features

I The same idea can be used for other curves but since more parameters
are needed to describe them, the accumulator needs to be higher
dimensional

I Ellipse: need 5D accumulator θ={a, b, c , u0, v0}
a(u − u0)2 + 2b(u − u0)(v − v0) + c(v − v0)2 = 1
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Outlier Rejection for Least Squares
I All least-squares problems correspond to Gaussian MLE inference:

arg max
β

n∏
i=1

φ(yi ;β
Txi , σ

2) = arg max
β

n∑
i=1

log exp

(
− 1

2σ2
(yi − βTxi )

2

)
I To place less weight on outliers, choose a distribution with a heavy tail

(slowly decaying), e.g., exp(−f (x)), where f (x) is the error measure:

arg max
β

n∑
i=1

log exp
(
−f (yi − βTxi )

)
= arg min

β

n∑
i=1

f (yi − βTxi )

I Huber loss: frequently used in practice

f (x) =

{
x2

2 for |x | ≤ ε
ε
(
|x | − ε

2

)
otherwise

I Several others: Tukey, Cauchy,
Blake-Zisserman, Corrupted Gaussian,
etc.
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Outlier Rejection for Least Squares
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Iteratively Reweighted Least Squares (IRLS)

I Nonlinear least squares: min
β

n∑
i=1

f (yi − βTxi )

I If f (x) is below |x |, the problem is not convex

I Idea: construct a tight upper bound using a quadratic function

E. update wi to get a tight upper bound: f (yi − βT xi ) ≤ wi (yi − βTxi )2

M. update β by min
β

∑
i

wi (yi − βTxi )
2

Example: min
β

∑
i

|yi − xTi β|p

Initialize: w
(0)
i = 1

M-step: β(t) = arg min
β

∑
i

w
(t)
i |yi − xTi β|2

E-step: w
(t+1)
i = |yi − xTi β

(t)|p−2
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