ECE276A: Sensing \& Estimation in Robotics Lecture 14: Robust Estimation

Lecturer:
Nikolay Atanasov: natanasov@ucsd.edu

Teaching Assistants:
Siwei Guo: s9guo@eng.ucsd.edu
Anwesan Pal: a2pal@eng.ucsd.edu

UCSanDiego

JACOBS SCHOOL OF ENGINEERING
Electrical and Computer Engineering

Ground Plane Detection

- Hyperplane: a set $\left\{x \in \mathbb{R}^{n} \mid \eta^{T} x=\eta^{T} x_{0}\right\}$, where $\eta \in \mathbb{R}^{n}, \eta \neq 0$ is the normal vector and $x_{0} \in \mathbb{R}^{n}$ is any point in the hyperplane so that $b:=\eta^{T} x_{0} \in \mathbb{R}$ determines the offset of the hyperplane from the origin.
- The ground plane in the world frame is $\left\{x \in \mathbb{R}^{3} \mid \eta_{g}^{T} x=0\right\}$ with $\eta_{g}=(0,0,1)^{T}$
- Consider a body frame with position $p \in \mathbb{R}^{3}$ and orientation $R \in S O$ (3). The set of points in the body frame that belongs to a world-frame plane $\left\{x \in \mathbb{R}^{3} \mid \eta^{T} x=b\right\}$ is $\left\{y \in \mathbb{R}^{3} \mid \eta^{T}(R y+p)=b\right\}$.
- Simple ground plane detection: $\left|\eta_{g}^{T}(R y+p)\right| \leq \epsilon$ for some small $\epsilon \in \mathbb{R}$.
- Plane fitting: to find planes in a point cloud $\left\{x_{i} \in \mathbb{R}^{3}\right\}$, we need to find parameters η and b that fit many of the points x_{i}

Line Detection

- Use a similar idea to detect lines $\left\{y \in \mathbb{R}^{2} \mid \eta^{T} y=b\right\}$ in an image
- Assume that we have performed edge detection:
- Convolve I with Sobel/Gaussian filter to get I_{u} (horizontal edges) and I_{v} (vertical edges)
- Gradient magnitude $g(u, v):=\sqrt{I_{u}(u, v)^{2}+I_{v}(u, v)^{2}}$ and orientation $\alpha(u, v):=\arctan \left(\frac{I_{v}(u, v)}{I_{u}(u, v)}\right)$ (angle with respect to u-axis)
- Threshold the image gradient magnitude $g(u, v)$ to obtain n pixels y_{i} that may describe object boundaries
- To find lines in the image, we need to find parameters η and b that fit many of the points y_{i}

Image

Conv. with Sobel filter

Line features

Robust Estimation

- How should we:
- Extract lines from 2-D points (e.g., walls from laser scan, line features in an image)
- Extract planes from 3-D points (e.g., ground plane or walls from RGB-D images)
- Match image features (e.g., Harris corners) across images

- Least squares: given $D:=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{n}$ determine parameters $\beta \in \mathbb{R}^{d}$:

$$
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{T} x_{i}\right)^{2}
$$

- Example: given $D:=\left\{\left(u_{i}, v_{i}\right)\right\}_{i=1}^{n}$ determine line parameters a, b via: $\min _{a, b} \sum_{i=1}^{n}\left(a u_{i}+b v_{i}-1\right)_{2}^{2}$
- The least squares fit is sensitive to noise, outliers, missing data...
- Robotics philosophy: never trust a single point!

Outliers

- Inliers: points that fit the model
- Outliers: points that do not fit the model

Problems due to Outliers

- a few outliers can greatly skew the results of least squares estimation

Least squares fit

Robust least squares

- Idea: robust estimation is a two-stage process:

1. Classify data points as outliers or inliers
2. Fit the model to the inlier only

- M. Fischler and R. Bolles "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24: 381-395, 1981.

Random Sample Consensus (RANSAC)

- RANSAC line fitting:
- Pick two data points at random and generate corresponding line
- Count the number of inliers (points whose point-to-line distance is small)
- Repeat
- Pick the line with max number of inlier
- Point-to-line distance for point $w \in \mathbb{R}^{n}$ and the line between points $a, b \in \mathbb{R}^{n}$:

$$
d(w, a \rightarrow b):=\frac{\|(b-a) \times(a-w)\|_{2}}{\|b-a\|_{2}}
$$

- Numerator: twice the area of the triangle formed by a, b, and w
- Denominator: length of the triangle base

Random Sample Consensus (RANSAC)

- RANSAC plane fitting:
- Pick 3 data points at random and generate corresponding plane
- Count the number of inliers (points whose point-to-plane distance is small)
- Repeat
- Pick the plane with max number of inliers
- Point-to-plane distance for point $w \in \mathbb{R}^{n}$ and the plane $v^{T}(x-a)=0$ through point $a \in \mathbb{R}^{n}$ with normal $v \in \mathbb{R}^{n}$:

$$
d\left(w, v^{T}(x-a)=0\right):=\frac{\left|v^{T}(w-a)\right|}{\|v\|_{2}}
$$

Random Sample Consensus (RANSAC)

0

0

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Random Sample Consensus (RANSAC)

Count $=4$
Count $=6$
Count $=19$
Count $=13$

Random Sample Consensus (RANSAC)

- Termination criteria: how many times should we repeat the RANSAC procedure?

$$
1-\left(1-(1-e)^{S}\right)^{N}=p \quad \Rightarrow \quad N=\frac{\log (1-p)}{\log \left(1-(1-e)^{S}\right)}
$$

- $p=$ desired probability for a good sample
- $N=$ number of RANSAC repetitions
- $S=$ number of points in a sample (e.g., 2 for a line)
- $e=$ probability that a point is an outlier
- $(1-e)=$ probability of an inlier
- $(1-e)^{S}=$ probability of S inliers
- $1-(1-e)^{S}=$ probability that one or more points in the sample are outliers
- $\left(1-(1-e)^{S}\right)^{N}=$ probability that all N samples contain outliers
- $1-\left(1-(1-e)^{S}\right)^{N}$ probability that at least one sample does not contain outliers

Number of RANSAC Samples

- Choose N so that with probability $p=0.99$ at least one sample is outlier-free
proportion of outliers e

s	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

- Example: line-fitting with 12 points of which 2 are outliers, i.e., $e=2 / 12=20 \%$, since $S=2$ points are needed per sample, $N=5$ gives a 99% chance of obtaining an outlier-free sample. This is in contrast to $N=66$ samples needed to try every pair of points.

Hough Transform

- Voting scheme: each data point \mathbf{x}_{i} votes for several parameters β that are consistent with it
- Used to find parametric curves, e.g., line, polynomial, circle, ellipse, etc.
- Handles missing and occluded data
- Idea: accumulate the consistent parameters β for each data sample $\left(\mathbf{x}_{i}, y_{i}\right)$ in parameter space \mathcal{B}
- The space \mathcal{B} is discretized into a set \mathcal{A} (accumulator)
- Each training point (\mathbf{x}_{i}, y_{i}) votes for the consistent cells in \mathcal{A}, i.e., β_{j} that satisfy $y_{i}=\beta_{j}^{T} \mathbf{x}_{i}$
- The discretization of the accumulator makes the algorithm computationally demanding for high dimensional curves
- The lengths and positions of the curves cannot be determined

Hough Transform

- Line fitting for 2-D image features $\left\{u_{i}, v_{i}\right\}$
- Normal equation of line: $u \cos \theta+v \sin \theta=\rho$
- θ - angle of the line normal wrt the origin

- ρ - distance to the line along the normal
- Accumulator:
- Discretize the (ρ, θ) space, e.g., $\theta \in\left[-90^{\circ}, 90^{\circ}\right]$ and $\rho \in[-N \sqrt{2}, N \sqrt{2}]$ for an $N \times N$ image.
- Given $\left(u_{i}, v_{i}\right)$, add 1 to each consistent (ρ, θ) cell, e.g., for each θ_{j} increment all ρ such that $\rho=u_{i} \cos \theta_{j}+v_{i} \sin \theta_{j}$
- Repeat for every $\left(u_{i}, v_{i}\right)$
- The most likely line hypotheses correspond to the max locations in the accumulator $\mathcal{A}[\rho, \theta]$

Hough Transform

- Line detection example: 20 most prominent lines in a natural scene, preprocessed by convolution with a Sobel kernel and thresholding:

Conv. with Sobel filter

Accumulator

Line features

- The same idea can be used for other curves but since more parameters are needed to describe them, the accumulator needs to be higher dimensional
- Ellipse: need 5D accumulator $\theta=\left\{a, b, c, u_{0}, v_{0}\right\}$

$$
a\left(u-u_{0}\right)^{2}+2 b\left(u-u_{0}\right)\left(v-v_{0}\right)+c\left(v-v_{0}\right)^{2}=1
$$

Outlier Rejection for Least Squares

- All least-squares problems correspond to Gaussian MLE inference:

$$
\underset{\beta}{\arg \max } \prod_{i=1}^{n} \phi\left(y_{i} ; \beta^{T} \mathbf{x}_{i}, \sigma^{2}\right)=\underset{\beta}{\arg \max } \sum_{i=1}^{n} \log \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}\right)
$$

- To place less weight on outliers, choose a distribution with a heavy tail (slowly decaying), e.g., $\exp (-f(x))$, where $f(x)$ is the error measure:

$$
\underset{\beta}{\arg \max } \sum_{i=1}^{n} \log \exp \left(-f\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)\right)=\underset{\beta}{\arg \min } \sum_{i=1}^{n} f\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)
$$

- Huber loss: frequently used in practice

$$
f(x)= \begin{cases}\frac{x^{2}}{2} & \text { for }|x| \leq \epsilon \\ \epsilon\left(|x|-\frac{\epsilon}{2}\right) & \text { otherwise }\end{cases}
$$

- Several others: Tukey, Cauchy, Blake-Zisserman, Corrupted Gaussian, etc.

Outlier Rejection for Least Squares

Iteratively Reweighted Least Squares (IRLS)

- Nonlinear least squares: $\min _{\beta} \sum_{i=1}^{n} f\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)$
- If $f(x)$ is below $|x|$, the problem is not convex
- Idea: construct a tight upper bound using a quadratic function
E. update w_{i} to get a tight upper bound: $f\left(y_{i}-\beta^{T} x_{i}\right) \leq w_{i}\left(y_{i}-\beta^{T} \mathbf{x}_{i}\right)^{2}$
M. update β by $\min _{\beta} \sum_{i} w_{i}\left(y_{i}-\beta^{\top} \mathbf{x}_{i}\right)^{2}$

Example: $\quad \min _{\beta} \sum_{i}\left|y_{i}-\mathbf{x}_{i}^{T} \beta\right|^{p}$
Initialize: $\quad w_{i}^{(0)}=1$
M-step: $\quad \beta^{(t)}=\underset{\beta}{\arg \min } \sum_{i} w_{i}^{(t)}\left|y_{i}-\mathbf{x}_{i}^{T} \beta\right|^{2}$
E-step: $\quad w_{i}^{(t+1)}=\left|y_{i}-\mathbf{x}_{i}^{T} \beta^{(t)}\right|^{p-2}$

